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Preface to the 
Third Edition

The many problems and solutions provided by the late Professor Spiegel remain invaluable to students as 
they seek to master the intricacies of the calculus and related fields of mathematics. These remain an integral 
part of this manuscript. In this third edition, clarifications have been provided. In addition, the continuation 
of the interrelationships and the significance of concepts, begun in the second edition, have been extended. 
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Preface to the 
Second Edition

A key ingredient in learning mathematics is problem solving. This is the strength, and no doubt the reason 
for the longevity of Professor Spiegel’s advanced calculus. His collection of solved and unsolved problems 
remains a part of this second edition.

Advanced calculus is not a single theory. However, the various sub-theories, including vector analysis, 
infinite series, and special functions, have in common a dependency on the fundamental notions of the cal-
culus. An important objective of this second edition has been to modernize terminology and concepts, so that 
the interrelationships become clearer. For example, in keeping with present usage functions of a real variable 
are automatically single valued; differentials are defined as linear functions, and the universal character of 
vector notation and theory are given greater emphasis. Further explanations have been included and, on oc-
casion, the appropriate terminology to support them.

The order of chapters is modestly rearranged to provide what may be a more logical structure.
A brief introduction is provided for most chapters. Occasionally, a historical note is included; however, 

for the most part the purpose of the introductions is to orient the reader to the content of the chapters.
I thank the staff of McGraw-Hill. Former editor, Glenn Mott, suggested that I take on the project. Peter 

McCurdy guided me in the process. Barbara Gilson, Jennifer Chong, and Elizabeth Shannon made valuable 
contributions to the finished product. Joanne Slike and Maureen Walker accomplished the very difficult task 
of combining the old with the new and, in the process, corrected my errors. The reviewer, Glenn Ledder, was 
especially helpful in the choice of material and with comments on various topics.

ROBERT C. WREDE
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Numbers

Mathematics has its own language, with numbers as the alphabet. The language is given structure with the 
aid of connective symbols, rules of operation, and a rigorous mode of thought (logic). These concepts, which 
previously were explored in elementary mathematics courses such as geometry, algebra, and calculus, are 
reviewed in the following paragraphs.

Sets

Fundamental in mathematics is the concept of a set, class, or collection of objects having specified character-
istics. For example, we speak of the set of all university professors, the set of all letters A, B, C, D, . . . , Z of the 
English alphabet, and so on. The individual objects of the set are called members or elements. Any part of a set 
is called a subset of the given set, e.g., A, B, C is a subset of A, B, C, D, . . . , Z. The set consisting of no elements 
is called the empty set or null set.

Real Numbers

The number system is foundational to the modern scientific and technological world. It is based on the sym-
bols 1, 2, 3, 4, 5, 6, 7, 8, 9, 0. Thus, it is called a base ten system. (There is the implication that there are other 
systems. One of these, which is of major importance, is the base two system.) The symbols were introduced 
by the Hindus, who had developed decimal representation and the arithmetic of positive numbers by 600 A.D.
In the eighth century, the House of Wisdom (library) had been established in Baghdad, and it was there that 
the Hindu arithmetic and much of the mathematics of the Greeks were translated into Arabic. From there, 
this arithmetic gradually spread to the later- developing western civilization.

The flexibility of the Hindu- Arabic number system lies in the multiple uses of the numbers. They may be 
used to signify: (a) order—the runner finished fifth; (b) quantity—there are six apples in the barrel; (c) 
construction—2 and 3 may be used to form any of 23, 32, .23 or .32; (d) place—0 is used to establish place, 
as is illustrated by 607, 0603, and .007.

Finally, note that the significance of the base ten terminology is enhanced by the following examples:

357 = 7(100) + 5(101) + 3(102)

.972 = 
9

�
10

+
7

�
102

++
2

�
103

The collection of numbers created from the basic set is called the real number system. Significant subsets 
of them are listed as follows. For the purposes of this text, it is assumed that the reader is familiar with these 
numbers and the fundamental arithmetic operations.

1. Natural numbers 1, 2, 3, 4, . . . , also called positive integers, are used in counting members of a set. 
The symbols varied with the times; e.g., the Romans used I, II, III, IV, . . . . The sum a + b and product 
a · b or ab of any two natural numbers a and b is also a natural number. This is often expressed by 

CHAPTER 1
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saying that the set of natural numbers is closed under the operations of addition and multiplication, or 
satisfies the closure property with respect to these operations.

2. Negative integers and zero, denoted by –1, –2, –3, . . . , and 0, respectively, arose to permit solutions 
of equations such as x + b = a, where a and b are any natural numbers. This leads to the operation of 
subtraction, or inverse of addition, and we write x = a – b.

The set of positive and negative integers and zero is called the set of integers.

3. Rational numbers or fractions such as 
2 5

,
3 4

− , . . . arose to permit solutions of equations such as 

bx = a for all integers a and b, where b � 0. This leads to the operation of division, or inverse of mul-
tiplication, and we write x = a/b or a ÷ b, where a is the numerator and b the denominator.

The set of integers is a subset of the rational numbers, since integers correspond to rational numbers 
where b = 1.

4. Irrational numbers such as 2  and π are numbers which are not rational; i.e., they cannot be ex-
pressed as a/b (called the quotient of a and b), where a and b are integers and b � 0.

The set of rational and irrational numbers is called the set of real numbers.

Decimal Representation of Real Numbers

Any real number can be expressed in decimal form, e.g., 17/10 = 1.7, 9/100 = 0.09, 1/6 = 0.16666. . . . In the 
case of a rational number, the decimal expansion either terminates or if it does not terminate, one or a group 

of digits in the expansion will ultimately repeat, as, for example, in 
1

7
 = 0.142857 142857 142. . . . In the 

case of an irrational number such as 2  = 1.41423 . . . or π = 3.14159 . . . no such repetition can occur. We 
can always consider a decimal expansion as unending; e.g., 1.375 is the same as 1.37500000 . . . or 
1.3749999 . . . To indicate recurring decimals we sometimes place dots over the repeating cycle of digits, 

e.g.,
1

7
 = 0.1̇4̇2̇8̇5̇7̇, and 

19

6
 = 3.16̇.

It is possible to design number systems with fewer or more digits; e.g., the binary system uses only two digits, 
0 and 1 (see Problems 1.32 and 1.33).

Geometric Representation of Real Numbers

The geometric representation of real numbers as points on a line, called the real axis, as in Figure 1.1, is also 
well known to the student. For each real number there corresponds one and only one point on the line, and, 
conversely, there is a one-to-one (see Figure 1.1) correspondence between the set of real numbers and the 
set of points on the line. Because of this we often use point and number interchangeably.

Figure 1.1

While this correlation of points and numbers is automatically assumed in the elementary study of math-
ematics, it is actually an axiom of the subject (the Cantor Dedekind axiom) and, in that sense, has deep 
meaning.

The set of real numbers to the right of 0 is called the set of positive numbers, the set to the left of 0 is the 
set of negative numbers, while 0 itself is neither positive nor negative.
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(Both the horizontal position of the line and the placement of positive and negative numbers to the right 
and left, respectively, are conventions.)

Between any two rational numbers (or irrational numbers) on the line there are infinitely many rational 
(and irrational) numbers. This leads us to call the set of rational (or irrational) numbers an everywhere dense
set.

Operations with Real Numbers

If a, b, c belong to the set R of real numbers, then:

1. a + b and ab belong to R Closure law

2. a + b = b + a Commutative law of addition

3. a + (b + c) = (a + b) + c Associative law of addition

4. ab = ba Commutative law of multiplication

5. a(bc) = (ab)c Associative law of multiplication

6. a(b + c) = ab + ac Distributive law

7. a + 0 = 0 + a = a, 1 · a = a · 1 = a

0 is called the identity with respect to addition; 1 is called the identity with respect to multiplica-
tion.

8. For any a there is a number x in R such that x + a = 0.
x is called the inverse of a with respect to addition and is denoted by –a.

9. For any a � 0 there is a number x in R such that ax = 1.
x is called the inverse of a with respect to multiplication and is denoted by a–1 or 1/a.

Convention: For convenience, operations called subtraction and division are defined by a – b = a + (–b)
and

a

b
 = ab–1, respectively.

These enable us to operate according to the usual rules of algebra. In general, any set, such as R, whose 
members satisfy the preceding is called a field.

Inequalities

If a – b is a nonnegative number, we say that a is greater than or equal to b or b is less than or equal to a,
and write, respectively, a > b or b < a. If there is no possibility that a = b, we write a > b or b < a. Geo-
metrically, a > b if the point on the real axis corresponding to a lies to the right of the point corresponding 
to b.

Properties of Inequalities
If a, b, and c are any given real numbers, then:

1. Either a > b, a = b or a < b Law of trichotomy

2. If a > b and b > c, then a > c Law of transitivity

3. If a > b, then a + c > b + c

4. If a > b and c > 0, then ac > bc
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5. If a > b and c < 0, then ac < bc

EXAMPLES. 3 < 5 or 5 > 3; – 2 < – 1 or – 1 > – 2; x <  3 means that x is a real number which may be 3 or 
less than 3.

Absolute Value of Real Numbers

The absolute value of a real number a, denoted by ⏐a⏐, is defined as a if a > 0, – a if a < 0, and 0 if a = 0.

Properties of Absolute Value

1. ⏐ab⏐ = ⏐a⏐ ⏐b⏐ or ⏐abc . . . m⏐ = ⏐a⏐ ⏐b⏐ ⏐c⏐ . . . ⏐m⏐

2. ⏐a + b⏐ < ⏐a⏐ + ⏐b⏐ or ⏐a + b + c + . . . + m⏐ < ⏐a⏐ + ⏐b⏐ + ⏐c⏐ + . . . ⏐m⏐

3. ⏐a – b⏐ > ⏐a⏐ – ⏐b⏐

EXAMPLES. ⏐ – 5⏐ = 5, ⏐ + 2⏐ = 2, ⏐ – 
3

4
⏐ = 

3

4
, ⏐ – 2 ⏐ = 2 , ⏐0⏐ = 0.

The distance between any two points (real numbers) a and b on the real axis is ⏐a – b⏐ = ⏐b – a⏐.

Exponents and Roots

The product a · a . . . a of a real number a by itself p times is denoted by ap, where p is called the exponent
and a is called the base. The following rules hold:

1. ap · aq = ap+q

2.
p

p q

q

a
a

a
−=

3. (ap)r = apr

4.
p p

p

a a

b b
⎛ ⎞ =⎜ ⎟⎝ ⎠

These and extensions to any real numbers are possible so long as division by zero is excluded. In particular, 
by using 2, with p = q and p = 0, respectively, we are led to the definitions a0 = 1, a–q = 1/aq.

If ap = N, where p is a positive integer, we call a a pth root of N, written 
p

N . There may be more than 
one real pth root of N. For example, since 22 = 4 and (–2)2 = 4, there are two real square roots of 4—namely, 
2 and –2. For square roots it is customary to define N  as positive; thus, 4 = 2 and then – 4 = –2.

If p and q are positive integers, we define ap / q = 
q pa .

Logarithms

If ap = N, p is called the logarithm of N to the base a, written p = loga N. If a and N are positive and a � 1, 
there is only one real value for p. The following rules hold:

1. loga MN = loga M + loga N

2. log log loga a a

M
M N

N
= −

3. loga Mr = r loga M
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In practice, two bases are used: base a = 10, and the natural base a = e = 2.71828. . . . The logarithmic sys-
tems associated with these bases are called common and natural, respectively. The common logarithm system 
is signified by log N; i.e., the subscript 10 is not used. For natural logarithms, the usual notation is ln N.

Common logarithms (base 10) traditionally have been used for computation. Their application replaces 
multiplication with addition and powers with multiplication. In the age of calculators and computers, this 
process is outmoded; however, common logarithms remain useful in theory and application. For example, 
the Richter scale used to measure the intensity of earthquakes is a logarithmic scale. Natural logarithms were 
introduced to simplify formulas in calculus, and they remain effective for this purpose.

Axiomatic Foundations of the Real Number System

The number system can be built up logically, starting from a basic set of axioms or “self-evident” truths, 
usually taken from experience, such as statements 1 through 9 on Page 3.

If we assume as given the natural numbers and the operations of addition and multiplication (although it 
is possible to start even further back, with the concept of sets), we find that statements 1 through 6, with R
as the set of natural numbers, hold, while 7 through 9 do not hold.

Taking 7 and 8 as additional requirements, we introduce the numbers –1, –2, –3, . . . , and 0. Then, by 
taking 9, we introduce the rational numbers.

Operations with these newly obtained numbers can be defined by adopting axioms 1 through 6, where R
is now the set of integers. These lead to proofs of statements such as (–2)(–3) = 6, –(–4) = 4, (0)(5) = 0, and 
so on, which are usually taken for granted in elementary mathematics.

We can also introduce the concept of order or inequality for integers, and, from these inequalities, for 
rational numbers. For example, if a, b, c, d are positive integers, we define a/b > c/d if and only if ad > bc,
with similar extensions to negative integers.

Once we have the set of rational numbers and the rules of inequality concerning them, we can order them 
geometrically as points on the real axis, as already indicated. We can then show that there are points on the 
line which do not represent rational numbers (such as 2 , π, etc.). These irrational numbers can be defined 
in various ways, one of which uses the idea of Dedekind cuts (see Problem 1.34). From this we can show that 
the usual rules of algebra apply to irrational numbers and that no further real numbers are possible.

Point Sets, Intervals

A set of points (real numbers) located on the real axis is called a one-dimensional point set.
The set of points x such that a < x < b is called a closed interval and is denoted by [a, b]. The set a < 

x < b is called an open interval, denoted by (a, b). The sets a < x < b and a < x < b, denoted by (a, b] and 
[a, b), respectively, are called half-open or half-closed intervals.

The symbol x, which can represent any number or point of a set, is called a variable. The given numbers 
a or b are called constants.

Letters were introduced to construct algebraic formulas around 1600. Not long thereafter, the philosopher-
mathematician Rene Descartes suggested that the letters at the end of the alphabet be used to represent 
variables and those at the beginning to represent constants. This was such a good idea that it remains the 
custom.

EXAMPLE. The set of all x such that ⏐x⏐ < 4, i.e., –4 < x < 4, is represented by (–4, 4), an open interval.

The set x > a can also be represented by a < x < �. Such a set is called an infinite or unbounded interval.
Similarly, –� < x < � represents all real numbers x.
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Countability

A set is called countable or denumerable if its elements can be placed in 1-1 correspondence with the natu-
ral numbers.

EXAMPLE. The even natural numbers 2, 4, 6, 8, . . . is a countable set because of the 1-1 correspondence 
shown.

Given set 2 4 6 8 …

Natural numbers 1 2 3 4 …

b b b bb b b b

A set is infinite if it can be placed in 1-1 correspondence with a subset of itself. An infinite set which is 
countable is called countable infinite.

The set of rational numbers is countable infinite, while the set of irrational numbers or all real numbers 
is noncountably infinite (see Problems 1.17 through 1.20).

The number of elements in a set is called its cardinal number. A set which is countably infinite is assigned 
the cardinal number ℵ0 (the Hebrew letter aleph-null). The set of real numbers (or any sets which can be 
placed into 1-1 correspondence with this set) is given the cardinal number C, called the cardinality of the 
contimuum.

Neighborhoods

The set of all points x such that ⏐x – a⏐ < δ, where δ > 0, is called a δ neighborhood of the point a. The set of all 
points x such that 0 < ⏐x – a⏐ < δ, in which x = a is excluded, is called a deleted δ neighborhood of a or an open 
ball of radius δ about a.

Limit Points

A limit point, point of accumulation, or cluster point of a set of numbers is a number l such that every deleted 
δ neighborhood of l contains members of the set; that is, no matter how small the radius of a ball about l,
there are points of the set within it. In other words, for any δ > 0, however small, we can always find a mem-
ber x of the set which is not equal to l but which is such that ⏐x – l⏐ < δ. By considering smaller and smaller 
values of δ, we see that there must be infinitely many such values of x.

A finite set cannot have a limit point. An infinite set may or may not have a limit point. Thus, the natural 
numbers have no limit point, while the set of rational numbers has infinitely many limit points.

A set containing all its limit points is called a closed set. The set of rational numbers is not a closed set, 
since, for example, the limit point 2  is not a member of the set (Problem 1.5). However, the set of all real 
numbers x such that 0 < x <  1 is a closed set.

Bounds

If for all numbers x of a set there is a number M such that x < M, the set is bounded above and M is called 
an upper bound. Similarly if x > m, the set is bounded below and m is called a lower bound. If for all x we 
have m < x < M, the set is called bounded.

If M is a number such that no member of the set is greater than M but there is at least one member which 
exceeds M – � for every � > 0, then M is called the least upper bound (l.u.b.) of the set. Similarly, if no mem-
ber of the set is smaller than m  + � for every � > 0, then m  is called the greatest lower bound (g.l.b.) of the 
set.
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Bolzano-Weierstrass Theorem

The Bolzano-Weierstrass theorem states that every bounded infinite set has at least one limit point. A proof 
of this is given in Problem 2.23.

Algebraic and Transcendental Numbers

A number x which is a solution to the polynomial equation

 a0x
n + a1x

n–1 + a2x
n–2 + . . . + an–1x + an = 0 (1)

where a0 � 0, a1, a2, . . . , an are integers and n is a positive integer, called the degree of the equation, is called 
an algebraic number. A number which cannot be expressed as a solution of any polynomial equation with 
integer coefficients is called a transcendental number.

EXAMPLES. 
2

3
 and 2 , which are solutions of 3x – 2 = 0 and x2 – 2 = 0, respectively, are algebraic 

numbers.

The numbers π and e can be shown to be transcendental numbers. Mathematicians have yet to determine 
whether some numbers such as eπ or e + π are algebraic or not.

The set of algebraic numbers is a countably infinite set (see Problem 1.23), but the set of transcendental 
numbers is noncountably infinite.

The Complex Number System

Equations such as x2 + 1 = 0 have no solution within the real number system. Because these equations were 
found to have a meaningful place in the mathematical structures being built, various mathematicians of the 
late nineteenth and early twentieth centuries developed an extended system of numbers in which there were 
solutions. The new system became known as the complex number system. It includes the real number system 
as a subset.

We can consider a complex number as having the form a + bi, where a and b are real numbers called the 
real and imaginary parts, and i = 1−  is called the imaginary unit. Two complex numbers a + bi and c + di
are equal if and only if a = c and b = d. We can consider real numbers as a subset of the set of complex 
numbers with b = 0. The complex number 0 + 0i corresponds to the real number 0.

The absolute value or modulus of a + bi is defined as ⏐a + bi⏐ = 2 2a b+ . The complex conjugate of
a + bi is defined as a – bi. The complex conjugate of the complex number z is often indicated by z  or z*.

The set of complex numbers obeys rules 1 through 9 on Pages 3, and thus constitutes a field. In perform-
ing operations with complex numbers, we can operate as in the algebra of real numbers, replacing i2 by –1 
when it occurs. Inequalities for complex numbers are not defined.

From the point of view of an axiomatic foundation of complex numbers, it is desirable to treat a complex 
number as an ordered pair (a, b) of real numbers a and b subject to certain operational rules which turn out to 
be equivalent to the aforementioned rules. For example, we define (a, b) + (c, d) = (a + c, b + d), (a, b) (c, d) = 
(ac – bd, ad + bc), m(a, b) = (ma, mb), and so on. We then find that (a, b) = a(1, 0) + b(0, 1) and we associate 
this with a + bi, where i is the symbol for (0, 1).

Polar Form of Complex Numbers

If real scales are chosen on two mutually perpendicular axes X´ OX and Y´ OY (the x and y axes), as in Figure 
1.2, we can locate any point in the plane determined by these lines by the ordered pair of numbers (x, y) called 



CHAPTER 1  Numbers8

rectangular coordinates of the point. Examples of the location of such points are indicated by P, Q, R, S, and 
T in Figure 1.2.

Figure 1.2 Figure 1.3

Since a complex number x + iy can be considered as an ordered pair (x, y), we can represent such numbers 
by points in an xy plane called the complex plane or Argand diagram. Referring to Figure 1.3, we see that x = ρ

cos φ, y = ρ sin φ, where 2 2x yρ = +  = ⏐x + iy⏐ and φ, called the amplitude or argument, is the angle which 
line OP makes with the positive x axis OX. It follows that

 z = x + iy = ρ(cos φ + i sin φ) (2)

called the polar form of the complex number, where ρ and φ are called polar coordinates. It is sometimes 
convenient to write cis φ instead of cos φ + i sin φ.

If z1 = x1 + iyi = ρ1 (cos φ1 + i sin φ1) and z2 = x2 + iy2 = ρ2(cosφ2 + i sin φ2) and by using the addition 
formulas for sine and cosine, we can show that

 z1z2 = ρ1ρ2{cos(φ1 + φ2) + i sin(φ1 + φ2)} (3)

1 1
1 2 1 2

2 2

{cos( ) sin( )}
z p

i
z p

φ φ φ φ= − + −  (4)

 zn = {ρ(cos φ + i sin φ)}n = ρn(cos nφ + i sin nφ) (5)

where n is any real number. Equation (5) is sometimes called De Moivre’s theorem. We can use this to de-
termine roots of complex numbers. For example, if n is a positive integer,

1/ 1 /

1 /

{ (cos sin )}

2 2
cos sin 0, 1, 2, 3, , 1

n n

n

z p i

k k
p i k n

n n

φ φ

φ π φ π

= +

⎧ ⎫+ +⎛ ⎞ ⎛ ⎞= + = … −⎨ ⎬⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎩ ⎭

 (6)

from which it follows that there are in general n different values of z1/n. In Chapter 11 we will show that 
eiφ = cos φ + i sin φ where e = 2.71828. . . . This is called Euler’s formula.

Mathematical Induction

The principle of mathematical induction is an important property of the positive integers. It is especially 
useful in proving statements involving all positive integers when it is known, for example, that the statements 
are valid for n = 1, 2, 3 but it is suspected or conjectured that they hold for all positive integers. The method 
of proof consists of the following steps:

1. Prove the statement for n = 1 (or some other positive integer).

2. Assume the statement is true for n = k, where k is any positive integer.

3. From the assumption in 2, prove that the statement must be true for n = k + 1. This is part of the proof 
establishing the induction and may be difficult or impossible.
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4. Since the statement is true for n = 1 (from Step 1) it must (from Step 3) be true for n = 1 + 1 = 2 and 
from this for n = 2 + 1 = 3, and so on, and so must be true for all positive integers. (This assumption, 
which provides the link for the truth of a statement for a finite number of cases to the truth of that state-
ment for the infinite set, is called the axiom of mathematical induction.)

SOLVED PROBLEMS

Operations with numbers

1.1. If x = 4, y = 15, z = –3, p = 
2

3
, q = – 

1

6
, and r = 

3

4
, evaluate    (a)   x + (y + z),    (b)    (x + y) + z,

(c) p(qr),    (d)  (pq)r, (e) x(p + q).

(a) x + (y + z) = 4 + [15 + (– 3)] = 4 + 12 = 16

(b) (x + y) + z = (4 + 15) + (– 3) = 19 – 3 = 16

The fact that (a) and (b) are equal illustrates the associative law of addition.

(c) p(qr) = 
2

3
 { (–

1

6
)(

3

4
)} = (

2

3
)(–

3

24
) = (

2

3
)(–

1

8
) = –

2

24
 = –

1

12

(d) (pq)r = { (
2

3
)(–

1

6
)} (

3

4
) = (–

2

18
)(

3

4
) = (–

1

9
)(

3

4
) = –

3

36
 = –

1

12
The fact that (c) and (d) are equal illustrates the associative law of multiplication.

(e) x(p + q) = 4(
2

3
 – 

1

6
) = 4(

4

6
 – 

1

6
) = 4(

3

6
) = 

12

6
 = 2

Another method: x(p + q) = xp + xq = (4)( 
2

3
) + (4)(– 

1

6
) = 

8

3
 – 

4

6
 = 

8

3
 – 

2

3
 = 

6

3
 = 2 using the dis-

tributive law.

1.2. Explain why we do not consider (a) 
0

0
 and (b) 

1

0
 as numbers.

(a) If we define a/b as that number (if it exists) such that bx = a, then 0/0 is that number x such that 0x = 0. 
However, this is true for all numbers. Since there is no unique number which 0/0 can represent, we con-
sider it undefined.

(b) As in (a), if we define 1/0 as that number x (if it exists) such that 0x = 1, we conclude that there is no such 
number.

Because of these facts we must look upon division by zero as meaningless.

1.3. Simplify 
2

2

5 6
.

2 3

x x

x x

− +
− −

2

2

5 6 ( 3)( 2) 2

( 3)( 1) 12 3

x x x x x

x x xx x

− + − − −= =
− + +− −

 provided that the cancelled factor (x – 3) is not zero; i.e., x � 3. For 

x = 3, the given fraction is undefined.

Rational and irrational numbers

1.4. Prove that the square of any odd integer is odd.

Any odd integer has the form 2m + 1. Since (2m + 1)2 = 4m2 + 4m + 1 is 1 more than the even integer 4m2

+ 4m = 2(2m2 + 2m), the result follows.
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1.5. Prove that there is no rational number whose square is 2.

Let p / q be a rational number whose square is 2, where we assume that p / q is in lowest terms; i.e., p and 
q have no common integer factors except ± 1 (we sometimes call such integers relatively prime).

Then (p / q)2 = 2, p2 = 2q2 and p2 is even. From Problem 1.4, p is even, since if p were odd, p2 would be 
odd. Thus, p = 2m.

Substituting p = 2m in p2 = 2q2 yields q2 = 2m2, so that q2 is even and q is even.
Thus, p and q have the common factor 2, contradicting the original assumption that they had no common 

factors other than ±1. By virtue of this contradiction there can be no rational number whose square is 2.

1.6. Show how to find rational numbers whose squares can be arbitrarily close to 2.

We restrict ourselves to positive rational numbers. Since (1)2 = 1 and (2)2 = 4, we are led to choose rational 
numbers between 1 and 2, e.g., 1.1, 1.2, 1.3, . . . , 1.9.

Since (1.4)2 = 1.96 and (1.5)2 = 2.25, we consider rational numbers between 1.4 and 1.5, e.g., 1.41, 
1.42,. . , 1.49.

Continuing in this manner we can obtain closer and closer rational approximations; e.g., (1.414213562)2

is less than 2, while (1.414213563)2 is greater than 2.

1.7. Given the equation a0x
n + a1x

n–1 + . . . + an = 0, where a0, a1, . . . an are integers and a0 and an � 0, show that 
if the equation is to have a rational root p / q, then p must divide an and q must divide a0 exactly.

Since p / q is a root we have, on substituting in the given equation and multiplying by qn, the result is

 a0p
n + a1p

n–1 q + a2p
n–2q2 + . . . + an–1pqn–1 + anq

n = 0 (1)

or dividing by p,

1 2
0 1

n na p a p q− −+ + . . . 1
1

n
n n

n

a q
a q

p
−

−+ = −  (2)

Since the left side of Equation (2) is an integer, the right side must also be an integer. Then, since p and q are 
relatively prime, p does not divide qn exactly and so must divide an.

In a similar manner, by transposing the first term of Equation (1) and dividing by q, we can show that q
must divide a0.

1.8. Prove that 2 3+  cannot be a rational number.

If x = 2 3+ , then x2 = 5 + 2 6 , x2 – 5 = 2 6 , and, squaring, x4 – 10x2 + 1 = 0. The only possible 
rational roots of this equation are ± 1 by Problem 1.7, and these do not satisfy the equation. It follows that 

2 3+ , which satisfies the equation, cannot be a rational number.

1.9. Prove that between any two rational numbers there is another rational number.

The set of rational numbers is closed under the operations of addition and division (nonzero denominator). 

Therefore,
2

a b+
 is rational. The next step is to guarantee that this value is between a and b. To this purpose, 

assume a < b. (The proof would proceed similarly under the assumption b < a.) Then 2a < a + b; thus, a < 

2

a b+
 and a + b < 2b; therefore, 

2

a b+
 < b.

Inequalities

1.10. For what values of x is x + 3(2 – x) >  4 – x?

x + 3(2 – x) >  4 – x when x + 6 – 3x >  4 – x, 6 – 2x >  4 – x, 6 – 4 >  2x – x, and 2 > x; i.e. x <  2.
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1.11. For what values of x is x2 – 3x – 2 < 10 – 2x?

The required inequality holds when x2 – 3x – 2 – 10 + 2x < 0, x2 – x – 12 < 0 or (x – 4)(x + 3) < 0. This 
last inequality holds only in the following cases.

Case 1: x – 4 > 0 and x + 3 < 0; i.e., x > 4 and x < – 3. This is impossible, since x cannot be both greater than 
4 and less than –3.

Case 2: x – 4 < 0 and x + 3 > 0; i.e., x < 4 and x > – 3. This is possible when – 3 < x < 4. Thus, the inequal-
ity holds for the set of all x such that – 3 < x < 4.

1.12. If a >  0 and b >  0, prove that 
1

2
 (a + b) > ab .

The statement is self-evident in the following cases: (1) a = b, and (2) either or both of a and b zero. For 
both a and b positive and a � b. the proof is by contradiction.

Assume to the contrary of the supposition that 
1

2
 (a + b) < ab , then 

1

4
 (a2 + 2ab + b2) < ab.

That is, a2 – 2ab + b2 = (a – b)2 < 0. Since the left member of this equation is a square, it cannot be less 
than zero, as is indicated. Having reached this contradiction, we may conclude that our assumption is incorrect 
and that the original assertion is true.

1.13. If a1, a2, . . . ,an and b1, b2 . . . bn are any real numbers, prove Schwarz’s inequality:

(a1 b1 + a2b2 + . . . + anbn)
2 <  (a2

1 + a2
2 + . . . + a2

n)(b
2

1 + b2
2 + . . . + b2

2 n)

For all real numbers λ, we have

(a1λ + b1)
2 + (a2 λ + b2)

2 + . . . + (anλ + bn)
2 >  0

Expanding and collecting terms yields

 A2λ2 + 2Cλ + B2 >  0 (1)

where

 A2 = a2
1 + a2

2 + . . . + a2
n. B2 = b2

1 + b2
2 + . . . + b2

n, C = a1b1 + a2b2 + . . . + anbn (2)

The left member of Equation (1) is a quadratic form in λ. Since it never is negative, its discriminant, 4C2

– 4A2B2, cannot be positive. Thus,

C2 – A2B2 ≤ 0  or  C2 ≤ A2 B2

This is the inequality that was to be proved.

1.14. Prove that 
1 1 1

2 4 8
+ + + . . .

1

1
1

2n−+ < for all positive integers n > 1.

Let

1 1 1

2 4 8nS = + + + . . .
1

1

2n−+

Then

1 1 1

2 4 8nS = + + . . .
1

1 1

2 2n n−+ +

Subtracting,

1 1 1

2 2 2n n
S = −
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Thus,

1

1
1 1 for all .

2n n
S n−= − <

Exponents, roots, and logarithms

1.15. Evaluate each of the following:

(a)
4 8 4 8

4 8 14 2
14 14 2

3 3 3 1 1
3 3

93 3 3

+
+ − −⋅ = = = = =

(b)
6 2 6 2

9 10 5
5 5

(5 10 )(4 10 ) 5 4 10 10
: 2.5 10 25 10 5 10  or 0.00005

88 10 10

− −
− − −⋅ ⋅ ⋅ ⋅= = ⋅ = ⋅ = ⋅

⋅
(c) ( ) ( ) ( ) ( )3 327 27 32 2

2 / 3 8 3 8 2 3log . Then or 3
x

x x
−= = = = = −

(d) (logab)(logb a) = u. Then loga b = x, logb a = y, assuming a, b > 0 and a, b � 1.

Then ax = b, by = a, and u = xy. Since (ax)y = axy = by = a, we have axy = a1 or xy = 1, the required value.

1.16. If M > 0, N > 0, and a > 0 but a � 1, prove that loga

M

N
 = loga M – loga N.

Let loga M = x, loga N = y. Then ax = M, ay = N and so

or log log log
x

x y
a a ay

M a M
a x y M N

N Na
−= = = − = −

Countability

1.17. Prove that the set of all rational numbers between 0 and 1 inclusive is countable.

Write all fractions with denominator 2, then 3, . . . , considering equivalent fractions such as 
1

2
,

2

4
,

3

6
, . . . no more than once. Then the 1-1 correspondence with the natural numbers can be accomplished as 

follows:

31 1 2 1 1 2
2 3 3 4 4 5 5Rational numbers 0 1

Natural numbers 1 2 3 4 5 6 7 8 9

…
b b b b b b b b b

K

b b b b b b b b b

…

…

Thus, the set of all rational numbers between 0 and 1 inclusive is countable and has cardinal number ℵ0

(see Page 6).

1.18. If A and B are two countable sets, prove that the set consisting of all elements from A or B (or both) is also 
countable.

Since A is countable, there is a 1-1 correspondence between elements of A and the natural numbers so that 
we can denote these elements by a1, a2, a3, . . . 

Similarly, we can denote the elements of B by b1, b2, b3, . . . 

Case 1: Suppose elements of A are all distinct from elements of B. Then the set consisting of elements from 
A or B is countable, since we can establish the following 1-1 correspondence:

1 1 2 2 3 3 or 

Natural numbers 1 2 3 4 5 6

A B a b a b a b …

…
b b b b b bb b b b b b
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Case 2: If some elements of A and B are the same, we count them only once, as in Problem 1.17. Then the 
set of elements belonging to A or B (or both) is countable.

The set consisting of all elements which belong to A or B (or both) is often called the union of A and B,
denoted by A ∪ B or A + B.

The set consisting of all elements which are contained in both A and B is called the intersection of A and 
B, denoted by A ∪B or AB. If A and B are countable, so is A ∪B.

The set consisting of all elements in A but not in B is written A – B. If we let [B be the set of elements 
which are not in B, we can also write A – B = A B . If A and B are countable, so is A – B.

1.19. Prove that the set of all positive rational numbers is countable.

Consider all rational numbers x > 1. With each such rational number we can associate one and only one 
rational number 1/x in (0, 1); i.e., there is a one-to-one correspondence between all rational numbers > 1 and 
all rational numbers in (0, 1). Since these last are countable by Problem 1.17, it follows that the set of all ra-
tional numbers > 1 is also countable.

From Problem 1.18 it then follows that the set consisting of all positive rational numbers is countable, since 
this is composed of the two countable sets of rationals between 0 and 1 and those greater than or equal to 1.

From this we can show that the set of all rational numbers is countable (see Problem 1.59).

1.20. Prove that the set of all real numbers in [0, 1] is noncountable.

Every real number in [0, 1] has a decimal expansion .a1a2a3 . . . where a1, a2, . . . are any of the digits 0, 
1, 2, . . . ,9.

We assume that numbers whose decimal expansions terminate such as 0.7324 are written 0.73240000 . . . and 
that this is the same as 0.73239999 . . . 

If all real numbers in [0, 1] are countable we can place them in 1-1 correspondence with the natural num-
bers as in the following list:

11 12 13 14

21 22 23 24

31 32 33 34

1 0.

2 0.

3 0.

a a a a

a a a a

a a a a

↔ …
↔ …
↔ …

M MM M

We now form a number

0.b1b2b3b4 . . . 

where b1 � a11, b2 � a22, b � a33, b4 � a44, . . . and where all b’s beyond some position are not all 9’s.
This number, which is in [0. 1], is different from all numbers in the preceding list and is thus not in the 

list, contradicting the assumption that all numbers in [0, 1] were included.
Because of this contradiction, it follows that the real numbers in [0, 1] cannot be placed in 1-1 correspond-

ence with the natural numbers; i.e., the set of real numbers in [0, 1] is noncountable.

Limit points, bounds, Bolzano-Weierstrass theorem

1.21. (a) Prove that the infinite set of numbers 1, 
1

2
,

1

3
,

1

4
, . . . is bounded. (b) Determine the least upper bound 

(l.u.b.) and greatest lower bound (g.l.b.) of the set. (c) Prove that 0 is a limit point of the set. (d) Is the set a 
closed set? (e) How does this set illustrate the Bolzano-Weierstrass theorem?

(a) Since all members of the set are less than 2 and greater than –1 (for example), the set is bounded; 2 is an 
upper bound; –1 is a lower bound.
We can find smaller upper bounds (e.g., 3/2) and larger lower bounds (e.g., –

1

2
).
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(b) Since no member of the set is greater than 1 and since there is at least one member of the set (namely, 1) 
which exceeds 1 – ε for every positive number ε, we see that 1 is the l.u.b. of the set.

Since no member of the set is less than 0 and since there is at least one member of the set which is 
less than 0 + ε for every positive ε (we can always choose for this purpose the number 1/n, where n is a 
positive integer greater than 1/ε), we see that 0 is the g.l.b. of the set.

(c) Let x be any member of the set. Since we can always find a number x such that 0 < ⏐x⏐ < δ for any posi-
tive number δ (e.g., we can always pick x to be the number 1/n, where n is a positive integer greater than 
1/δ), we see that 0 is a limit point of the set. To put this another way, we see that any deleted δ neighbor-
hood of 0 always includes members of the set, no matter how small we take δ > 0.

(d) The set is not a closed set, since the limit point 0 does not belong to the given set.

(e) Since the set is bounded and infinite, it must, by the Bolzano-Weierstrass theorem, have at least one limit 
point. We have found this to be the case, so that the theorem is illustrated.

Algebraic numbers

1.22. Prove that 3 2 3+  is an algebraic number.

Let x = 3 2 3+ . Then x – 3  = 3 2 . Cubing both sides and simplifying, we find x3 + 9x – 2 = 3 3
(x2 + 1). Then, squaring both sides and simplifying, we find x6 – 9x4 – 4x3 + 27x2 + 36x – 23 = 0.

Since this is a polynomial equation with integral coefficients, it follows that 3 2  + 3 , which is a solu-
tion, is an algebraic number.

1.23. Prove that the set of all algebraic numbers is a countable set.

Algebraic numbers are solutions to polynomial equations of the form a0x
n +a, xn−1 + . . . + an = 0 where 

a0, a1, . . . , an are integers.

Let P = ⏐a0⏐ + ⏐a1⏐ + . . . + ⏐an ⏐+ n. For any given value of P there are only a finite number of possible 
polynomial equations and thus only a finite number of possible algebraic numbers.

Write all algebraic numbers corresponding to P = 1, 2, 3, 4, . . . , avoiding repetitions. Thus, all algebraic 
numbers can be placed into 1-1 correspondence with the natural numbers and so are countable.

Complex numbers

1.24. Perform the indicated operations:

(a) (4 – 2i) + (– 6 + 5i) = 4 – 2i – 6 + 5i = 4 – 6 + (–2 + 5)i = –2 + 3i

(b) (–7 + 3i) – (2 – 4i) = –7 + 3i – 2 + 4i = –9 + 7i

(c) (3 – 2i)(1 + 3i) = 3(1 + 3i) – 2i(1 + 3i) = 3 + 9i – 2i – 6i2 = 3 + 9i – 2i + 6 = 9 + 7i

(d)
2

2

–5 5 5 5 4 3 ( 5 5 )(4 3 ) 20 15 20 15

4 3 4 3 4 3 16 916 9
35 5 5( 7 ) 7 1

25 25 5 5

i i i i i i i i

i i i i
i i

i

+ − + + − + + − − + += ⋅ = =
− − + +−

− + − + −= = = +

(e)
2 3 4 5 2 2 2 2 2

2

2

1 ( )( ) ( ) ( ) 1 1

1 1 1

1 1 1 1

1 1 2 2 21

i i i i i i i i i i i i i i

i i i

i i i i i
i

i i i

+ + + + − + + + − − + += =
+ + +

− − += ⋅ = = = +
+ − −

(f) 2 2 2 2| 3 4 || 4 3 | (3) ( 4) (4) (3) (5)(5) 25i i− + = + − + = =
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(g) 2
2 2

21 1 1 3 1 3 6 6 3
(0)

1 3 1 3 10 10 51 9 1 9

i i i

i i i i

− + − ⎛ ⎞− = − = = + − =⎜ ⎟+ − − − ⎝ ⎠

1.25. If z1 and z2 are two complex numbers, prove that ⏐z1z2⏐ = ⏐z1⏐⏐z2⏐.

1 1 1 2 2 2

1 2 1 1 2 2 1 2 1 2 1 2 2 1

2 2 2 2 2 2 2 2 2 2
1 2 1 2 1 2 2 1 1 2 1 2 1 2 2 1

2 2 2 2 2 2 2 2
1 1 2 2 1 2 2 1 1 2 2 1 2

Let , . Then

z ( )( ) ( )

( ) ( )

( )( ) .

z x iy z x iy

z x iy x iy x x y y i x y x y

x x y y x y x y x x y y x y x y

x y x y x y x y x iy x iy z z

= + = +
= + + = − + +

= − + + = + + +

= + + = + + = + + =

1.26. Solve x3 – 2x – 4 = 0.

The possible rational roots using Problem 1.7 are ±1, ±2, and ±4. By trial, we find x = 2 is a root. Then 
the given equation can be written (x – 2)(x2 + 2x + 2) = 0. The solutions to the quadratic equation

ax2 + bx + c = 0 are 
2 4

2

b b ac
x

a

− ± −=  For a = 1, b = 2, and c = 2, this gives 
2 4 8

2
x

− ± −= =

2 4 2 2
1 .

2 2

i
i

− ± − − ±= = − ±

The set of solutions is 2, –1 + i, –1 – i.

Polar form of complex numbers

1.27. Express in polar form (a) 3 + 3i, (b) –1 + 3i , (c) – 1, and (d) –2 – 2 3i . See Figure 1.4.

Figure 1.4

(a) Amplitude φ = 45º = π/4 radians. Modulus 2 23 3 3 2ρ = + = .

Then 3 + 3i = ρ (cos φ + i sin φ) = 3 2  (cos π/4 + i sin π/4) = 3 2

cis π/4 = 3 2eπι/4
.

(b) Amplitude φ = 120º = 2π/3 radians. Modulus 

2( 3) 4 2ρ 2= (−1) + = = . Then –1 + 3 3 i = 2(cos 2π/3 + 

i sin 2π/3) = 2 cis 2π/3 = 2e2πi/3.

(c) Amplitude φ = 180º = π radians. Modulus 2(0) 1.ρ 2= (−1) + =
Then –1 = 1(cos π + i sin π) = cis π = eπi.

(d) Amplitude φ = 240º = 4π/3 radians. Modulus 

22 ( 2 3) 4.ρ 2= (− ) + − =  Then –2 –2 3  = 

4(cos 4π/3 + isin 4π/3) = 4 cis 4 π/3 = 4e4πi/3.

Figure 1.5
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1.28. Evaluate (a) (–1 + 3i)10 and (b) (–1 + i)1/3.

(a) By Problem 1.27(b) and De Moivre’s theorem.

(–1 + 3i)10 = [2(cos 2π/3 + i sin 2π/3)]10 = 210 (cos 20π/3 + i sin 20π/3)

 = 1024[cos(2π/3 + 6π) + i sin(2π/3 + 6π)] = 1024(cos 2π/3 + i sin 2π/3)

 = 1024 
1 1

3 512 512 3
2 2

i i
⎛ ⎞− + = − +⎜ ⎟⎝ ⎠

(b) –1 + i = 2 (cos 135º + i sin 135º) = 2 [cos(135º + k · 360º) + i sin (135º + k · 360º)]. Then

1/ 3 1/ 3 135 360 135 360
( 1 ) ( 2) cos sin

3 3

k k
i i

⎡ ⎤° + ⋅ ° ° + ⋅ °⎛ ⎞ ⎛ ⎞− + = +⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
The results for k = 0, 1, 2 are

6 2 (cos 45º + i sin 45º).

6 2 (cos 165º + i sin 165º),

6 2 (cos 285º + i sin 285º)

The results for k = 3, 4, 5, 6, 7, . . . give repetitions of these. These complex roots are represented geo-
metrically in the complex plane by points P1, P2, P3 on the circle of Figure 1.5.

Mathematical induction

1.29. Prove that 12 + 22 + 33 + 42 + . . . + n2 = 
1

6
n(n + 1)(2n + 1).

The statement is true for n = 1, since 12 = 
1

6
 (1)(1 + 1) (2 · 1 + 1) = 1.

Assume the statement is true for n = k. Then

12 + 22 + 32 + . . . + k2 = 
1

6
k(k + 1)(2k + 1)

Adding (k + 1)2 to both sides.

12 + 22 + 32 + . . . + k2 + (k + 1)2 = 
1

6
k(k + 1)(2k + 1) + (k + 1)2 = (k + 1)[

1

6
k(2k + 1) + k + 1]

 = 
1

6
(k + 1)(2k2 + 7k + 6) = 

1

6
(k + 1)(k + 2)(2k + 3)

which shows that the statement is true for n = k + 1 if it is true for n = k. But since it is true for n = 1, it follows 
that it is true for n = 1 + 1 = 2 and for n = 2 + 1 = 3, . . . ; i.e., it is true for all positive integers n.

1.30. Prove that xn – yn has x – y as a factor for all positive integers n.

The statement is true for n = 1, since x1 – y1 = x – y.
Assume the statement is true for n = k; i.e., assume that xk – yk has x – y as a factor. Consider

xk +1 – yk +1 = xk + 1 – xky + xky – yk+ 1

 = xk (x – y) + y(xk – yk)

The first term on the right has x – y as a factor, and the second term on the right also has x – y as a factor because 
of the previous assumption.

Thus, xk +1 – yk +1 has x – y as a factor if xk – yk does.
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Then, since x1 – y1 has x – y as factor, it follows that x2 – y2 has x – y as a factor, x3 – y3 has x – y as a fac-
tor, etc.

1.31. Prove Bernoulli’s inequality (1 + x)n > 1 + nx for n = 2, 3, . . . if x > –1, x � 0.

The statement is true for n = 2, since (1 + x)2 = 1 + 2x + x2 > 1 + 2x.
Assume the statement is true for n = k; i.e., (1 + x)k > 1 + kx.
Multiply both sides by 1 + x (which is positive, since x > –1). Then we have

(1 + x)k + 1 > (1 + x)(1 + kx) = 1 + (k + 1) x + kx2 > 1 + (k + 1)x

Thus, the statement is true for n = k + 1 if it is true for n = k.
But since the statement is true for n = 2, it must be true for n = 2 + 1 = 3 . . . and is thus true for all integers 

greater than or equal to 2.
Note that the result is not true for n = 1. However, the modified result (1 + x)n >  1 + nx is true for 

n = 1, 2, 3, . . .

Miscellaneous problems

1.32. Prove that every positive integer P can be expressed uniquely in the form P = a02
n + a12

n – 1 + a22
n –2 + . . . + 

an where the a’s are 0’s or 1’s.

Dividing P by 2, we have P/2 = a02
n –1 + a12

n –2 + . . . + an –1 + an/2.
Then an is the remainder, 0 or 1, obtained when P is divided by 2 and is unique.
Let P1 be the integer part of P/2. Then P1 = a02

n –1 + a12
n–2 + . . . + an –1.

Dividing P1 by 2, we see that an –1 is the remainder, 0 or 1, obtained when P1 is divided by 2 and is 
unique.

By continuing in this manner, all the a’s can be determined as 0’s or 1’s and are unique.

1.33. Express the number 23 in the form of Problem 1.32.

The determination of the coefficient can be arranged as follows:

 2) 23
 2) 11 Remainder 1
 2) 5 Remainder 1
 2) 2 Remainder 1
 2) 1 Remainder 0
 0 Remainder 1

The coefficients are 1 0 1 1 1. Check: 23 = 1 ·24 + 0 ·23 + 1 ·22 + 1 ·2 + 1.
The number 10111 is said to represent 23 in the scale of two or binary scale.

1.34. Dedekind defined a cut, section, or partition in the rational number system as a separation of all rational numbers 
into two classes or sets called L (the left-hand class) and R (the right-hand class) having the following properties:

 I. The classes are non-empty (i.e. at least one number belongs to each class).

 II. Every rational number is in one class or the other.

 III. Every number in L is less than every number in R.

Prove each of the following statements:

(a) There cannot be a largest number in L and a smallest number in R.

(b) It is possible for L to have a largest number and for R to have no smallest number. What type of number 
does the cut define in this case?
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(c) It is possible for L to have no largest number and for R to have a smallest number. What type of number 
does the cut define in this case?

(d) It is possible for L to have no largest number and for R to have no smallest number. What type of number 
does the cut define in this case?

(a) Let a be the largest rational number in L and b the smallest rational number in R. Then either a = b or 
a < b.
We cannot have a = b, since, by definition of the cut, every number in L is less than every number in R.

We cannot have a < b, since, by Problem 1.9, 
1

2
 (a + b) is a rational number which would be greater than 

a (and so would have to be in R) but less than b (and so would have to be in L), and, by definition, a rational 
number cannot belong to both L and R.

(b) As an indication of the possibility, let L contain the number 
2

3
 and all rational numbers less than 

2

3
, while 

R, contains all rational numbers greater than 
2

3
. In this case the cut defines the rational number 

2

3
. A 

similar argument replacing 
2

3
 by any other rational number shows that in such case the cut defines a ra-

tional number.

(c) As an indication of the possibility, let L contain all rational numbers less than 
2

3
, while R contains all 

rational numbers greater than 
2

3
. This cut also defines the rational number 

2

3
. A similar argument shows 

that this cut always defines a rational number.

(d) As an indication of the possibility, let L consist of all negative rational numbers and all positive rational 
numbers whose squares are less than 2, while R consists of all positive numbers whose squares are greater 
than 2. We can show that if a is any number of the L class, there is always a larger number of the L class, 
while if b is any number of the R class, there is always a smaller number of the R class (see Problem 
1.106). A cut of this type defines an irrational number.
From (b), (c), and (d), it follows that every cut in the rational number system, called a Dedekind cut,

defines either a rational or an irrational number. By use of Dedekind cuts we can define operations (addition, 
multiplication, etc.) with irrational numbers.

SUPPLEMENTARY PROBLEMS

Operations with numbers

1.35. Given x = –3, y = 2, z = 5, a = 
3

2
, and b = – 

1

4
, evaluate:

(a) (2x – y)(3y + z)(5x – 2z)  (b)
22

2 1

xy z

ab

−
−

  (c)
2 2

2 2

3

2 2 1

a b ab

a b

+
+

  (d)
2 2

2 2

( ) ( )

( ) ( )

ax by ay bx

ay bx ax by

+ + −
+ + −

Ans. (a) 2200 (b) 32 (c) –51/41 (d) 1

1.36. Find the set of values of x for which the following equations are true. Justify all steps in each case.

(a) 4{(x – 2) + 3(2x – 1)} + 2 (2x + 1) = 12 (x + 2) – 2 (c) 2 8 7 2 2 1x x x x+ + − + = +

(b)
1 1 1

8 2 4x x
− =

− −
 (d)

2

1 3

52 5

x

x x

− =
− +

Ans. (a) 2 (b) 6, – 4 (c) – 1, 1 (d) 
1

2
−

1.37. Prove that 0
( )( ) ( )( ) ( )( )

x y z

z x x y x y y z y z z x
+ + =

− − − − − −
, giving restrictions if any.
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Rational and irrational numbers

1.38. Find decimal expansions for (a) 
3

7
and (b) 5 .

Ans. (a) 0.4̇2̇8̇5̇7̇1̇  (b) 2.2360679 . . .

1.39. Show that a fraction with denominator 17 and with numerator 1, 2, 3, . . . , 16 has 16 digits in the repeating 
portion of its decimal expansion. Is there any relation between the orders of the digits in these expansions?

1.40. Prove that (a) 3  and (b) 3 2  are irrational numbers.

1.41. Prove that (a) 3 5  – 4 3  and (b) 2  + 3  + 5  are irrational numbers.

1.42. Determine a positive rational number whose square differs from 7 by less than .000001.

1.43. Prove that every rational number can be expressed as a repeating decimal.

1.44. Find the values of x for which (a) 2x3 – 5x2 – 9x + 18 = 0, (b) 3x3 + 4x2 – 35x + 8 = 0, and (c) x4 – 21x2 + 
4 = 0.

Ans. (a) 3, –2, 3/2 (b) 8/3, –2 ± 5  (c) 
1

2
 (5 ± 17 ),

1

2
 (–5 ± 17 )

1.45. If a, b, c, and d are rational and m is not a perfect square, prove that a + b m  = c + d m  if and only if 
a = c and b = d.

1.46.
1 3 5 12 5 2 15 14 3 7

Prove that .
111 3 5

+ + − + −=
− +

Inequalities

1.47. Find the set of values of x for which each of the following inequalities holds:

(a)
1 3

5,
2x x

+ >  (b) x(x + 2) <  24, (c) ⏐x + 2 ⏐< ⏐x – 5⏐, (d) 
3

2 3 1

x x

x x

+>
+ +

Ans. (a) 0 < x < 1

2
 (b) –6 < x <  4 (c) x < 3/2 (d) x > 3, –1 < x < – 

1

3
, or x < – 2

1.48. Prove (a) ⏐x + y⏐ < ⏐x⏐ + ⏐y⏐, (b) ⏐x + y + z⏐ < ⏐x⏐ + ⏐y⏐ + ⏐z⏐, and (c) ⏐x⏐ – y⏐ > ⏐ x⏐ – ⏐y⏐.

1.49. Prove that for all real x, y, z, x2 + y2 + z2 > xy + yz + zx.

1.50. If a2 + b2 = 1 and c2 + d2 = 1, prove that ac + bd <  1.

1.51. If x > 0, prove that 1
1

1 1n n
n n

x x
x x

+
+

+ > + where n is any positive integer.
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1.52. Prove that for all real a � 0, ⏐a + 1/a⏐ >  2.

1.53. Show that in Schwarz’s inequality (Problem 1.13) the equality holds if and only if ap = kbp, p = 1, 2, 
3, . . . ,n, where k is any constant.

1.54. If a1, a2, a3 are positive, prove that 
1

3
 (a1 + a2 + a3) > 3

1 2 3a a a .

Exponents, roots, and logarithms

1.55. Evaluate: (a) 4log
2
8 (b) 1 / 8

3 1
log

4 128
⎛ ⎞
⎜ ⎟⎝ ⎠

 (c)
5

(0.00004)(25,000)

(0.02) (0.125)
 (d) 3–2log

3
5 (e)

4 / 3
1

8
⎛ ⎞−⎜ ⎟⎝ ⎠

– (–27)–2/3

Ans. (a) 64 (b) 7/4 (c) 50,000 (d) 1/25 (e) –7/144

1.56. Prove (a) loga MN = logaM + loga N and (b) loga Mr = r loga M indicating restrictions, if any.

1.57. Prove blog
b
a = a giving restrictions, if any.

Countability

1.58. (a) Prove that there is a one-to-one correspondence between the points of the interval 0 < x <  1 and –5 <
x <  –3. (b) What is the cardinal number of the sets in (a)?

Ans. (b) C, the cardinal number of the continuum.

1.59. (a) Prove that the set of all rational numbers is countable. (b) What is the cardinal number of the set in (a)?

Ans. (b) ℵ0

1.60. Prove that the set of (a) all real numbers and (b) all irrational numbers is noncountable.

1.61. The intersection of two sets A and B, denoted by A ∪B or AB, is the set consisting of all elements 
belonging to both A and B. Prove that if A and B are countable, so is their intersection.

1.62. Prove that a countable sets of countable sets is countable.

1.63. Prove that the cardinal number of the set of points inside a square is equal to the cardinal number of the sets 
of points on (a) one side and (b) all four sides. (c) What is the cardinal number in this case? (d) Does a 
corresponding result hold for a cube?

Ans. (c) C

Limit points, bounds, Bolzano-Weierstrass theorem

1.64. Given the set of numbers 1, 1.1,.9, 1.01, .99, 1.001,.999, . . . , (a) is the set bounded? (b) Does the set have 
an l.u.b. and a g.l.b.? If so, determine them. (c) Does the set have any limit points? If so, determine them. 
(d) Is the set a closed set?

Ans. (a) Yes (b) l.u.b. = 1.1.g.l.b. = .9 (c) 1 (d) Yes
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1.65. Given the set –.9,.9, –.99, .99, –.999, .999, answer the questions in Problem 1.64.

Ans. (a) Yes (b) l.u.b. = 1, g.l.b. = –1 (c) 1, –1 (d) No

1.66. Give an example of a set which has (a) three limit points and (b) no limit points.

1.67. (a) Prove that every point of the interval 0 < x < 1 is a limit point. (b) Are there limit points which do not 
belong to the set in (a)? Justify your answer.

1.68. Let S be the set of all rational numbers in (0, 1) having denominator 2n, n = 1, 2, 3, . . . (a) Does S have any 
limit points? (b) Is S closed?

1.69. (a) Give an example of a set which has limit points but which is not bounded. (b) Does this contradict the 
Bolzano-Weierstrass theorem? Explain.

Algebraic and transcendental numbers

1.70. Prove that (a) 
3 2

,
3 2

−
+

(b) 2 3 5+ +  are algebraic numbers.

1.71. Prove that the set of transcendental numbers in (0, 1) is not countable.

1.72. Prove that every rational number is algebraic but every irrational number is not necessarily algebraic.

Complex numbers, polar form

1.73. Perform each of the indicated operations: 

(a) 2(5 – 3i) – 3(–2 + i) + 5(i – 3) 

(b) (3 – 2i)3

(c)
5 10

3 4 4 3i i
+

− +

(d)
10

1

1

i

i

−⎛ ⎞
⎜ ⎟+⎝ ⎠

(e)
2

2 4

5 7

i

i

−
+

(f)
2

(1 )(2 3 )(4 2 )

(1 2 ) (1 )

i i i

i i

+ + −
+ −

Ans. (a) 1 – 4i (b) – 9 – 46i (c) 
11 2

5 5
i−  (d) –1 (e) 

10

37
 (f) 

16 2

5 5
i−

1.74. If z1 and z2 are complex numbers, prove (a) 1 1

2 2

z z

z z
= and (b) 

22
1 1z z= , giving any restrictions.

1.75. Prove (a) ⏐z1 + z2⏐ < ⏐z1⏐ + ⏐z2⏐, (b) ⏐z1 + z2 + z3⏐ < ⏐z1⏐ + ⏐z2 + z3⏐ and (c) ⏐z1 – z2⏐ > ⏐z1⏐ – ⏐z2⏐.
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1.76. Find all solutions of 2x4 – 3x3 – 7x2 – 8x + 6 = 0.

Ans. 3,
1

2
, – 1 ± i

1.77. Let z1 and z2 be represented by points P1 and P2 in the Argand diagram. Construct lines OP1 and OP2, where 
O is the origin. Show that z1 + z2 can be represented by the point P3, where OP3 is the diagonal of a 
parallelogram having sides OP1 and OP2. This is called the parallelogram law of addition of complex 
numbers. Because of this and other properties, complex numbers can be considered as vectors in two 
dimensions.

1.78. Interpret geometrically the inequalities of Problem 1.75.

1.79. Express in polar form (a) 3 3  + 3i, (b) –2 – 2i, (c) 1 – 3 i, (d) 5, and (e) –5i.

Ans. (a) 6 cis π/6 (b) 2 2  cis 5π/4 (c) 2 cis 5π/3 (d) 5 cis 0 (e) 5 cis 3π/2

1.80. Evaluate (a) [2(cos 25º + i sin 25º)][5(cos 110º + i sin 110º)] and (b) 
12cis 16

.
(3 cis 44 )(2 cis 62 )

o

o o

Ans. (a) –5 2  + 5 2 i (b) – 2i

1.81. Determine all the indicated roots and represent them graphically: (a) 1 / 3(4 2 4 2 ) ,i+  (b) (–1)1/5,
(c) ( 3  – i) 1/3, and (d) i1/4.

Ans. (a) 2 cis 15º, 2 cis 135º, 2 cis 255º

 (b) cis 36º, cis 108º, cis 180º = –1, cis 252º, cis 324º

 (c) 3 2  cis 110º, 3 2  cis 230º, 3 2  cis 350º

 (d) cis 22.5º, cis 112.5º, cis 202.5º, cis 292.5º

1.82. Prove that –1 + 3 i is an algebraic number.

1.83. If z1 = ρ1 cis φ1 and z2 = ρ2 cis φ2, prove (a) z1z2 = ρ1 ρ2 cis(φ1 + φ2 ) and (b) z1/z2 = (ρ1/ρ2)cis (φ1 – φ2).
Interpret geometrically.

Mathematical induction
Prove each of the following.

1.84. 1 + 3 + 5 + . . . + (2n – 1) = n2

1.85.
1 1 1

1 3 3 5 5 7
+ + +

⋅ ⋅ ⋅
. . . 1

(2 1)(2 1) 2 1

n

n n n
+ =

− + +

1.86. a + (a + d) + (a + 2d) + . . . + [a + (n – 1)d] = 
1

2
n[2a + (n – 1)d]

1.87.
1 1 1

1 2 3 2 3 4 3 4 5
+ + +

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
. . . 1 ( 3)

( 1)( 2) 4( 1)( 2)

n n

n n n n n

++ =
+ + + +
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1.88. 2a ar ar+ + + . . . 1 ( 1)
, 1

1

n
n a r

ar r
r

− −+ = ≠
−

1.89. 13 + 23 + 33 + . . . + n3 = 
1

4
n2 (n + 1)2

1.90. 2 31(5) 2(5) 3(5)+ + + . . . 
1

1 5 (4 1)5
(5)

16

n
n n

n
+

− + −+ =

1.91. x2n – 1 + y2n – 1 is divisible by x + y for n = 1, 2, 3, . . .

1.92. (cos φ + i sin φ)n = cos nφ + i sin nφ. Can this be proved if n is a rational number?

1.93. 1
2 cos cos2x x+ + + . . . 

1
2

1
2

sin( )
cos , 0, 2 , 4 ,

2sin

n x
nx x

x
π π

+
+ = ≠ ± ±  . . . 

1.94. sin sin 2x x+ + . . . 
1 1
2 2

1
2

cos cos( )
sin , 0, 2 , 4

2sin

x n x
nx x

x
π π

− +
+ = ≠ ± ±  . . . 

1.95. (a + b)n = an + nC1a
n–1 b + nC2a

n–2b2 + . . . + nCn–1abn–1 + bn

where
( 1)( 2) ( 1) !

.
! !( )!n r n n r

n n n n r n
C C

r r n r −
− − − += = =

−
KK

Here p! = p(p – 1) . . . 1 and 0! is defined as 

1. This is called the binomial theorem. The coefficients 0 1 2

( 1)
1, , ,

2!n n n

n n
C C n C

−= = =  . . . , 1n nC =  are 

called the binomial coefficients. nCr is also written 
n

r

⎛ ⎞
⎜ ⎟
⎝ ⎠

.

Miscellaneous problems

1.96. Express each of the following integers (scale of 10) in the scale of notation indicated: (a) 87 (two), (b) 64 
(three) (c) 1736 (nine). Check each answer.

Ans. (a) 1010111 (b) 2101 (c) 2338

1.97. If a number is 144 in the scale of 5. what is the number in the scale of (a) 2 and (b) 8?

1.98. Prove that every rational number p/q between 0 and 1 can be expressed in the form

1 2
22 2

a ap

q
= + + . . .

2
n
n

a
+ + . . .

where the a’s can be determined uniquely as 0’s or 1’s and where the process may or may not terminate. 
The representation 0.a1a2 . . . an . . . is then called the binary form of the rational number. (Hint: Multiply both 
sides successively by 2 and consider remainders.)

1.99. Express 
2

3
 in the scale of (a) 2, (b) 3, (c) 8, and (d) 10.

Ans. (a) 0.1010101 . . . (b) 0.2 or 0.2000. . . . (c) 0.5252. . . . (d) 0.6666 . . .
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1.100. A number in the scale of 2 is 11.01001. What is the number in the scale of 10.

Ans. 3.28125

1.101. In what scale of notation is 3 + 4 = 12?

Ans. 5

1.102. In the scale of 12, two additional symbols, t and e, must be used to designate the “digits” 10 and 11, 
respectively. Using these symbols, represent the integer 5110 (scale of 10) in the scale of 12.

Ans. 2e5t

1.103. Find a rational number whose decimal expansion is 1.636363 . . .

Ans. 18/11

1.104. A number in the scale of 10 consists of six digits. If the last digit is removed and placed before the first digit, 
the new number is one-third as large. Find the original number.

Ans. 428571

1.105. Show that the rational numbers form a field (see Page 3).

1.106. Using as axioms the relations 1 through 9 on Page 3, prove that (a) (–3)(0) = 0, (b) (–2)(+3) = –6, 
and (c) (–2) (–3) = 6.

1.107. (a) If x is a rational number whose square is less than 2, show that x + (2 – x2)/10 is a larger such number. 
(b) If x is a rational number whose square is greater than 2, find in terms of x a smaller rational number 
whose square is greater than 2.

1.108. Illustrate how you would use Dedekind cuts to define (a) 5  + 3 , (b) 3  – 2 , (c) ( 3 )( 2 ), and 
(d) 2 / 3 .
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Sequences

Definition of a Sequence

A sequence is a set of numbers u1, u2, u3, . . . in a definite order of arrangement (i.e., a correspondence with 
the natural numbers or a subset thereof) and formed according to a definite rule. Each number in the sequence 
is called a term; un is called the nth term. The sequence is called finite or infinite according as there are or 
are not a finite number of terms. The sequence u1, u2, u3, . . . is is also designated briefly by {un}.

EXAMPLES. 1.      The set of numbers 2, 7, 12, 17, . . ., 32 is a finite sequence; the nth term is given by un = 
2 + 5 (n – 1) = 5n – 3, n = 1, 2, . . ., 7.

                         2.      The set of numbers 1, 1/3, 1/5, 1/7, . . . is an infinite sequence with nth term un = 1/(2n – 1), 
n = 1, 2, 3, . . . .

Unless otherwise specified, we shall consider infinite sequences only.

Limit of a Sequence

A number l is called the limit of an infinite sequence u1, u2, u3, . . . if for any positive number � we can find 
a positive number N depending on � such that ⏐un – l⏐ < � for all integers n > N. In such case we write lim

n→∞
un = l.

EXAMPLE. If un = 3 + 1/n = (3n + 1)/n, the sequence is 4, 7/2, 10/3, . . . and we can show that lim
n→∞

un = 3.

If the limit of a sequence exists, the sequence is called convergent; otherwise, it is called divergent. A 
sequence can converge to only one limit; i.e., if a limit exists, it is unique. See Problem 2.8.

A more intuitive but unrigorous way of expressing this concept of limit is to say that a sequence u1, u2,
u3, . . . has a limit l if the successive terms get “closer and closer” to l. This is often used to provide a “guess” 
as to the value of the limit, after which the definition is applied to see if the guess is really correct.

Theorems on Limits of Sequences

If lim
n→∞

an = A and lim
n→∞

bn = B, then

1. lim
n→∞

 (an + bn) = lim
n→∞

an + lim
n→∞

bn = A + B

2. lim
n→∞

 (an – bn) = lim
n→∞

an – lim
n→∞

bn = A – B

3. lim
n→∞

 (an · bn) = ( lim
n→∞

an)( lim
n→∞

bn) = AB

CHAPTER 2
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lim
4. lim if lim 0

lim

nn n
nn n

n nn

aa A
b B

b b B
→∞

→∞ →∞
→∞

= = = ≠

If 0 and 0, lim does not exist.

If 0 and 0, lim may or may not exist.

n

n
n

n

n
n

a
B A

b

a
B A

b

→∞

→∞

= ≠

= =

 5.   lim (lim ) , for any real number if exists.p p p p
n nn n

a a A p A
→∞ →∞

= = =

 6.   
lim

lim , for any real number if  exists.
an

n na A A

n
p p p p p→∞

→∞
= = =

Infinity

We write lim
n→∞

an = � if for each positive number M we can find a positive number N (depending on M) such 

that
∞→n

na  > M for all n > N. Similarly, we write lim
n→∞

an = –� if for each positive number M we can find a 

positive number N such that an < –M for all n > N. It should be emphasized that � and –� are not numbers 
and the sequences are not convergent. The terminology employed merely indicates that the sequences diverge 
in a certain manner. That is, no matter how large a number in absolute value that one chooses, there is an n
such that the absolute value of an is greater than that quantity.

Bounded, Monotonic Sequences

If un < M for n = 1, 2, 3, . . ., where M is a constant (independent of n), we say that the sequence {un} is 
bounded above and M is called an upper bound. If un > m, the sequence is bounded below and m is called a 
lower bound.

If m < un < M the sequence is called bounded. Often this is indicated by ⏐un⏐ < P. Every convergent 
sequence is bounded, but the converse is not necessarily true.

If un+1 > un the sequence is called monotonic increasing; if un+1 > un it is called strictly increasing. Simi-
larly, if un+1 < un the sequence is called monotonic decreasing, while if un+1 < un it is strictly decreasing.

EXAMPLES. 1.  The sequence 1, 1.1, 1.11, 1.111, . . . is bounded and monotonic increasing. It is also 
strictly increasing.

 2.  The sequence 1, –1, 1, –1, 1, . . . is bounded but not monotonic increasing or decreasing.
 3.  The sequence –1, –1.5, –2, –2.5, –3, . . . is monotonic decreasing and not bounded. How-

ever, it is bounded above.

The following theorem is fundamental and is related to the Bolzano-Weierstrass theorem (Chapter 1, Page 
7) which is proved in Problem 2.23.

Theorem Every bounded monotonic (increasing or decreasing) sequence has a limit.

Least Upper Bound and Greatest Lower Bound of a Sequence

A number M is called the least upper bound (l.u.b.) of the sequence {un} if un < M, n = 1, 2,3, . . . while at 
least one term is greater than M – � for any � > 0.
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A number m  is called the greatest lower bound (g.l.b.) of the sequence {un} if un > m , n = 1, 2, 
3, . . . while at least one term is less than m  + � for any � > 0.

Compare with the definition of l.u.b. and g.l.b. for sets of numbers in general (see Page 6).

Limit Superior, Limit Inferior

A number l  is called the limit superior, greatest limit, or upper limit (lim sup or lim ) of the sequence {un}
if infinitely many terms of the sequence are greater than l  – � while only a finite number of terms are greater 
than l + �, where � is any positive number.

A number l is called the limit inferior, least limit, or lower limit (lim inf or lim) of the sequence {un} if 
infinitely many terms of the sequence are less than l + � while only a finite number of terms are less than 
l – �, where � is any positive number.

These correspond to least and greatest limiting points of general sets of numbers.
If infinitely many terms of {un} exceed any positive number M, we define lim sup {un} = �. If infinitely 

many terms are less than – M, where M is any positive number, we define lim inf {un} = –�.
If lim

n→∞
un = �, we define lim sup {un} = lim inf {un} = �.

If lim
n→∞

un = –�, we define lim sup {un} = lim inf {un} = – �.

Although every bounded sequence is not necessarily convergent, it always has a finite lim sup and lim 
inf.

A sequence {un} converges if and only if lim sup un = lim inf un is finite.

Nested Intervals

Consider a set of intervals [an, bn], n = 1, 2, 3, . . . , where each interval is contained in the preceding one and 
lim

n→∞
 (an – bn) = 0. Such intervals are called nested intervals.

We can prove that to every set of nested intervals there corresponds one and only one real number. This 
can be used to establish the Bolzano-Weierstrass theorem of Chapter 1. (See Problems 2.22 and 2.23.)

Cauchy’s Convergence Criterion

Cauchy’s convergence criterion states that a sequence {un} converges if and only if for each � > 0 we can 
find a number N such that ⏐up – uq⏐ < � for all p, q > N. This criterion has the advantage that one need not 
know the limit l in order to demonstrate convergence.

Infinite Series

Let u1, u2, u3, . . . be a given sequence. Form a new sequence S1, S2, S3, . . . where

S1 = u1, S2 = u1 + u2, S3 = u1 + u2 + u3, . . . , + Sn = u1 + u2 + u3 + . . . + un, . . .

where Sn, called the nth partial sum, is the sum of the first n terms of the sequence {un}.
The sequence S1, S2, S3, . . . is symbolized by

1 2 3u u u+ + + . . . 
1

n
n

u
∞

=

= ∑



CHAPTER 2  Sequences28

which is called an infinite series. If lim
n→∞

Sn = S exists, the series is called convergent and S is its sum; other-
wise, the series is called divergent.

Further discussion of infinite series and other topics related to sequences is given in Chapter 11.

SOLVED PROBLEMS

Sequences

2.1. Write the first five terms of each of the following sequences.

(a)
2 1

3 2

n

n

⎧ ⎫−
⎨ ⎬+⎩ ⎭

(b)
3

1 ( 1)n

n

⎧ ⎫− −
⎨ ⎬
⎩ ⎭

(c)
1( 1)

2 4 6 2

n

n

−⎧ ⎫−
⎨ ⎬⋅ ⋅⎩ ⎭LL

(d)
1 1 1

2 4 8
⎧ + + +⎨
⎩

 . . . 1

2n

⎫+ ⎬
⎭

(e)
1 2 1( 1)

(2 1)!

n nx

n

− −⎧ ⎫−
⎨ ⎬−⎩ ⎭

(a)
1 3 5 7 9

, , , ,
5 8 11 14 17

(b)
3 3 3

2 2 2
, 0, , 0,

1 3 5

(c) 1 
1 1 1 1 1

, , , ,
2 2 4 2 4 6 2 4 6 8 2 4 6 8 10

− −
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

(d)
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

, , , ,
2 2 4 2 4 8 2 4 8 16 2 4 8 16 32

+ + + + + + + + + +

(e)
3 5 7 9

, , , ,
1! 3! 5! 7! 9!

x x x x x− −

Note that n! = 1 · 2 · 3 · 4 . . . n. Thus, 1! = 1, 3! = 1 · 2 · 3 = 6, 5! = 1 · 2 · 3 · 4 · 5 = 120, etc. We define 
0! = 1.

2.2. Two students were asked to write an nth term for the sequence 1, 16, 81, 256, . . . and to write the 5th term 
of the sequence. One student gave the nth term as un = n4. The other student, who did not recognize this 
simple law of formation, wrote un = 10n3 – 35n2 + 50n – 24. Which student gave the correct 5th term?

If un = n4, then u1 = 14 = 1, u2 = 24 = 16, u3 = 34 = 81, and u4 = 44 = 256, which agrees with the first four 
terms of the sequence. Hence, the first student gave the 5th term as u5 = 54 = 625.

If un = 10n3 – 35n2 + 50n – 24, then u1 = 1, u2 = 16, u3 = 81, and u4 = 256, which also agrees with the first 
four terms given. Hence, the second student gave the 5th term as u5 = 601.
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Both students were correct. Merely giving a finite number of terms of a sequence does not define a unique 
nth term. In fact, an infinite number of nth terms is possible.

Limit of a sequence
2.3. A sequence has its nth term given by 

3 1

4 5n
n

u
n

−=
+

. (a) Write the 1st, 5th, 10th, 100th, 1000th, 10,000th and 

100,000th, terms of the sequence in decimal form. Make a guess as to the limit of this sequence as n → �.
(b) Using the definition of limit, verify that the guess in (a) is actually correct.

(a) n = 1 n = 5       n = 10 n = 100    n = 1000 n = 10,000  n = 100,000 

.22222 . . . . 56000 . . .  .64444 . . .  .73827 . . .  .74881 . . .  .74988 . . .  .74998 . . . 

A good guess is that the limit is .75000 . . . = 
3

4
. Note that it is only for large enough values of n that a

        possible limit may become apparent.

(b) We must show that for any given � > 0 (no matter how small) there is a number N (depending on �) such 

that
3

4nu −  < � for all n > N.

or
3 1 3 19 19

Now when  
4 5 4 4(4 5) 4(4 + 5)

4(4 + 5) 1 19 1 19
, 4 5 , 5

19 4 4 4

n

n n n

n
n n

εε

ε ε ε

<
⎡ ⎤ ⎡ ⎤− −− = <⎢ ⎥ ⎢ ⎥+ +⎣ ⎦ ⎣ ⎦

⎛ ⎞> + > > −⎜ ⎟⎝ ⎠

    Choosing N = 
1

4
 (19/4� – 5),    we see that 

3

4nu −  < � for all n > N,    so that lim
n→∞

 = 
3

4
 and the proof is

        complete.
 Note that if � = .001 (for example), N = 

1

4
(19000/4 – 5) = 1186 

1

4
. This means that all terms of the

       sequence beyond the 1186th term differ from 3/4 in absolute value by less than .001.

2.4. Prove that lim
n→∞ p

c

n
 = 0 where c � 0 and p > 0 are constants (independent of n).

We must show that for any � > 0 there is a number N such that ⏐c/np – 0⏐ < � for all n > N.

Now 
p

c

n
 < � when 

p

c

n
 < �; i.e., np > 

c

ε
or n > 

1 /p
c

ε
⎛ ⎞
⎜ ⎟⎜ ⎟⎝ ⎠

. Choosing N = 

1 /p
c

ε
⎛ ⎞
⎜ ⎟⎜ ⎟⎝ ⎠

(depending on �), we 

see that ⏐c/np⏐ < � for all n > N, proving that lim
n→∞

 (c/np) = 0.

2.5.
1 2 10 2

Prove that lim .
35 3 10

n

nn→∞

+ ⋅ =
+ ⋅

We must show that for any � > 0 there is a number N such that 
1 2 10 2

for all .
35 3 10

n

n
n Nε+ ⋅ − < >

+ ⋅

1 2 10 2 7
Now

35 3 10 3(5 3 10 )

n

n n
ε+ ⋅ −− = <

+ ⋅ + ⋅
 when 

7

3(5 + 3 10 )n
ε<

⋅
; i.e., when 

3
7

(5 3 10 ) 1/ ,n ε+ ⋅ >

3 · 10n > 7/3� – 5, 10n > 
1

8
 (7/3� – 5) or n > log 10 {

1

3
 (7/3� – 5)} = N, proving the existence of N and thus estab-

lishing the required result.
Note that the value of N is real only if 7/3� – 5 > 0; i.e., 0 < � < 7/15. If � � 7/15, we see that

1 2 10 2
for 0.

35 3 10

n

n
all nε+ ⋅ − < >

+ ⋅
2.6. Explain exactly what is meant by the statements (a) lim

n→∞
 32n–1 = � and (b) lim

n→∞
 (1 – 2n) = –�.

(a) If for each positive number M we can find a positive number N (depending on M) such that an > M for all 
n > N, then we write lim

n→∞
an = �.

2 1In this case, 3 when (2 1) log 3 > log n M n M− > − ;
1 log

i.e., 1 .
2 log 3

M
n N

⎛ ⎞
> + =⎜ ⎟

⎝ ⎠
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(b) If for each positive number M we can find a positive number N (depending on M) such that an < –M for 
all n > N, then we write lim

n→∞
 = –�.

In this case, 1 – 2n < –M when 2n – 1 > M or n > 
1

2
(M + 1) = N.

It should be emphasized that the use of the notations � and –� for limits does not in any way imply con-
vergence of the given sequences, since � and –� are not numbers. Instead, these are notations used to describe 
that the sequences diverge in specific ways.

2.7. Prove that lim
n→∞

xn = 0 if ⏐x⏐ < 1.

Method 1: We can restrict ourselves to x � 0, since if x = 0, the result is clearly true. Given � > 0, we must 
show that there exists N such that ⏐xn⏐ < � for n > N. Now ⏐xn⏐ = ⏐x⏐n

 < � when n log10 ⏐x⏐ < log10 �. Divid-

ing by log10 ⏐x⏐, which is negative, yields 10

10

log
,

log
n N

x

ε
> =  proving the required result.

Method 2: Let ⏐x⏐ = 1/(1 + p), where p > 0. By Bernoulli’s inequality (Problem 1.31), we have ⏐xn⏐ = 

⏐x⏐n
 = 1/(1 + p)n < 1/(1 + np) < � for all n > N. Thus, lim

n→∞
xn = 0.

Theorems on limits of sequences

2.8. Prove that if lim
n→∞

un exists, it must be unique.

We must show that if lim
n→∞

un = l1 and lim
n→∞

un = l2, then l1 = l2.

By hypothesis, given any � > 0 we can find N such that

1 2
1 1

when
2 2

when ,n nu l n N u l n Nε ε− < > − < >

Then
1 1

1 2 1 2 1 2 2 2n n n nl l l u u l l u u l ε ε ε− = − + − < − + − < + =

i.e., ⏐l1 – l2⏐ is less than any positive � (however small) and so must be zero. Thus, l1 = l2.

2.9. If lim
n→∞

an = A and lim
n→∞

bn = B, prove that lim
n→∞

 (an + bn) = A + B.

We must show that for any � > 0, we can find N > 0 such that ⏐(an + bn) – (A + B)⏐ < � for all n > N. From 
absolute value property 2, Page 4, we have

 ⏐(an + bn) – (A + B)⏐ = ⏐(an – A) + (bn – B)⏐ < ⏐an – A⏐ + ⏐bn – B⏐ (1)

By hypothesis, given � > 0 we can find N1 and N2 such that

1

1
for all 

2na A n Nε− < >  (2)

2

1
for all 

2nb B n Nε− < >  (3)

Then from Equations (1), (2), and (3),
1 1

( ) ( ) for all 
2 2n na b A B n Nε ε ε+ − + < + = >

where N is chosen as the larger of N1 and N2. Thus, the required result follows.

2.10. Prove that a convergent sequence is bounded.

Given lim
n→∞

an = A, we must show that there exists a positive number P such that ⏐an⏐ < P for all n.
Now

n n na a A A a A A= − + < − +
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But by hypothesis we can find N such that ⏐an – A⏐ < � for all n > N, i.e.,

⏐an⏐ < � + ⏐A⏐  for all n > N

It follows that ⏐an⏐ < P for all n if we choose P as the largest one of the numbers a1, a2, . . ., aN,
� + ⏐A⏐.

2.11. If lim
n→∞

bn = B � 0, prove there exists a number N such that ⏐bn⏐ > 
1

2
⏐B⏐ for all n > N.

Since B = B – bn + bn, we have: 

 ⏐B⏐ < ⏐B – bn⏐ + ⏐bn⏐  (1)

Now we can choose N so that ⏐B – bn⏐ = ⏐bn – B⏐ < 
1

2
⏐B⏐ for all n > N, since lim

n→∞
bn = B by hypoth-

esis.
Hence, from Equation (l), ⏐B⏐ < 

1

2
⏐B⏐ + ⏐bn⏐ or ⏐bn⏐ > 

1

2
⏐B⏐ for all n > N.

2.12. If lim
n→∞

an = A and lim
n→∞

bn = B, prove that lim
n→∞

anbn = AB.

Using Problem 2.10, we have

( ) ( )n n n n n n n na b AB a b B B a A a b B B a A− = − + − < − + −

(nP b B< − + ( )1 nB a A+ −
 (1)

But since lim
n→∞

an = A and lim
n→∞

bn = B, given any � > 0 we can find N1 and N2 such that

1 2 for all for all 
2 2(| | 1)n nb B n N a A n N

P B

ε ε− < > − < >
+

Hence, from Equation (l), ⏐anbn – AB⏐ < 
1

2
� + 

1

2
� = � for all n > N, where N is the larger of N1 and N2.

Thus, the result is proved.

2.13.
1 1

If lim and lim 0, prove (a) lim , ( ) lim .n
n nn n n n

n n

a A
a A b B b

b B b B→∞ →∞ →∞ →∞
= = ≠ = =

(a) We must show that for any given � > 0, we can find N such that

1 1
for all n

n n

B b
n N

b B B b
ε

−
− = < >  (1)

By hypothesis, given any � > 0, we can find N1, such that ⏐bn – B⏐<
1

2
B2 � for all n > N1.

Also, since lim
n→∞

bn = B � 0, we can find N 2 such that ⏐bn⏐ > 
1

2
⏐B⏐ for all n > N2 (see Problem 

2.11).
Then if N is the larger of N1 and N2, we can write Equation (1) as

21
1 1 2 for all 

1
2

n

n n

Bb B
n N

b B B b B B

ε
ε

−
− = < = >

⋅

and the proof is complete.
(b) From (a) and Problem 2.12, we have

1 1 1
lim lim lim lim

b
n

n nn n n n
n n n

a A
a a A

b b B B→∞ →∞ →∞ →∞

⎛ ⎞
= ⋅ = ⋅ = ⋅ =⎜ ⎟

⎝ ⎠
This can also be proved directly (see Problem 2.41).
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2.14. Evaluate each of the following, using theorems on limits.

(a)
2

2 2

3 5 3 5 / 3 0 3
lim lim

5 0 0 55 2 6 5 2 / 6 /n n

n n n

n n n n→∞ →∞

− − += = =
+ ++ − + −

(b)
3 3 2 2

2 2 2

( 2) 2 1 1/ 2 /
lim lim lim

1 1 ( 1)( 1) (1 1/ )(1 1/ )n n n

n n n n n n n n

n n n n n n→∞ →∞ →∞

⎧ ⎫ ⎧ ⎫ ⎧ ⎫+ + + + +− = =⎨ ⎬ ⎨ ⎬ ⎨ ⎬+ + + + + +⎩ ⎭ ⎩ ⎭ ⎩ ⎭
1 0 0

1
(1 0) (1 0)

+ += =
+ ⋅ +

(c) ( )lim 1
n

n n
→∞

+ − ( ) 1 1
lim 1 lim 0

1 1n n

n n
n n

n n n n→∞ →∞

+ +
= + − = =

+ + + +

(d)
2

2

3 4 3 4 /
lim lim

2 1 2 / 1 /n n

n n n

n n n→∞ →∞

+ ==
− −

Since the limits of the numerator and the denominator are 3 and 0, respectively, the limit does not exist.

Since
2 23 4 3 3

2 1 2 2

n n n n

n n

+ > =
−

can be made larger than any positive number M by choosing n > N, we can 

write, if desired, 
23 4

lim .
2 1n

n n

n→∞

+ = ∞
−

(e)

4 4 4
2 3 2 3 / 2 16

lim lim
2 7 3 7 / 3 18n n

n n

n n→∞ →∞

⎛ ⎞ ⎛ ⎞− − ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟+ + ⎝ ⎠⎝ ⎠ ⎝ ⎠

(f ) 
5 2 2 5

7 3 4 7

2 4 2 / 4 / 0
lim lim 0

33 10 3 1/ 10 /n n

n n n n

n n n n→∞ →∞

− −= = =
+ − + −

(g)
1 2 10 10 2 2

lim lim (Compare with Problem 2.5.)
35 3 10 5 10 3

n n

n nn n

−

−→∞ →∞

+ ⋅ += =
+ ⋅ ⋅ +

Bounded monotonic sequences

2.15. Prove that the sequence with nth
2 7

3 2n

n
u

n

−=
+

 (a) is monotonic increasing, (b) is bounded above, (c) is 

bounded below, (d) is bounded, (e) has a limit.

(a) {un} is monotonic increasing if un+1 > un, n = 1, 2, 3, . . . Now

2( 1) 7 2 7 2 - 5 2 7
if and only if 

3( 1) 2 3 2 2 5 3 2

n n n n

n n n n

+ − − −> >
+ + + + +

or (2n – 5) (3n + 2) >  (2n – 7) (3n + 5), 6n2 – 11n – 10 >  6n2 – 11n – 35, i.e., –10 >  –35, which is true. Thus, 
by reversal of steps in the inequalities, we see that {un} is monotonic increasing. Actually, since –10 > –35, the 
sequence is strictly increasing.
(b) By writing some terms of the sequence, we may guess that an upper bound is 2 (for example). To prove

this we must show that un <  2. If (2n – 7)/(3n + 2) <  2, then 2n – 7 <  6n + 4 or –4n < 11, which is true. 
Reversal of steps proves that 2 is an upper bound.

(c) Since this particular sequence is monotonic increasing, the first term –1 is a lower bound; i.e., un >  –1, 
n = 1, 2, 3, . . . Any number less than – 1 is also a lower bound.

(d) Since the sequence has an upper and a lower bound, it is bounded. Thus, for example, we can write 
⏐un⏐ <  2 for all n.

(e) Since every bounded monotonic (increasing or decreasing) sequence has a limit, the given sequence has 

a limit. In fact, 
2 7 2 7 / 2

lim lim .
3 2 3 2 / 3n n

n n

n n→∞ →∞

− −= =
+ +
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2.16. A sequence {un} is defined by the recursion formula un+1 3 nu , u1 = 1. (a) Prove that lim
n→∞

un exists. (b) 
Find the limit in (a).

(a) The terms of the sequence are u1 = 1, u2 = 13u = 31/2, u3 = 23u = 31/2+1/4, . . . .

The nth term is given by un = 31/2+1/4+…+1/2n–1, as can be proved by mathematical induction (Chapter 1).
Clearly, un+1 > un. Then the sequence is monotonic increasing.

By Problem 1.14, un <  31 = 3, i.e., un is bounded above. Hence, un is bounded (since a lower bound is 
zero).

Thus, a limit exists, since the sequence is bounded and monotonic increasing.
(b) Let x = required limit. Since 1lim lim 3 , we have 3 and 3.n nn n

u u x x x+→∞ →∞
= = = (The other possibility, 

x = 0, is excluded, since un >  1.)

Another method:
1 (1 1/ 2 )1 / 2 1/ 4 1/ 2 1 1/ 2 1lim 3 lim 3 3 lim 3 3

nn n

n n n

− −+ + + −

→∞ →∞ →∞
= = = =LL

2.17. Verify the validity of the entries in the following table.

 BOUNDED MONOTONIC MONOTONIC LIMIT

SEQUENCE  INCREASING DECREASING EXISTS

2, 1.9, 1.8, 1.7, . . . , 2 – (n – 1)/10 . . .  No No Yes No
1, –1, 1, –1, . . . ,(–1)n–1, . . .  Yes No No No
1

2
, – 

1

3
,

1

4
, – 

1

5
, . . . , (–1)n–1/(n + 1), . . .  Yes No No Yes (0)

.6, .66, .666, . . . , 
2

3
 (1 – 1/10n), . . . Yes Yes No Yes (

2

3
)

–1, +2, –3, +4, –5, . . . , (–1)n n, . . .  No No No No

2.18. Prove that the sequence with the nth term 1nu
⎛= +⎜⎝

1
n

n
⎞
⎟⎠

is monotonic, increasing, and bounded, and thus a 

limit exists. The limit is denoted by the symbol e.

Note:
1

lim 1 , where 2.71828
n

n
e e

n→∞

⎛ ⎞+ = ≅⎜ ⎟⎝ ⎠
 . . . was introduced in the eighteenth century by Leonhart 

Euler as the base for a system of logarithms in order to simplify certain differentiation and integration formu-
las.

By the binomial theorem, if n is a positive integer (see Problem 1.95),

2 2( 1) ( 1)( 2)
(1 ) 1

2! 3!
n n n n n n

x nx x x
− − −+ = + + + + . . . ( 1) ( 1)

!
nn n n n

x
n

− − ++ L

Letting x = 1/n,

2

1 1 ( 1) 1
1 1

2!

n

n n n
u n

n n n

−⎛ ⎞= + = + + +⎜ ⎟⎝ ⎠
. . . ( 1) ( 1) 1

! n

n n n n

n n

− − ++ L

1 1 1 1 2
1 1 1 1 1

2! 3!n n n
⎛ ⎞ ⎛ ⎞⎛ ⎞= + + − + − −⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

 + . . . 
1 1 2

1 1
!n n n
⎛ ⎞⎛ ⎞+ − −⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

. . . 1
1

n

n

−⎛ ⎞−⎜ ⎟⎝ ⎠

Since each term beyond the first two terms in the last expression is an increasing function of n, it follows that 
the sequence un is a monotonic increasing sequence.

. . .

. . .
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It is also clear that

1 1
1 1 1

2!

n

n
⎛ ⎞+ < + + +⎜ ⎟⎝ ⎠

1

3!
+ + . . .

2

1 1 1
1 1

! 2 2n
+ < + + + + . . .

1

1
3

2n−+ <

by Problem 1.14.
Thus, un is bounded and monotonic increasing, and so has a limit which we denote by e. The value of e = 

2.71828 . . . 

2.19. Prove that 
1

lim 1 ,
x

x
e

x→∞

⎛ ⎞+ =⎜ ⎟⎝ ⎠
 where x → � in any manner whatsoever (i.e., not necessarily along the 

positive integers, as in Problem 2.18).
1

1 1 1
If largest integer < , then < < 1 and 1 + < 1 1

+ 1

n x n

n x n x n
n x n

+⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + + < +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
. Since 

1
1 1 1

lim 1 lim 1 1
1 1 1

n n

n n
e

n n n

+

→∞ →∞

⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ = + + =⎜ ⎟ ⎜ ⎟ ⎜ ⎟+ + +⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 and 

1
1 1 1

lim 1 lim 1 1
n n

n n
e

n n n

+

→∞ →∞

⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ = + + =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠
,

1
it follows that lim 1 .

x

x
e

x→∞

⎛ ⎞+ =⎜ ⎟⎝ ⎠

Least upper bound, greatest lower bound, limit superior, limit inferior

2.20. Find the (a) l.u.b., (b) g.l.b., (c) lim sup ( lim ), and (d) lim inf (lim) for the sequence 2, –2, 1, –1, 1, –1, 1, 
–1, . . . .

(a) l.u.b. = 2, since all terms are less than equal to 2, while at least one term (the 1st) is greater than 2 – � for 
any � > 0.

(b) g.l.b. = –2, since all terms are greater than or equal to –2, while at least one term (the 2nd) is less than 
–2 + � for any � > 0.

(c) lim sup or lim  = 1, since infinitely many terms of the sequence are greater than 1 – � for any � > 0 
(namely, all 1’s in the sequence), while only a finite number of terms are greater than 1 + � for any � > 0 
(namely, the 1st term).

(d) lim inf or lim = –1, since infinitely many terms of the sequence are less than –1 + � for any � > 0 (namely, 
all –1’s in the sequence), while only a finite number of terms are less than –1 – � for any � > 0 (namely, 
the 2nd term).

2.21. Find the (a) l.u.b., (b) g.l.b., (c) lim sup ( lim ), and (d) lim inf (lim) for the sequences in Problem 2.17.

The results are shown in the following table.

SEQUENCE l.u.b. g.l.b. lim sup or lim lim inf or lim

2, 1.9, 1.8, 1.7, . . ., 2 – (n – 1)/10 . . .  2 none –� –�
1, –1, 1, –1, . . . , (–1)n–1, . . .  1 –1 1 –1
1

2
, –

1

3
,

1

4
 – 

1

5
, . . ., (–1)n–1/(n + 1), . . .

1

2
–

1

3
0 0

.6, .66, .666, . . ., 
2

3
 (1 – 1/10n), . . . 

2

3
6

2

3

2

3

–1, + 2, –3, +4, –5, . . ., (–1)n n, . . .  none none +� –�
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Nested intervals

2.22. Prove that to every set of nested intervals [an, bn], n = 1, 2, 3, . . . there corresponds one and only one real 
number.

By definition of nested intervals, an+ 1 > an, bn+1, < bn n = 1, 2, 3, . . . and lim
n→∞

 (an – bn) = 0.

Then a1 < an < bn < b1, and the sequences {an} and {bn} are bounded and, respectively, monotonic 
increasing and decreasing sequences and so converge to a and b.

To show that a = b and thus prove the required result, we note that

 b – a = (b – bn) + (bn – an) + (an – a) (1)

 ⏐b – a⏐ < ⏐b – bn⏐ + ⏐bn – an⏐ + ⏐an – a⏐ (2)

Now, given any � > 0, we can find N such that for all n > N

 ⏐b – bn⏐ < �/3, ⏐bn – a⏐ < �/3, (3)

so that from Equation (2), ⏐b – a⏐ < �. Since � is any positive number, we must have b – a = 0 or a = b.

2.23. Prove the Bolzano-Weierstrass theorem (see Page 7).

Suppose the given bounded infinite set is contained in the finite interval [a, b]. Divide this interval into 
two equal intervals. Then at least one of these, denoted by [a1, b1], contains infinitely many points. Dividing 
[a1, b1] into two equal intervals, we obtain another interval—say, [a2, b2]—containing infinitely many points. 
Continuing this process, we obtain a set of intervals [an, bn], n = 1, 2, 3, . . ., each interval contained in the 
preceding one and such that

b1 – a1 = (b – a)/2, b2 – a2 = (b1 – a1)/2 = (b – a)/22, . . ., bn – an = (b – a)/2n

from which we see that lim
n→∞

 (bn – an) = 0.

This set of nested intervals, by Problem 2.22, corresponds to a real number which represents a limit point 
and so proves the theorem.

Cauchy’s convergence criterion

2.24. Prove Cauchy’s convergence criterion as stated on Page 27.

Necessity. Suppose the sequence {un} converges to l. Then, given any � > 0, we can find N such that

⏐up – l⏐ < �/2 for all p > N and ⏐uq – l⏐ < �/2 for all q > N

Then, for both p > N and q > N, we have

⏐up – uq⏐ = ⏐ (up – l) + (l – uq) ⏐ < ⏐ up – l⏐ + ⏐l – uq⏐ < �/2 + �/2 = �

Sufficiency. Suppose ⏐up – uq ⏐ < � for all p, q > N and any � > 0. Then all the numbers uN, uN + 1, . . . lie in 
a finite interval; i.e., the set is bounded and infinite. Hence, by the Bolzano-Weierstrass theorem there is at 
least one limit point—say, a.

If a is the only limit point, we have the desired proof and lim
n→∞

u n = a.

Suppose there are two distinct limit points—say, a and b—and suppose b > a (see Figure 2.1). By defini-
tion of limit points, we have

 ⏐up – a⏐ < (b – a)/3 for infinitely many values of p (1)

 ⏐uq – b⏐ < (b – a)/3 for infinitely many values of q (2) Figure 2.1
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Then, since b – a = (b – uq) + (uq – up) + (up – a), we have

 ⏐b – a⏐ = b – a < ⏐b – uq⏐ + ⏐up – uq⏐ + ⏐up – a⏐ (3)

Using Equations (1) and (2) in (3), we see that ⏐up – uq⏐ > (b – a)/3 for infinitely many values of p and 
q, thus contradicting the hypothesis that ⏐up – uq⏐ < � for p, q > N and any � > 0. Hence, there is only one limit 
point and the theorem is proved.

Infinite series

2.25. Prove that the infinite series (sometimes called the geometric series)

2a ar ar+ + +  . . . 1

1

n

n

ar
∞

−

=

= ∑
(a) converges to a/(1 – r) if ⏐r⏐ < 1, and (b) diverges if ⏐r⏐ >  1.

Let Sn = a + ar + ar2 + . . . + arn–1

Then rSn = ar + ar2 + . . . + arn–1 + arn

Subtract                     (1 – r)Sn = a                                – arn

or                                        
(1 )

1

n

n

a r
s

r

−=
−

(a)
(1 )

If 1, lim lim
1 1

n

nn n

a r a
r S

r r→∞ →∞

−< = =
− −

by Problem 2.7.

(b)  If ⏐r⏐ > 1, lim
n→∞

Sn does not exist (see Problem 2.44).

2.26. Prove that if a series converges, its nth term must necessarily approach zero.

Since Sn = u1 + u2 + . . . + un and Sn–1 = u1 + u2 + . . . + un–1, we have un = Sn – Sn–1.
If the series converges to S, then

1 1lim lim ( ) lim lim 0n n n n nn n n n
u S S S S S S− −→∞ →∞ →∞ →∞

= − = − = − =

2.27. Prove that the series 1 1 1 1 1 1− + − + − + . . . 1

1

( 1)n

n

∞
−

=

= −∑  diverges.

Method 1: lim
n→∞

 (–1)n � 0; in fact, it doesn’t exist. Then by Problem 2.26, the series cannot converge; i.e., 
it diverges.

Method 2: The sequence of partial sums is 1, 1 – 1, 1 – 1 + 1, 1 – 1 + 1 – 1, . . .; i.e., 1, 0, 1, 0, 1, 0, 
1, . . . Since this sequence has no limit, the series diverges.

Miscellaneous problems

2.28. If lim
n→∞

un = l, prove that 1 2lim .n

n

u u u
l

n→∞

+ + +
=

L

1 2

1 2 1 21 2

Let . We must show that lim 0 if lim 0. Nown
n n nn n

p p p nn

u l
n

n n n

υ υ υ
υ υ

υ υ υ υ υ υυ υ υ
→∞ →∞

+ +

+ + +
= + = =

+ + + + + ++ + +
= +

L

L LL

so that

1 2 1 21 2 p P P nn

n n n

υ υ υ υ υ υυ υ υ + ++ + + + + ++ + +
< +

L LL
 (1)

. . .

. . .

. . . . . . . . .

. . . . . . . . .
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Since lim
n→∞

νn = 0, we can choose P so that ⏐νn⏐ < �/2 for n > P. Then

1 2 /2 /2 /2 ( ) /2

2
P P n n P

n n n

υ υ υ ε ε ε ε ε+ ++ + + + + + −< = <
L L

 (2)

After choosing P, we can choose N so that for n > N > P,

1 2

2
P

n

υ υ υ ε+ + +
<

L
 (3)

Then, using Equations (2) and (3), (1) becomes

1 2 for
2 2

n n N
n

υ υ υ ε ε ε
+ + +

< + = >
L

thus proving the required result.

2.29. Prove that 2 1/lim(1 ) 1.n

n
n n

→∞
+ + =

Let (1 + n + n2)1/n = 1 + un, where un � 0. Now, by the binomial theorem,

2 2 3( 1) ( 1)( 2)
1 (1 ) 1

2! 3!
n n

n n n n n

n n n n n
n n u nu u u u

− − −+ + = + = + + + + +L

Then 2 3( 1)( 2)
1 + 1 or 0 <

3! n

n n n
n n u

− −+ > + 3
nu

26( )
.

( 1)( 2)

n n

n n n

+<
− −

Hence, 3lim 0nn
u

→∞
=  and 

lim 0.nn
u

→∞
= Thus, 2 1/lim(1 ) lim(1 ) 1.n

nn n
n n u

→∞ →∞
+ + = + =

2.30. Prove that lim 0
!

n

n

a

n→∞
= for all constants a.

The result follows if we can prove that lim 0
!

n

n

a

n→∞
=  (see Problem 2.38). We can assume a � 0.

1

Let . Then .
!

n

n
n

n

a au
u

n u n−

= =  If n is large enough—say, n > 2⏐a⏐—and if we call N = [2⏐a⏐ + 1], 

i.e., the greatest integer <  2⏐a⏐ + 1, then

1 2

1

1 1
, ,

2 2
N N

N N

u u

u u
+ +

+

< < . . .
1

1
,

2
n

n

u

u −

<

Multiplying these inequalities yields 1 1

2 2
or .n

n N
N

n N n Nu
u u

u

− −⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

< <  Since 
1

lim 0
2

n N

n

−

→∞

⎛ ⎞ =⎜ ⎟⎝ ⎠
(using

Problem 2.7), it follows that lim
n→∞

un = 0.

SUPPLEMENTARY PROBLEMS

Sequences

2.31. Write the first four terms of each of the following sequences:

(a)
1

n

n

⎧ ⎫⎪ ⎪
⎨ ⎬+⎪ ⎪⎩ ⎭

 (d) 
2 1( 1)

1 3 5 (2 1)

n nx

n

−⎧ ⎫−
⎨ ⎬⋅ ⋅ −⎩ ⎭L. . .

(b)
1( 1)

!

n

n

+⎧ ⎫−
⎨ ⎬
⎩ ⎭

 (e) 
2 2

cos nx

x n

⎧ ⎫
⎨ ⎬+⎩ ⎭

(c)
1

5

(2 )

(2 1)

nx

n

−⎧ ⎫
⎨ ⎬−⎩ ⎭

. . . . . .

. . .

. . .

. . .
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Ans.  (a) 
1 2 3 4

, , ,
2 3 4 5

  (d) 
3 5 7

, , ,
1 1 3 1 3 5 1 3 5 7

x x x x− −
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

(b)
1 1 1 1

, , ,
1! 2! 3! 4!

− −   (e)
2 2 2 2 2 2 2 2

cos cos 2 cos 3 cos 4
, , ,

1 2 3 4

x x x x

x x x x+ + + +

 (c) 
2 3

5 5 5 5

1 2 4 8
, , ,

1 3 5 7

x x x

2.32. Find a possible nth term for the sequences whose first 5 terms are indicated, and find the 6th term:

,
1 3 5 7 9 2 3 4

( ) , , , , , ( ) 1, 0, 1, 0, 1, ( ) , 0, , 0 ,
5 8 11 14 17 3 4 5

( 1) (2 1) 1 ( 1) ( 3) 1 ( 1)
. ( ) ( ) ( )

(3 2) 2 ( 5) 2

n n n

a b c

n n
Ans a b c

n n

− − −

− − − − + − −⋅
+ +

K K K

2.33. The Fibonacci sequence is the sequence {un} where un+2 = un+1 + un and un and u1 = 1, u2 = 1. (a) Find the 

first 6 terms of the sequence. (b) Show that the nth term is given by un = (an – bn)/ 5 , where a = 
1

2
 (1 + 

5 ) and b = 
1

2
 (1 – 5 ).

Ans. (a) 1, 1, 2, 3, 5, 8

Limits of sequences

2.34. Using the definition of limit, prove that

(a)
4 2 2

lim
3 2 3n

n

n→∞

− −=
+

(b) 1/lim 2 n

n

−

→∞
= 1 (c)

4

2

1
lim
n

n

n→∞

+ = ∞ (d)
sin

lim 0
n

N

n→∞
=

2.35. Find the least positive integer N such that ⏐(3n + 2)/(n – 1) – 3⏐ < � for all n > N if (a) � = .01, 
(b) � = .001 and (c) � = .0001.

Ans. (a) 502     (b) 5002     (c) 50,002

2.36. Using the definition of li mit, prove that lim
n→∞

(2n – 1)/(3n + 4) cannot be 
1

2
.

2.37. Prove that lim
n→∞

 (–1)nn does not exist.

2.38. Prove that if lim
n→∞

⏐un⏐ = 0, then lim
n→∞

un = 0. Is the converse true?

2.39. If lim
n→∞

un = l, prove that (a) lim
n→∞

 = cun = cl where c is any constant, (b) lim
n→∞

u2
n = l2, (c) lim

n→∞
up

n = lp

where p is a positive integer, and (d) lim
n→∞

nu  = l , l >  0.

2.40. Give a direct proof that lim
n→∞

an/bn = A/B if lim
n→∞

an = A and lim
n→∞

bn = B � 0.

2.41. Prove that (a) 1/lim 3 1,n

n→∞
= (b)

1/
2

3
lim 1,

n

n

⎛ ⎞
⎜ ⎟
⎝ ⎠→∞

= and (c) 3

4
lim 0.

n

n

⎛ ⎞
⎜ ⎟
⎝ ⎠→∞

=

2.42. If r > 1, prove that lim
n→∞

rn = �, carefully explaining the significance of this statement.

2.43. If ⏐r⏐ > 1, prove that lim
n→∞

rn does not exist.

 . . .  . . .  . . .(a)

(a) (b)

(b)

(c)

(c)
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2.44. Evaluate each of the following, using theorems on limits:

 (a) 
2

2

4 2 3
lim

2n

n n

n n→∞

− −
+

(d)
2

1 2 1

4 10 3 10
lim

3 10 2 10

n n

n nn − −→∞

⋅ − ⋅
⋅ + ⋅

(b) 3
(3 )( 2)

lim
8 4n

n n

n→∞

− +
−

(e) 2lim( )
n

n n n
→∞

+ −

(c)
23 5 4

lim
2 7n

n n

n→∞

− +
−

(f ) 
1/lim(2 3 )n n n

n→∞
+

Ans. (a) –3/2     (b) –1/2     (c) 3 /2 (d) –15 (e) 1/2 (f) 3

Bounded monotonic sequences

2.45. Prove that the sequence with nth term un = un= n /(n + 1). (a) is monotonic decreasing, (b) is bounded 
below, (c) is bounded above, and (d) has a limit.

2.46.
1 1 1 1

If , prove that lim  exists and lies between 0 and 1.
1 2 3n nn

u u
n n n n n →∞

= + + + +
+ + + +

L

2.47. 1

1
If 1, 1, prove that lim (1 5).

2n n n
u u u u

→∞
= + = = +

2.48. If un+1 = 
1

2
 (un + p/un) where p > 0 and u1 > 0, prove that lim

n→∞
un = p . Show how this can be used to 

determine 2 .

2.49. If un is monotonic increasing (or monotonic decreasing), prove that Sn/n, where Sn = u1 + u2 + . . . + un is also 
monotonic increasing (or monotonic decreasing).

Least upper bound, greatest lower bound, limit superior, limit inferior

2.50. Find the l.u.b., g.l.b., lim sup ( lim ), and lim inf (lim) for each sequence:

(a) –1, 
1

3
, –

1

5
,

1

7
, . . . , (–1)n/(2n – 1), . . .   (c) 1, –3, 5, –7, . . . , (–1)n–1 (2n – 1), . . . 

(b)
2

3
, –

3

4
,

4

5
, –

5

6
, . . . , (–1)n+ 1 (n + 1)/(n + 2), . . .  (d) 1, 4, 1, 16, 1, 36, . . ., n1 +(–1)n, . . . 

Ans. (a) 
1

3
, –1, 0,0     (b) 1, –1, 1, –1     (c) none, none, +�, – �     (d) none, 1, +�, 1

2.51. Prove that a bounded sequence {un} is convergent if and only if lim un = limun.

Infinite series

2.52. Find the sum of the series 2

3
1

.
n

n

∞
⎛ ⎞
⎜ ⎟⎝ ⎠

=
∑

Ans. 2

. . .
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2.53. Evaluate 1

1

( 1) / 5 .n n

n

∞
−

=

−∑

Ans.
1

6

2.54.
1 1 1 1

Prove that 
1 2 2 3 3 4 4 5

+ + + +
⋅ ⋅ ⋅ ⋅

 . . . 
1

1
1.

( 1)n n n

∞

=

= =
+∑ ( 1 1 1

Hint:
( 1) 1n n n n

= −
+ +

.)
2.55. Prove that multiplication of each term of an infinite series by a constant (not zero) does not affect the 

convergence or divergence.

2.56.
1 1

Prove that the series 1 + 
2 3

+ +  . . . 1

n
+ +  . . . diverges. ( 1 1

Hint: Let 1
2 3nS = + + + . . . 1

n
+ . Then 

prove that ⏐S2n – Sn⏐ > 
1

2
, giving a contradiction with Cauchy’s convergence criterion.)

Miscellaneous problems

2.57. If an < un < bn for all n > N, and lim
n→∞

an = lim
n→∞

bn = l, prove that lim
n→∞

un = l.

2.58. If lim
n→∞

an = lim
n→∞

bn = 0, and θ is independent of n, prove that lim
n→∞

 (an cos nθ) + bn sin nθ) = 0. Is the 

result true when θ depends on n?

2.59. Let un = 
1

2
 {1 + (–1)n}, n = 1,2,3, . . . If Sn = u1 + u2 + . . . + un , prove that lim

n→∞
Sn/n = 

1

2
.

2.60. Prove that (a) 1 /lim n

n
n

→∞
 and (b) /lim ( )p n

n
a n

→∞
+  = 1 where a and p are constants.

2.61. If lim
n→∞

⏐un + 1/un⏐ = ⏐a⏐< 1, prove that lim
n→∞

un = 0.

2.62. If ⏐a⏐ < 1, prove that lim 0p n

n
n a

→∞
=  where the constant p > 0.

2.63. Prove that lim 
2 !

0.
n

n

n

n
=

2.64. Prove that lim
n→∞

n sin 1/n = 1. (Hint: Let the central angel θ of a circle be measured in radians.) 

Geometrically illustrate that sin θ ≤ θ ≤ tan θ, 0 ≤ θ ≤ π.

Let θ = 1/n. Observe that since n is restricted to positive integers, the angle is restricted to the first quad-
rant.

2.65. If {un} is the Fibonacci sequence (Problem 2.33), prove that lim
n→∞

un+1/un = 
1

2
 (1 + 5 ).

2.66. Prove that the sequence un = (1 + 1/n)n+1, n = 1, 2, 3, . . . is a monotonic decreasing sequence whose limit is 
e. (Hint: Show that un/un–1 <  1.)
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2.67. If an > bn for all n > N and lim
n→∞

an = A, lim
n→∞

bn = B, prove that A > B.

2.68. If ⏐un⏐ < ⏐υn and lim
n→∞

υn = 0, prove that lim
n→∞

un = 0.

2.69.
1 1 1

Prove that lim 1
2 3n n→∞

⎛ + + +⎜⎝
. . . 1

0.
n

⎞+ =⎟⎠

2.70. Prove that [an, bn], where an = (1 + 1/n)n and bn = (1 + 1/n)n+1 is a set of nested intervals defining the number e.

2.71. Prove that every bounded monotonic (increasing or decreasing) sequence has a limit.

2.72. Let {un} be a sequence such that un+2 = aun+ 1 + bun where a and b are constants. This is called a second-
order difference equation for un. (a) Assuming a solution of the form un = rn where r is a constant, prove that 
r must satisfy the equation r2 – ar – b = 0. (b) Use (a) to show that a solution of the difference equation 
(called a general solution) is un = Arn

1 + Brn
2, where A and B are arbitrary constants and r1 and r2 are the two 

solutions of r2 – ar – b = 0 assumed different. (c) In case r1 = r2 in (b), show that a (general) solution is un = 
(A + Bn)rn

1.

2.73. Solve the following difference equations subject to the given conditions: (a) u n+ 2 = un+ 1 + un, u1 = 1, u2 = 1 
(compare Problem 2.34); (b) un + 2 = 2 un+ 1 + 3un,u 2 = 5; (c) un+2 = 4un+1, 4un, u1= 2, u2 = 8.

Ans. (a) Same as in Problem 2.34,     (b) un = 2(3)n–1 + (–1)n–1     (c) un = n · 2n
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Functions, Limits, 
and Continuity

The notions described in this chapter historically followed the introduction of differentiation and integration. 
These concepts were established, developed, and applied in the 1700s on a strong mechanical basis but a 
weak theoretical foundation. In the 1800s, the theoretical inadequacies were resolved with the mathematical 
invention of limits. Precise definitions of derivatives and integrals were formulated. Many mathematicians, 
including Bolzano, introduced rigorous proofs free of geometry. Elegant notation, such as the ε – δ form of 
Weierstrass, became available. As a bonus, clear definitions of irrational numbers were made. Also, unex-
pected properties of infinite sets of real numbers were found by Cantor and other mathematicians.

This chapter sets forth the notion of the limit of a function, concepts that followed, and how these ideas 
made possible the rigorization of analysis.

Functions

A function is composed of a domain set, a range set, and a rule of correspondence that assigns exactly one 
element of the range to each element of the domain.

This definition of a function places no restrictions on the nature of the elements of the two sets. However, 
in our early exploration of the calculus, these elements are real numbers. The rule of correspondence can take 
various forms, but in advanced calculus it most often is an equation or a set of equations.

If the elements of the domain and range are represented by x and y, respectively, and f symbolizes the 
function, then the rule of correspondence takes the form y = f (x).

The distinction between f and f (x) should be kept in mind. f denotes the function as defined in the first 
paragraph. y and f (x) are different symbols for the range (or image) values corresponding to domain values 
x. However, a common practice that provides an expediency in presentation is to read f (x) as “the image of 
x with respect to the function f ” and then use it when referring to the function. (For example, it is simpler to 
write sin x than “the sine function, the image value of which is sin x.”) This deviation from precise notation 
appears in the text because of its value in exhibiting the ideas.

The domain variable x is called the independent variable. The variable y representing the corresponding 
set of values in the range, is the dependent variable.

Note: There is nothing exclusive about the use of x, y, and f to represent domain, range, and function. 
Many other letters are employed.

There are many ways to relate the elements of two sets. (Not all of them correspond a unique range value 
to a given domain value.) For example, given the equation y2 = x, there are two choices of y for each positive 
value of x. As another example, the pairs (a, b), (a, c), (a, d), and (a, e) can be formed, and again the corre-
spondence to a domain value is not unique. Because of such possibilities, some texts, especially older ones, 
distinguish between multiple-valued and single-valued functions. This viewpoint is not consistent with our 
definition or modern presentations. In order that there be no ambiquity, the calculus and its applications re-
quire a single image associated with each domain value. A multiple-valued rule of correspondence gives rise 
to a collection of functions (i.e., single-valued). Thus, the rule y2 = x is replaced by the pair of rules y = –x1/2

CHAPTER 3
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and the functions they generate through the establishment of domains. (See the following section on graphs 
for pictorial illustrations.)

EXAMPLES. 1.  If to each number in –1 < x <  1 we associate a number y given by x2, then the interval –1 

< x <  1 is the domain. The rule y = x2 generates the range –1 < y <  1. The totality is a 

function f.

   The functional image of x is given by y = f(x) = x2. For example, f
1

3
⎛ ⎞−⎜ ⎟⎝ ⎠

 = 
2

1

3
⎛ ⎞−⎜ ⎟⎝ ⎠

 = 
1

9
is the image of –

1

3
 with respect to the function f.

 2.  The sequences of Chapter 2 may be interpreted as functions. For infinite sequences, con-
sider the domain as the set of positive integers. The rule is the definition of un, and the 

range is generated by this rule. To illustrate, let un = 
1

n
 with n = 1, 2, . . . . Then the range 

contains the elements 1, 
1

2
,

1

3
,

1

4
, . . . . If the function is denoted by f, then we may write 

f (n) = 
1

n
.

   As you read this chapter, reviewing Chapter 2 will be very useful.
 3.  With each time t after the year 1800 we can associate a value P for the population of the 

United States. The correspondence between P and t defines a function—say, F—and we 
can write P = F(t).

 4.  For the present, both the domain and the range of a function have been restricted to sets of 
real numbers. Eventually this limitation will be removed. To get the flavor for greater gen-
erality, think of a map of the world on a globe with circles of latitude and longitude as co-
ordinate curves. Assume there is a rule that corresponds this domain to a range that is a 
region of a plane endowed with a rectangular Cartesian coordinate system. (Thus, a flat 
map usable for navigation and other purposes is created.) The points of the domain are ex-
pressed as pairs of numbers (θ, φ), and those of the range by pairs (x, y). These sets and a 
rule of correspondence constitute a function whose independent and dependent variables 
are not single real numbers; rather, they are pairs of real numbers.

Graph of a Function

A function f establishes a set of ordered pairs (x, y) of real numbers. The plot of these pairs [x, f(x)] in a co-
ordinate system is the graph of f. The result can be thought of as a pictorial representation of the function.

For example, the graphs of the functions described by y = x2, –1 < x <  1, and y2 = x, 0 < x <  1, y >  0 
appear in Figure 3.1.

Figure 3.1
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Bounded Functions

If there is a constant M such that f(x) < M for all x in an interval (or other set of numbers), we say that f is 
bounded above in the interval (or the set) and call M an upper bound of the function.

If a constant m exists such that f (x) > m for all x in an interval, we say that f (x) is bounded below in the 
interval and call m a lower bound.

If m < f (x) < M in an interval, we call f (x) bounded. Frequently, when we wish to indicate that a function 
is bounded, we write ⏐f (x)⏐ < P.

EXAMPLES. 1. f (x) = 3 + x is bounded in – 1 < x <  1. An upper bound is 4 (or any number greater than 

4). A lower bound is 2 (or any number less than 2).
 2.  f (x) = 1/x is not bounded in 0 < x < 4, since, by choosing x sufficiently close to zero, f (x)

can be made as large as we wish, so that there is no upper bound. However, a lower bound 

is given by 
1

4
 (or any number less than 

1

4
).

If f (x) has an upper bound, it has a least upper bound (l.u.b.); if it has a lower bound, it has a greatest 
lower bound (g.l.b.). (See Chapter 1 for these definitions.)

Monotonic Functions

A function is called monotonic increasing in an interval if for any two points x1 and x2 in the interval x1 < x2,
f (x1) < f (x2). If ( f (x1) < f (x2), the function is called strictly increasing.

Similarly, if f (x1) > f (x2) whenever x1 < x2, then f (x) is monotonic decreasing, while if f (x1) > f (x2), it is 
strictly decreasing.

Inverse Functions, Principal Values

  Suppose y is the range variable of a function f with domain variable x. Furthermore,   let the correspondence be-
tween the domain and range values be one-to-one. Then a new function f –1,   called the inverse function of f,   can 
be created by interchanging the domain and range of f. This information is contained in the form x = f –1(y).

As you work with the inverse function, it often is convenient to rename the domain variable as x and use 
y to symbolize the images; then the notation is y = f –1(x). In particular, this allows graphical expression of 
the inverse function with its domain on the horizontal axis.

Note: f –1 does not mean f to the negative one power. When used with functions, the notation f –1 always 
designates the inverse function to f.

If the domain and range elements of f are not in one-to-one correspondence (this would mean that distinct 
domain elements have the same image), then a collection of one-to-one functions may be created. Each of 
them is called a branch. It is often convenient to choose one of these branches, called the principal branch,
and denote it as the inverse function f –1. The range values of f that compose the principal branch, and hence 
the domain of f –1, are called the principal values. (As will be seen in the section on elementary functions, it 
is common practice to specify these principal values for that class of functions.)

EXAMPLE. Suppose f is generated by y = sin x and the domain is –� < x < �. Then there are an infinite 

number of domain values that have the same image. (A finite portion of the graph is illustrated in Figure 3.2(a).
In Figure 3.2(b) the graph is rotated about a line at 45º so that the x axis rotates into the y axis. Then the vari-
ables are interchanged so that the x axis is once again the horizontal one. We see that the image of an x value is 
not unique. Therefore, a set of principal values must be chosen to establish an inverse function. A choice of a 

branch is accomplished by restricting the domain of the starting function, sin x. For example, choose – 
2

π <

x <
2

π
. Then there is a one-to-one correspondence between the elements of this domain and the images in 
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–1 < x <  1. Thus, f –1 may be defined with this interval as its domain. This idea is illustrated in Figure 3.2(c)

and (d). With the domain of f –1 represented on the horizontal axis and by the variable x, we write y = sin–1 x,
–1 < x <  1.

If x = – 
1

2
, then the corresponding range value is y = – 

6

π
.

Note: In algebra, b–1 means 
1

b
 and the fact that bb–1 produces the identity element 1 is simply a rule of 

algebra generalized from arithmetic. Use of a similar exponential notation for inverse functions is justified 
in that corresponding algebraic characteristics are displayed by f –1 [ f (x)] = x and f [ f –1(x)] = x.

Figure 3.2

Maxima and Minima

The seventeenth-century development of the calculus was strongly motivated by questions concerning ex-
treme values of functions. Of most importance to the calculus and its applications were the notions of local
extrema, called the relative maximum and relative minimum.

If the graph of a function were compared to a path over hills and through valleys, the local extrema would 
be the high and low points along the way. This intuitive view is given mathematical precision by the follow-
ing definition.



CHAPTER 3  Functions, Limits, and Continuity 47

Definition If there exists an open interval (a, b) containing c such that f (x) < f(c) for all x other than c in 
the interval, then f (c) is a relative maximum of f. If f (x) > f (c) for all x in (a, b) other than c, then f (c) is a 
relative minimum of f. (See Figure 3.3.)

Functions may have any number of relative extrema. On the other hand, they may have none, as in the 
case of the strictly increasing and decreasing functions previously defined.

Definition If c is in the domain of f and for all x in the domain of the function f(x) < f (c); then f (c) is an 
absolute maximum of the function f. If for all x in the domain f (x) > f (c), then f (c) is an absolute minimum
of f. (See Figure 3.3.)

Note: If defined on closed intervals, the strictly increasing and decreasing functions possess absolute 
extrema.

Absolute extrema are not necessarily unique. For example, if the graph of a function is a horizontal line, 
then every point is an absolute maximum and an absolute minimum.

Note: A point of inflection is also represented in Figure 3.3. There is an overlap with relative extrema in 
representation of such points through derivatives that will be addressed in the problem set of Chapter 4.

Figure 3.3

Types of Functions

It is worth realizing that there is a fundamental pool of functions at the foundation of calculus and advanced 
calculus. These are called elementary functions. Either they are generated from a real variable x by the fun-
damental operations of algebra, including powers and roots, or they have relatively simple geometric inter-
pretations. As the title “elementary functions” suggests, there is a more general category of functions (which, 
in fact, are dependent on the elementary ones). Some of these will be explored later in this book. The elemen-
tary functions are described as follows.

1. Polynomial functions have the form

 f (x) = a0x
n + a1x

n–1 + . . . + an–1x + an (1)

where a0, . . ., an are constants and n is a positive integer called the degree of the polynomial if a0 � 0.

The fundamental theorem of algebra states that in the field of complex numbers every polynomial 
equation has at least one root. As a consequence of this theorem, it can be proved that every nth-degree 
polynomial has n roots in the complex field. When complex numbers are admitted, the polynomial 
theoretically may be expressed as the product of n linear factors; with our restriction to real numbers, 
it is possible that 2k of the roots may be complex. In this case, the k factors generating them will be 
quadratic. (The corresponding roots are in complex conjugate pairs.) The polynomial x3 – 5x2 + 11x
– 15 = (x – 3) (x2 – 2x + 5) illustrates this thought.
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2. Algebraic functions are functions y = f (x) satisfying an equation of the form

 p0(x) yn + p1(x) yn–1 + . . . + pn–1(x) y + pn(x) = 0 (2)

where p0(x) , . . . , pn(x) are polynomials in x.

If the function can be expressed as the quotient of two polynomials, i.e., P(x)/Q(x) where P(x) and 
Q(x) are polynomials, it is called a rational algebraic function; otherwise, it is an irrational algebraic 
function.

3. Transcendental functions are functions which are not algebraic; i.e., they do not satisfy equations of 
the form of Equation (2).

Note the analogy with real numbers, polynomials corresponding to integers, rational functions to 
rational numbers, and so on.

Transcendental Functions

The following are sometimes called elementary transcendental functions.

1. Exponential function: f (x) = ax, a � 0, 1. For properties, see Page 4.

2. Logarithmic function: f (x) = loga x, a � 0, 1. This and the exponential function are inverse functions. 
If a = e = 2.71828 . . . , called the natural base of logarithms, we write f(x) = loge x = In x, called the 
natural logarithm of x. For properties, see Page 4.

3. Trigonometric functions (also called circular functions because of their geometric interpretation with 
respect to the unit circle):

sin 1 1 1 cos
sin , cos , tan , csc ,sec ,cot

cos sin cos tan sin

x x
x x x x x x

x x x x x
= = = = =

The variable x is generally expressed in radians (π radians = 180º). For real values of x, sin x and 
cos x lie between –1 and 1 inclusive.

The following are some properties of these functions:
2 2 2 2sin cos 1 1 tan sce

sin( ) sin cos cos sin

cos( ) cos cos sin sin

tan tan
tan( )

1 tan tan

x x x x

x y x y x y

x y x y x y

x y
x y

x y

+ = + =
± = ±
± = +

±± =
+

2 21 cot csc

sin(– ) – sin

cos(– ) cos

tan(– ) – tan

x x

x x

x x

x x

+ =
=
=

=

4. Inverse trigonometric functions. The following is a list of the inverse trigonometric functions and 
their principal values:

 (a) y = sin–1 x, (–π/2 < y < π/2) (d) y = csc–1 x = sin–1 1/x, (–π/2 < y < π/2)

 (b) y = cos–1 x, (0 < y < π) (e) y = sec–1 x = cos–1 1/x, (0 < y < π)

 (c) y = tan–1 x, (–π/2 < y < π/2) (f) y = cot–1 x = π/2 – tan–1 x, (0 < y < π)

5. Hyperbolic functions are defined in terms of exponential functions as follows. These functions may be 
interpreted geometrically, much as the trigonometric functions but with respect to the unit hyperbola.

 (a)
–

sinh
2

x xe e
x

−=  (d)
–

1 2
csch

sinh –x x
x

x e e
= =

 (b)
–

cosh
2

x xe e
x

+=  (e)
–

1 2
sec h

cosh x x
x

x e e
= =

+

 (c)
–

–

sinh
tanh

cosh

x x

x x

x e e
x

x e e

−= =
+

 (f)
–

–

cosh
coth

sinh –

x x

x x

x e e
x

x e e

+= =
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The following are some properties of these functions:

cosh2 x – sinh2 x = 1  1 – tanh2 x = sech2 x coth2 x – 1 = csch2 x

sinh (x ± y) = sinh x cosh y ± cosh x sinh y sinh (–x) = –sinh x

cosh (x ± y) = cosh x cosh y ± sinh x sinh y cosh (–x) = cosh x
tanh tanh

tanh( )
1 tanh tanh

x y
x y

x y

±± =
±

 tanh (–x) = –tanh x

6. Inverse hyperbolic functions. If x = sinh y, then y = sinh–1 x is the inverse hyperbolic sine of x. The 
following list gives the principal values of the inverse hyperbolic functions in terms of natural loga-
rithms and the domains for which they are real.

 (a) –1 2sinh 1n(x 1),  all x x x= + +  (d)
2

–1 1 1
csch 1n , 0

x | |

x
x x

x

⎛ ⎞+⎜ ⎟= + ≠⎜ ⎟⎝ ⎠

 (b) –1 2cosh 1n(x+ 1), 1x x x= − >  (e)
2

1 1 1
sech ln ,0 1

x
x x

x
−

⎛ ⎞+ −⎜ ⎟= < <
⎜ ⎟⎝ ⎠

 (c) –1 1 1
tanh 1n ,

2 1

x
x

x

+⎛ ⎞= ⎜ ⎟−⎝ ⎠
⏐x⏐ < 1  (f) –1 1 1

coth 1n ,
2 –1

x
x

x

+⎛ ⎞= ⎜ ⎟⎝ ⎠
⏐x⏐ > 1

Limits of Functions

Let f (x) be defined and single-valued for all values of x near x = x0 with the possible exception of x = x0 itself 
(i.e., in a deleted δ neighborhood of x0). We say that the number l is the limit of f (x) as x approaches x0 and 
write

0

lim
x x→

f(x) = l if for any positive number � (however small) we can find some positive number δ (usually 

depending on �) such that ⏐f (x) – l⏐ < � whenever 0 < ⏐x – x0⏐ < δ. In such a case we also say that f (x) ap-
proaches l as x approaches x0 and write f (x) → l as x → x0.

In words, this means that we can make f (x) arbitrarily close to l by choosing x sufficiently close to x0.

EXAMPLE. Let f (x)
2 if 2

.
0 if 2

x x

x

≠
=

=
 Then as x gets closer to 2 (i.e., x approaches 2), f (x) gets closer to 4. We 

thus suspect that 
2

lim
x→

f(x) = 4. To prove this we must see whether the preceding definition of limit (with l = 4) 

is satisfied. For this proof, see Problem 3.10.

Note that 
2

lim
x→

f (x) = f (2); i.e., the limit of f (x) as x → 2 is not the same as the value of f (x) at x = 2, since 

f (2) = 0 by definition. The limit would, in fact, be 4 even if f (x) were not defined at x = 2.
When the limit of a function exists, it is unique; i.e., it is the only one (see Problem 3.17).

Right- and Left-Hand Limits

In the definition of limit, no restriction was made as to how x should approach x0. It is sometimes found 
convenient to restrict this approach. Considering x and x0 as points on the real axis where x0 is fixed and x is 
moving, then x can approach x0 from the right or from the left. We indicate these respective approaches by 
writing x → x0 + and x → x0–.

If
0

lim
x x→

 + f (x) = l1 and 
0

lim
x x −→

f (x) = l2, we call l1 and l l2, respectively, the right- and left-hand limits of f

at x0 and denote them by f (x0 +) or f (x0 + 0) and f (x0 –) or f (x0 – 0). The �, δ definitions of limit of f (x) as 
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x → x0 + or x → x0– are the same as those for x → x0 except for the fact that values of x are restricted to x > 
x0 or x < x0, respectively.

We have 
0

lim
x x→

f (x) = l if and only if 
0

lim
x x→ +

f (x) = 
0

lim
x x −→

fs(x) = l.

Theorems on Limits

If
0

lim
x x→

f (x) = A and 
0

lim
x x→

g(x) = B, then

1.
0

lim
x x→

 ( f (x) + g(x)) = 
0

lim
x x→

f (x) + 
0

lim
x x→

g(x) = A + B

2.
0

lim
x x→

 ( f (x) – g(x)) = 
0

lim
x x→

f (x) – 
0

lim
x x→

g(x) = A – B

3.
0 0 0

lim ( ( ) ( )) lim ( ) lim ( )
x x x x x x

f x g x f x g x AB
→ → →

⎛ ⎞⎛ ⎞
= =⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠

4. 0

0

0

lim ( )( )
lim if 0

( ) lim ( )
x x

x x
x x

f xf x A
B

g x g x B
→

→
→

= = ≠

Similar results hold for right- and left-hand limits.

Infinity

It sometimes happens that as x → x0, f (x) increases or decreases without bound. In such case it is customary 
to write 

0

lim
x x→

f (x) = +� or 
0

lim
x x→

f (x) = –�, respectively. The symbols +� (also written �) and –� are read 

“plus infinity” (or “infinity”) and “minus infinity,” respectively, but it must be emphasized that they are not 
numbers.

In precise language, we say that 
0

lim
x x→

f (x) = � if for each positive number M we can find a positive 

number δ (depending on M in general) such that f(x) > M whenever 0 < ⏐x – x0⏐ < δ. Similarly, we say that 

0

lim
x x→

f(x) = –� if for each positive number M we can find a positive number δ such that f(x) < – M whenever 

0 < ⏐x – x0⏐ < δ. Analogous remarks apply in case x → x0 + or x → x0 –.
Frequently we wish to examine the behavior of a function as x increases or decreases without bound. In 

such cases it is customary to write x → + � (or �) or x → –�, respectively.
We say that lim

x→+∞
f (x) = l, or f (x) → l as x → +�, if for any positive number � we can find a positive 

number N (depending on � in general) such that ⏐f(x) – l⏐ < � whenever x > N. A similar definition can be for-

mulated for lim
x→−∞

f(x).

Special Limits

1.
0

sin
lim 1
x

x

x→
=

0

1 cos
lim 0
x

x

x→

− =

2.
1

lim 1
x

x
e

x→∞

⎛ ⎞+ =⎜ ⎟⎝ ⎠
1/

0
lim (1 ) x

x
x e

→ +
+ =
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3.
0

1
lim 1

x

x

e

x→

− =
1

1
lim 1

1nx

x

x→

− =

Continuity

Let f be defined for all values of x near x = x0 as well as at x = x0 (i.e., in a δ neighborhood of x0). The func-
tion f is called continuous at x = x0 if 

0

lim
x x→

f (x) = f (x0). Note that this implies three conditions which must 

be met in order that f (x) be continuous at x = x0:

1.
0

lim
x x→

f (x) = l must exist.

2. f (x0) must exist; i.e., f (x) is defined at x0.

3. l = f (x0).

In summary, 
0

lim
x x→

f (x) is the value suggested for f at x = x0 by the behavior of f in arbitrarily small neigh-

borhoods of x0. If, in fact, this limit is the actual value, f (x0), of the function at x0, then f is continuous 
there.

Equivalently, if f is continuous at x0, we can write this in the suggestive form 
0

lim
x x→

f (x) = f (
0

lim
x x→

x).

EXAMPLES. 1.  If 
2 , 2

( )
0, 2

x x
f x

x

⎧ ≠
= ⎨

=⎩
 then from the example on Page 45 

2
lim
x→

f (x) = 4. But f (2) = 0. 

Hence,
2

lim
x→

f (x) � f (2) and the function is not continuous at x = 2.

 2. If f (x) = x2 for all x, then 
2

lim
x→

f (x) = f (2) = 4 and f (x) is continuous at x = 2.

Points where f fails to be continuous are called discontinuities of f and f is said to be discontinuous at these 
points.

In constructing a graph of a continuous function, the pencil need never leave the paper, while for a dis-
continuous function this is not true, since there is generally a jump taking place. This is, of course, merely a 
characteristic property and not a definition of continuity or discontinuity.

Alternative to the preceding definition of continuity, we can define f as continuous at x = x0 if for any 

� > 0 we can find δ > 0 such that ⏐f (x0) – f (x0)⏐ < � whenever ⏐x – x0⏐ < δ. Note that this is simply the 
definition of limit with l = f (x0) and removal of the restriction that x � x0.

Right- and Left-Hand Continuity

If f is defined only for x > x0, the preceding definition does not apply. In such case we call f continuous (on

the right) at x = x0 if 
0

lim
x x +→

f (x) = f (x0), i.e., if f(x0 +) = f (x0). Similarly, f is continuous (on the left) at x = x0

if
0

lim
x x −→

f (x) = f (x)0, i.e., f (x0 –) = f (x0). Definitions in terms of � and δ can be given.

Continuity in an Interval

A function f is said to be continuous in an interval if it is continuous at all points of the interval. In particular, 

if f is defined in the closed interval a < x < b or [a, b], then f is continuous in the interval if and only if 
0

lim
x x→

f (x) = f (x0) for a < x0 < b, lim
ax x +→

f (x) = f (a), and lim
x b→ −

f (x) = f (b).
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Theorems on Continuity

Theorem 1 If f and g are continuous at x = x0, so also are the functions whose image values satisfy the 

relations ( ) ( ), ( ) – ( ), ( ) ( )f x g x f x g x f x g x+ , and 
( )

( )

f x

g x
, the last only if g(x0) � 0. Similar results hold for 

continuity in an interval.

Theorem 2 Functions described as follows are continuous in every finite interval: (a) all polynomials; (b)
sin x and cos x; and (c) ax, a > 0.

Theorem 3 Let the function f be continuous at the domain value x = x0. Also suppose that a function g,
represented by z = g(y), is continuous at y0, where y = f (x) (i.e., the range value of f corresponding to x0 is a 
domain value of g). Then a new function, called a composite function, f (g), represented by z = g[f(x)], may 
be created which is continuous at its domain point x = x0. (One says that a continuous function of a continu-
ous function is continuous.)

Theorem 4 If f (x) is continuous in a closed interval, it is bounded in the interval.

Theorem 5 If f (x) is continuous at x = x0 and f (x0) > 0 [or f(x0) < 0], there exists an interval about x = x0

in which f (x) > 0 [or f (x) < 0].

Theorem 6 If a function f(x) is continuous in an interval and either strictly increasing or strictly decreasing, 
the inverse function f –1(x) is single-valued, continuous, and either strictly increasing or strictly decreasing.

Theorem 7 If f (x) is continuous in [a, b] and if f(a) = A and f (b) = B, then corresponding to any number 
C between A and B there exists at least one number c in [a, b] such that f (c) = C. This is sometimes called 
the intermediate value theorem.

Theorem 8 If f (x) is continuous in [a, b] and if f (a) and f (b) have opposite signs, there is at least one 
number c for which f (c) = 0 where a < c < b. This is related to Theorem 7.

Theorem 9 If f (x) is continuous in a closed interval, then f (x) has a maximum value M for at least one 
value of x in the interval and a minimum value m for at least one value of x in the interval. Furthermore, f (x)
assumes all values between m and M for one or more values of x in the interval.

Theorem 10 If f (x) is continuous in a closed interval and if M and m are, respectively, the least upper 
bound (l.u.b.) and greatest lower bound (g.l.b.) of f(x), there exists at least one value of x in the interval for 
which f (x) = M or f (x) = m. This is related to Theorem 9.

Piecewise Continuity

A function is called piecewise continuous in an interval a < x < b if the interval can be subdivided into a finite 

number of intervals in each of which the function is continuous and has finite right- and left-hand limits. Such 
a function has only a finite number of discontinuities. An example of a function which is piecewise continuous 
in a < x < b is shown graphically in Figure 3.4. This function has discontinuities at x1, x2, x3, and x4.

Figure 3.4
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Uniform Continuity

Let f be continuous in an interval. Then, by definition, at each point x0 of the interval and for any � > 0, we 
can find δ > 0 (which will in general depend on both � and the particular point x0) such that ⏐f(x) – f(x0)⏐ < 
� whenever ⏐x – x0⏐ < δ. If we can find δ for each � which holds for all points of the interval (i.e., if δ depends 
only on � and not on x0), we say that f is uniformly continuous in the interval.

Alternatively, f is uniformly continuous in an interval if for any � > 0 we can find δ > 0 such that ⏐f(x1)
– f(x2)⏐ < � whenever ⏐x1 – x2⏐ < δ where x1 and x2 are any two points in the interval.

Theorem If f is continuous in a closed interval, it is uniformly continuous in the interval.

SOLVED PROBLEMS

Functions

3.1. Let f (x) = (x – 2) (8 – x) for 2 < x <  8. (a) Find f (6) and f (– 1). (b) What is the domain of definition of 
f(x)? (c) Find f (1 – 2t) and give the domain of definition. (d) Find f [ f (3)], f [ f (5)]. (e) Graph f(x).

(a) f (6) = (6 – 2) (8 – 6) = 4 · 2 = 8 
f (– 1) is not defined since f (x) is defined only for 2 < x <  8.

(b) The set of all x such that 2 < x <  8.

(c) f (1 – 2t) = {(1 – 2t) – 2} {8 – (1 – 2t)} = – (1 + 2t) (7 + 2t) where t is such that 2 <  1 – 2t <  8; i.e., 
– 7/2 < t <  – 1/2.

(d) f (3) = (3 – 2) (8 – 3) = 5, f [ f (3)] = f (5) = (5 – 2)(8 – 5) = 9. 
f (5) = 9 so that f [ f(5)] = f (9) is not defined.

(e) The following table shows f(x) for various values of x.

 x 2 3 4 5 6 7 8 2.5 7.5
 f(x) 0 5 8 9 8 5 0 2.75 2.75

Plot points (2, 0), (3, 5), (4, 8), (5, 9), (6, 8), (7, 5), (8, 0), 
(2.5, 2.75), (7.5, 2.75). These points are only a few of the infi-
nitely many points on the required graph shown in the adjoining 
Figure 3.5. This set of points defines a curve which is part of a 
parabola.

3.2. Let g(x) = (x – 2) (8 – x) for 2 < x < 8. (a) Discuss the difference between the graph of g(x) and that of f (x) in 
Problem 3.1. (b) What are the l.u.b. and g.l.b. of g(x)? (c) Does g(x) attain its l.u.b. and g.l.b. for any value of 
x in the domain of definition? (d) Answer parts (b) and (c) for the function f (x) of Problem 3.1.

(a) The graph of g(x) is the same as that in Problem 3.1 except that the two points (2, 0) and 8, 0) are missing, 
since g(x) is not defined at x = 2 and x = 8.

(b) The l.u.b. of g(x) is 9. The g.l.b. of g(x) is 0.

(c) The l.u.b. of g(x) is attained for the value of x = 5. The g.l.b. of g(x) is not attained, since there is no value 
of x in the domain of definition such that g(x) = 0.

(d) As in (b), the l.u.b. of f (x) is 9 and the g.l.b. of f (x) is 0. The l.u.b. of f (x) is attained for the value x = 5 
and the g.l.b. of f (x) is attained at x = 2 and x = 8.

Note that a function, such as f(x), which is continuous in a closed interval attains its l.u.b. and g.l.b. at 
some point of the interval. However, a function, such as g(x), which is not continuous in a closed interval need 
not attain its l.u.b. and g.l.b. See Problem 3.34.

Figure 3.5
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3.3. Let

1, if is a rational number    
( )

0, if is an irrational number

x
f x

x

⎧
= ⎨

⎩

(a) Find f
2

3
⎛ ⎞
⎜ ⎟⎝ ⎠

, f (– 5), f (1.41423), f ( 2 ). (b) Construct a graph of f(x) and explain why it is misleading by 
itself.

(a) f
2

3
⎛ ⎞
⎜ ⎟⎝ ⎠

 = 1 since 
2

3
 is a rational number

f (–5) = 1 since –5 is a rational number

f (1.41423) = 1 since 1.41423 is a rational number

f ( 2 ) = 0 since 2  is an irrational number

(b) The graph is shown in Figure 3.6. Because the sets of both rational 
numbers and irrational numbers are dense, the visual impression is 
that there are two images corresponding to each domain value. In ac-
tuality, each domain value has only one corresponding range value.

3.4. Referring to Problem 3.1: (a) Draw the graph with axes interchanged, 
thus illustrating the two possible choices available for definition of f –1. (b) Solve for x in terms of y to 
determine the equations describing the two branches, and then interchange the variables.

(a) The graph of y = f (x) is shown in Figure 3.5 of Problem 3.1(a). By interchanging the axes (and the vari-
ables), we obtain the graphical form of Figure 3.7. This figure illustrates that there are two values of y
corresponding to each value of x, and, hence, two branches. Either may be employed to define f –1.

(b) We have y = (x – 2)(8 – x) or x2 – 10x + 16 + y = 0. The solution of this quadratic equation is

x = 5 ± 9 .y−

After interchanging variables

y = 5 ± 9 .x−

In Figure 3.7, AP represents y = 5 + 9 x− , and BP designates 

y = 5 – 9 x− . Either branch may represent f –1.

Note: The point at which the two branches meet is called a branch 
point.

3.5. (a) Prove that g(x) = 5 + 9 x−  is strictly decreasing in 0 < x <  9. (b) Is it monotonic decreasing in this 
interval? (c) Does g(x) have a single-valued inverse?

(a) g(x) is strictly decreasing if g(x1) > g(x2) whenever x1 < x2. If x1 < x2, the 9 – x1 > 9 – x2, 19 x−  > 

29 x− , and 5 + 19 x−  > 5 + 29 x− , showing that g(x) is strictly decreasing.

(b) Yes, any strictly decreasing function is also monotonic decreasing, since if g(x1) > g(x2) it is also true that 
g(x1) > g(x2). However, if g(x) is monotonic decreasing, it is not necessarily strictly decreasing.

(c) If y = 5 + 9 x− , then y – 5 = 9 x−  or, squaring, x = – 16 + 10y – y2 = (y – 2) (8 – y) and x is a 
single-valued function of y; i.e., the inverse function is single-valued.

In general, any strictly decreasing (or increasing) function has a single-valued inverse (see Theorem 6, 
Page 52).

The results of this problem can be interpreted graphically using Figure 3.7.

Figure 3.7

Figure 3.6
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3.6. Construct graphs for the following functions:

(a)
sin 1/ , 0

( )
0, 0

x x x
f x

x

>⎧
= ⎨ =⎩

(b) f (x) = [x] = greatest integer < x

(a) The required graph is shown in Figure 3.8. Since ⏐x sin 1/x⏐ < ⏐x⏐, the graph is included between y = 

x and y = – x. Note that f (x) = 0 when sin 1/x = 0 or1/x =, mπ, m = 1, 2, 3, 4, . . ., i.e., where x = 1/π, 1/2π,
1/3π, . . . The curve oscillates infinitely often between x = 1/π and x = 0.

(b) The required graph is shown in Figure 3.9. If 1 < x < 2, then [x] = 1. Thus, [1.8] = 1, [ 2 ] = 1, 

[1.99999] = 1. However, [2] = 2. Similarly, for 2 < x < 3, [x] = 2, etc. Thus, there are jumps at the integers. 

The function is sometimes called the staircase function or step function.

3.7. (a) Construct the graph of f (x) = tan x. (b) Construct the graph of some of the infinite number of branches 
available for a definition of tan–1 x. (c) Show graphically why the relationship of x to y is multivalued. (d) 
Indicate possible principal values for tan–1 x. (e) Using your choice, evaluate tan–1(– 1).

 Figure 3.8  Figure 3.9

(a) The graph of f (x) = tan x appears in Figure 3.10.

 Figure 3.10  Figure 3.11

(b) The required graph is obtained by interchanging the x and y axes in the graph of (a). The result, with axes 
oriented as usual, appears in Figure 3.11.

(c) In Figure 3.11, any vertical line meets the graph in infinitely many points. Thus, the relation of y to x is 
multivalued and infinitely many branches are available for the purpose of defining tan–1 x.

(d) To define tan–1 x as a single-valued function, it is clear from the graph that we can do so only by restrict-
ing its value to any of the following: –π/2 < tan–1 x < π/2, π/2 < tan–1 x < 3π/2, etc. We agree to take the 
first as defining the principal value.

Note that no matter which branch is used to define tan–1 x, the resulting function is strictly increasing.
(e) tan–1(–1) = –π/4 is the only value lying between –π/2 and π/2; i.e., it is the principal value according to 

our choice in (d).
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3.8. Show that 
1

( ) , 1,
1

x
f x x

x

+= ≠ −
+

 describes an irrational algebraic function.

If
1

1

x
y

x

+=
+

, then ( 1) 1x y x+ − =  or, squaring, (x + 1)2y2 – 2(x + 1)y + 1 – x = 0, a polynomial equa-

tion in y whose coefficients are polynomials in x. Thus, f (x) is an algebraic function. However, it is not the 
quotient of two polynomials, so that it is an irrational algebraic function.

3.9. If f (x) = cosh x = 
1

2
 (ex + e–x), prove that we can choose, as the principal value of the inverse function, 

cosh–1 x = ln(x + 2 1x − ), x >  1.

If y = 
1

2
 (ex + e–x), e2x – 2yex + 1 = 0. Then, using the quadratic formula, 

2
22 4 4

1.
2

x y y
e y y

± −
= = ± −

Thus, 2ln 1 .x y y⎛ ⎞= ± −⎜ ⎟⎝ ⎠

Since
2

2 2

2 2

1 1
1 ( 1)

1 1

y y
y y y y

y y y y

⎛ ⎞+ −⎜ ⎟− − = − − =
⎜ ⎟+ − + −⎝ ⎠

 we can also write x = ± ln(y + 2 1y − )

or cosh–1 y = ± ln(y + 2 1y − ).

Choosing the + sign as defining the principal value and replacing y by x, we have cosh–1 x = ln(x + 

2 1y − ). The choice x >  1 is made so that the inverse function is real.

Limits

3.10. If (a) f (x) = x2 and (b) 
2 , 2

( ) ,
0, 2

x x
f x

x

⎧ ≠
= ⎨

=⎩
 prove that 

2
lim
x→

f (x) = 4.

(a) We must show that, given any � > 0, we can find δ > 0 (depending on � in general) such that ⏐x2 – 4⏐ < �
when 0 < ⏐x – 2⏐ < δ.

Choose δ <  1 so that 0 < ⏐x – 2⏐ < 1 or 1 < x < 3, x � 2. Then ⏐x2 – 4⏐ = ⏐(x – 2)(x + 2)⏐ = ⏐x – 2⏐

⏐x + 2⏐ < δ⏐x + 2⏐ < 5δ.
Take δ as 1 or �/5, whichever is smaller. Then we have ⏐x2 – 4⏐ < � whenever 0 < ⏐x – 2⏐ < δ, and the 

required result is proved.

It is of interest to consider some numerical values. If, for example, we wish to make ⏐x2 – 4⏐ < .05, 

we can choose δ = �/5 = .05/5 = .01. To see that this is actually the case, note that if 0 < ⏐x – 2⏐ < .01, 

then 1.99 < x < 2.01 (x � 2), and so 3.9601 < x2 < 4.0401, – .0399 < x2 – 4 < .0401, and certainly ⏐x2 – 4⏐
< .05 (x2 � 4). The fact that these inequalities also happen to hold at x = 2 is merely coincidental.

If we wish to make ⏐x2 – 4⏐ < 6, we can choose δ = 1, and this will be satisfied.

(b) There is no difference between the proof for this case and the proof in (a), since in both cases we exclude 
x = 2.

3.11. Prove that 
4 3 2

1

2 6 3
lim 8.

1x

x x x

x→

− + + = −
−

We must show that for any � > 0 we can find δ > 0 such that 
4 3 22 6 3

( 8)
1

x x x

x
ε− + + − − <

−
 when 0 < 

⏐x – 1⏐ < δ. Since x � 1, we can write 
4 3 2 3 2

3 22 6 3 (2 4 3 3)( 1)
2 4 3 3

1 1

x x x x x x x
x x x

x x

− + + − − − −= = − − −
− −

on cancelling the common factor x – 1 � 0.
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Then we must show that for any ε > 0, we can find δ > 0 such that ⏐2x3 – 4x2 –3x + 5⏐ < � when 0 < 

⏐x – 1⏐ < δ. Choosing δ <  1, we have 0 < x < 2, x � 1.

Now ⏐2x3 – 4x2 – 3x + 5⏐ = ⏐x – 1 ⏐⏐2x2 – 2x – 5⏐ < δ⏐2x2 – 2x – 5⏐ < δ(⏐2x2⏐ + ⏐2x⏐+ 5) < (8 + 4 + 5) 
δ = 17δ. Taking δ as the smaller of 1 and �/17, the required result follows.

3.12. Let 
| 3 |

,
( ) 3

0, 3

x
x x

f x x
x

−⎧ ≠⎪= −⎨
⎪ =⎩

.

(a) Graph the function. (b) Find limx f (x). (c) Find 
3

lim
x→ +

f (x). (d) Find 
3

lim
x→

f (x).

(a)
| 3 | 3

For 3, 1.
3 3

| 3 | ( 3)
For 3, 1.

3 3

x x
x

x x
x x

x
x x

− −> = =
− −
− − −> = =
− −

Then the graph, shown in Figure 3.12, consists of the 
lines y = 1, x > 3; y = –1, x < 3; and the point (3, 0).
(b) As x → 3 from the right, f (x) → 1; i.e., 

3
lim

x→ +
f (x) = 1, 

as seems clear from the graph. To prove this we must 
show that given any � > 0, we can find δ > 0 such that 
⏐f (x) – 1⏐ < � whenever 0 < x – 1 < δ.

Now, since x > 1, f (x) = 1 and so the proof consists in the 
triviality that ⏐1 – 1⏐ < � whenever 0 < x – 1 < δ.

(c) As x → 3 from the left, f (x) → – 1; i.e., 
3

lim
x→ −

f (x) = –1. 
A proof can be formulated as in (b).

(d) Since 
3

lim
x→ +

f (x) �
3

lim
x→ −

f (x), �
3

lim
x→ −

f (x) does not exist.

3.13. Prove that 
0

lim
x→

x sin 1/x = 0.

We must show that given any � > 0, we can find δ > 0 such that ⏐x sin 1/x – 0⏐ < � when 0 < ⏐x – 0⏐
< δ.

If 0 < ⏐x⏐ < δ, then ⏐x sin 1/x⏐= ⏐x⏐| sin 1/x| <  |x| < δ, since ⏐sin 1/x⏐ <  1 for all x � 0.

Making the choice δ = �, we see that ⏐x sin 1/x⏐ < � when 0 < ⏐x⏐ < δ, completing the proof.

3.14. Evaluate 
1/0

2
lim .

1 xx e−→ + +
As x → 0 + we suspect that 1/x increases indefinitely, e1/x increases indefinitely, e–1/x approaches 0, and 

1 + e–1/x approaches 1; thus, the required limit is 2.
To prove this conjecture we must show that, given � > 0, we can find δ > 0 such that

1/

2
2 when 0

1 x
x

e
ε δ− − < < <

+
Now

1/

1/ 1 / 1 /

2 2 2 2 2
2

1 1 1

x

x x x

e

e e e

−

− −

− −− = =
+ + +

Since the function on the right is smaller than 1 for all x > 0, any δ > 0 will work when e ≥ 1. If 
1 /

1 /
1 /

2 1 1 2 1 2 1
0 1, then when , 1, 1 ; or 0 .

1 2 1n(2 / 1)

x
x

x

e
e In x

e x
ε ε δ

ε ε ε ε
+ ⎛ ⎞< < < > > − > − < < =⎜ ⎟+ −⎝ ⎠

Figure 3.12
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3.15. Explain exactly what is meant by the statement 
41

1
lim

( 1)x x→
= ∞

−
 and prove the validity of this statement.

The statement means that for each positive number M, we can find a positive number δ (depending on M

in general) such that

4

1
4 when 0 | 1 |

( –1)
x

x
δ> < − <

To prove this, note that 4
4

1 1
when 0 ( 1)

( 1)
M x or

Mx
> < − <

− 4

1
.

M
Choosing 41 Mδ = / , the required results follows.

3.16. Present a geometric proof that 
0

sin
lim 1.
θ

θ
θ→

=

Construct a circle with center at O and radius OA = OD = 1, as in Figure 3.13. Choose point B on OA
extended and point C on OD so that lines BD and AC are perpendicular to OD.

It is geometrically evident that

Area of triangle OAC < Area of sector OAD < Area of triangle OBD

that is,
1

2
sin θ cos θ <

1

2
θ < 

1

2
 tan θ

Dividing by 
1

2
 sin θ,

1
cos

sin cos

θθ
θ θ

< <

or
sin 1

cos
cos

θθ
θ θ

< <

As θ → 0, cos θ → 1, and it follows that 
0

sin
lim 1.
θ

θ
θ→

=

Figure 3.13

Theorems on limits

3.17. If 
0

lim
x x→

f (x) exists, prove that it must be unique.

We must show that if 
0

lim
x x→

f (x) = l1 and 
0

lim
x x→

f (x) = l2, then l1 = l2.

By hypothesis, given any � > 0 we can find δ > 0 such that

⏐f (x) – l1⏐ < �/2   when   0 < ⏐x – x0⏐ < δ

⏐f (x) – l2⏐ < �/2   when   0 < ⏐x –x0⏐ < δ

0 < ⏐x – 1⏐ <
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Then by the absolute value property 2 on Page 4,

⏐l1 – l2⏐ = ⏐l1 – f (x) + f (x) – l2⏐ < ⏐l1 – f (x)⏐+ ⏐f (x) – l2⏐< �/2 + �/2 = �

i.e., ⏐l1 – l2⏐ is less than any positive number � (however small) and so must be zero. Thus, l1 = l2.

3.18. If 
0

lim
x x→

g(x) = B � 0, prove that there exists δ > 0 such that

⏐g(x)⏐ > 
1

2
⏐B⏐   for   0 < ⏐x – x0⏐ < δ

Since
0

lim
x x→

g(x) = B, we can find δ > 0 such that ⏐g(x) – B⏐ < 
1

2
⏐B⏐ for 0 < ⏐x – x 0⏐ < δ.

Writing B = B – g(x) + g(x), we have

⏐B⏐ < ⏐B – g(x)⏐ + ⏐g(x)⏐ < 
1

2
⏐ B⏐ +⏐ g(x)⏐

i.e., ⏐B⏐ < 
1

2
⏐B⏐ +⏐g(x)⏐, from which ⏐g(x)⏐ > 

1

2
⏐B⏐.

3.19. Given 
0

lim
x x→

f (x) = A and 
0

lim
x x→

g(x) = B, prove (a) 
0

lim
x x→

 [f (x) + g(x)] = A + B, (b) 
0

lim
x x→

f (x)g(x) = AB,

(c)
0

1 1
lim if 0,

( )x x
B

g x B→
= ≠  and (d) 

0

( )
lim if 0.

( )x x

f x A
B

g x B→
= ≠

(a) We must show that for any � > 0 we can find δ > 0 such that 

0[ ( ) ( )] ( ) when 0f x g x A B x xε δ+ − + < < − <

Using absolute value property 2, Page 4, we have

 ⏐[f (x) + g(x)] – (A + B)⏐ = ⏐[f (x) – A] + [g(x) – B]⏐ < ⏐f (x) – A⏐ + ⏐g(x) – B⏐ (1)

By hypothesis, given � > 0 we can find δ1 > 0 and δ 2 > 0 such that

 ⏐f (x) – A⏐ < �/2   when   0 < ⏐x – x0⏐ < δ1 (2)

 ⏐g(x) – B⏐ < �/2   when   0 < ⏐x – x0⏐ < δ2 (3)

Then, from Equations (1), (2), and (3),

⏐[f (x) + g(x)] – (A + B)⏐ < �/2 + �/2 = �   when   0 < ⏐x – x0⏐ < δ

where δ is chosen as the smaller of δ1 and δ2.
(b) We have

 ⏐f (x)g(x) – AB⏐ = ⏐f (x)[g(x) – B] + B[f (x) – A]⏐ (4)

< ⏐f (x)⏐⏐g(x) –B⏐ + ⏐B⏐⏐f (x) – A⏐

< ⏐f (x)⏐⏐g(x) – B⏐ + (⏐B⏐ + 1)⏐f (x) – A⏐

Since
0

lim
x x→

f (x) = A, we can find δ1 such that ⏐f (x) – A⏐ < 1 for 0 < ⏐x – x0⏐ < δ1, i.e., A – 1 < f (x) < A

+ 1, so that f (x) is bounded, i.e., ⏐f (x)⏐ < P where P is a positive constant.

Since
0

lim
x x→

g(x) = B, given � > 0, we can find δ2 > 0 such that ⏐g(x) – B⏐ < �/2 P for 0 < ⏐x – x0⏐ < δ2.

Since
0

lim
x x→

f (x) =A, given � > 0, we can find δ3 > 0 such that | ( ) |
2(| | 1)

f x A
B

ε− <
+

 for 0 < |x – x0| < δ2.

Using these in Equation (4), we have



CHAPTER 3  Functions, Limits, and Continuity60

| ( ) ( ) | (| | 1)
2 2(| | 1)

f x g x AB P B
P B

ε ε ε− < ⋅ + + ⋅ =
+

for 0 < ⏐x – x0⏐ < δ, where δ is the smaller of δ1, δ1, δ2, δ3, and the proof is complete.

(c) We must show that for any � > 0 we can find δ > 0 such that

0

1 1 | ( ) |
when 0 | |

( ) | || ( ) |

g x B
x x

g x B B g x
ε δ−− = < < − <  (5)

By hypothesis, given � > 0, we can find δ1 > 0 such that

⏐g(x) – B⏐ < 
1

2
B2 �   when   0 < ⏐x –x 0⏐ < δ1

By Problem 3.18, since 
0

lim
x→

g(x) = B � 0, we can find δ2 > 0 such that

⏐g(x)⏐ > 
1

2
⏐B⏐   when   0 < ⏐x – x0⏐ < δ2

Then, if δ is the smaller of δ1 and δ2, we can write

21
2

01
2

1 1 | ( ) |
whenever 0 | |

( ) | || ( ) | | | | |

Bg x B
x x

g x B B g x B B

ε
ε δ−− = < = < − <

⋅
and the required result is proved.
(d) From parts (b) and (c),

0 0 0 0

( ) 1 1 1
lim lim ( ) lim ( ) lim

( ) ( ) ( )x x x x x x x x

f x A
f x f x A

g x g x g x B B→ → → →
= ⋅ = ⋅ = ⋅ =

This can also be proved directly (see Problem 3.69).
These results can also be proved in the cases x → x0+, x → x0 –, x → �, x → –�.
Note: In the proof of (a) we have used the results ⏐f (x) – A⏐ < �/2 and ⏐g(x) – B⏐ < �/2, so that the final result 

would come out to be ⏐f (x) + g(x) – (A + B)⏐ < �. Of course, the proof would be just as valid if we had used 2� (or 
any other positive multiple of �) in place of �. A similar remark holds for the proofs of (b), (c), and (d).

3.20. Evaluate each of the following, using theorems on limits.

(a) 2 2

2 2 2 2
lim( 6 4) lim lim ( 6 ) lim 4
x x x x

x x x x
→ → → →

− + = + − +

2 2 2 2 2
(lim )(lim ) (lim 6)(lim ) lim 4

(2)(2) ( 6)(2) 4 4
x x x x x

x x x
→ → → → →

= + − +

= + − + = −

In practice, the intermediate steps are omitted.

(b) 1 1
2 21

1

lim ( 3) lim (2 1)( 3)(2 1) 2 ( 3) 3
lim

4 23 2 lim ( 3 – 2)
x x

x

x

x xx x

x x x x
→− →−

→−
→−

+ −+ − ⋅ −= = =
−+ − +

(c)
4 2 2 4

4 3

3

3 1
2

2 3 1
lim lim

1 36 3 6
x x

x x x x
x x x

x x

→∞ →∞

− +− + =
+ − + −

4

3

–3 1
lim 2 lim lim

2 12
1 3 6 3lim 6 lim lim

x x x

x x x

x

x x

→∞ →∞ →∞

→∞ →∞ →∞

+ +
= = =

−+ +
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by Problem 3.19.

(d)
0 0

4 2 4 2 4 2
lim lim

4 2h h

h h h

h h h→ →

+ − + − + += ⋅
+ +

0 0

4 – 4 1 1 1
lim lim

2 2 4( 4 2 4 2h h

h

h h h→ →

+= = = =
++ + + +

(e)
0 0 0– 0

sin sin sin
lim lim lim lim 1 0 0.
x x x x

x x x
x x

x xx→ + → + → → +
= ⋅ = ⋅ = ⋅ =

Note that in (c), (d), and (e) if we use the theorems on limits indiscriminately we obtain the so-called 
indeterminate forms �/� and 0/0. To avoid such predicaments, note that in each case the form of the limit is 
suitably modified. For other methods of evaluating limits, see Chapter 4.

Continuity
(Assume that values at which continuity is to be demonstrated are interior domain values unless otherwise 
stated.)

3.21. Prove that f (x) = x2 is continuous at x = 2.

Method 1: By Problem 3.10, 
2

lim
x→

f (x) = f (2) = 4 and so f (x) is continuous at x = 2.

Method 2: We must show that, given any � > 0, we can find δ > 0 (depending on �) such that ⏐f (x) – f(2)⏐
= ⏐x2 – 4⏐ < � when ⏐x – 2⏐ < δ. The proof patterns are given in Problem 3.10.

3.22. (a) Prove that 
sin 1 / , 0

( )
5, 0

x x x
f x

x

≠⎧
= ⎨ =⎩

 is not continuous at x = 0. (b) Can we redefine f (0) so that f (x)

is continuous at x = 0?

(a) From Problem 3.13, 
0

lim
x→

f (x) = 0. But this limit is not equal to f (0) = 5, so f (x) is discontinuous at x = 0.

(b) By redefining f (x) so that f (0) = 0, the function becomes continuous. Because the function can be made 
continuous at a point simply by redefining the function at the point, we call the point a removable discon-
tinuity.

3.23. Is the function 
4 3 22 6 3

( )
1

x x x
f x

x

− + +=
−

 continuous at x = 1?

f (1) does not exist, so f (x) is not continuous at x = 1. By redefining f (x) so that f(1) = 
1

lim
x→

f (x) = –8 (see 
Problem 3.11), it becomes continuous at x = 1; i.e., x = 1 is a removable discontinuity.

3.24. Prove that if f (x) and g(x) are continuous at x = x0, so also are (a) f (x), + g(x), (b) f (x)g(x), and 

(c) 0

( )
if ( ) 0.

( )

f x
f x

g x
≠

These results follow at once from the proofs given in Problem 3.19 by taking A = f (x 0) and B = g(x0) and 
rewriting 0 < ⏐x – x0⏐ < δ as ⏐x – x0⏐ < δ, i.e., including x = x0.

3.25. Prove that f (x) = x is continuous at any point x = x0.

We must show that, given any � > 0, we can find δ > 0 such that ⏐f (x) – f (x0)⏐ = ⏐x – x0⏐ < � when 
⏐x – x0⏐ < δ. By choosing δ = �, the result follows at once.

3.26. Prove that f (x) = 2x3 + x is continuous at any point x = x0.
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Since x is continuous at any point x = x0 (Problem 3.25), so also is x · x = x2, x2 · x = x3, 2x3, and, finally, 
2x3 + x, using the theorem (Problem 3.24) that sums and products of continuous functions are continuous.

3.27. Prove that if ( ) 5f x x= −  for 5 < x <  9, then f (x) is continuous in this interval.

If x0 is any point such that 5 < x0 < 9, then 
0

lim
x x→

f (x) = 
0

lim
x x→

5x −  = 0 5x −  = f (x0). Also, 

5 9
lim 5 0 (5) and lim 5 2 (9).

x x
x f x f

→ + → −
− = = − = Thus the result follows.

Here we have used the result that 
0 0

0lim ( ) lim ( ) ( )
x x x x

f x f x f x
→ →

= =  if f (x) is continuous at x0. An 

�, δ proof, directly from the definition, can also be employed.

3.28. For what values of x in the domain of definition is each of the following functions continuous?

(a)
2

1
( )

1
f x

x
=

−

(b)
1 cos

( )
3 sin

x
f x

x

+=
+

(c)
4

1
( )

10 4
f x =

+

(d) f (x) = 10 –1/(x – 3)2

(e)

2–1( 3) ,10 3
( )

0, 3

x x
f x

x

−⎧ ≠⎪= ⎨
=⎪⎩

(f ) 
| |

( )
x x

f x
x

−=

(g)

– | |
, 0

( )
2, 0

x x
x

f x x
x

⎧ <⎪= ⎨
⎪ =⎩

(h) ( ) csc .
sin

x
f x x x

x
= =

(i) f (x) = x csc x, f (0) = 1. 

(a) All  except = 1(where the denominator is zero)x x⋅ ±

(b) All x

(c) All x > –10

(d) All x � 3 (see Problem 3.55)

(e) All 
3

, since lim ( ) (3)
x

x f x f
→

=

(f ) If 0, ( ) 0. If 0, ( ) 2.
x x x x

x f x x f x
x x

− +> = = < = =  At x = 0, f (x) is undefined. Then f (x) is con-

tinuous for all x except x = 0.

(g) As in (f ), f (x) is continuous for x < 0. Then, since

0– 0– 0–

– | |
lim lim lim 2 2 (0)
x x x

x x x x
f

x x→ → →

+= = = =

it follows that f (x) is continuous (from the left) at x = 0.
Thus, f (x) is continuous for all x <  0, i.e., everywhere in its domain of definition.

,
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(h) All  except 0, , 2 , 3 ,x π π π± ± ±  . . . 

(i) Since
0 0

lim csc lim 1 (0),
sinx x

x
x x f

x→ →
= = =  we see that f (x) is continuous for all x except ±π, ±2π,

±3π, . . . [compare (h)].

Uniform continuity

3.29. Prove that f (x) = x2 is uniformly continuous in 0 < x < 1.

Method 1: Using definition.
We must show that, given any � > 0, we can find δ > 0 such that ⏐x2 – x2

0⏐ < � when ⏐x – x0⏐ < δ, where 
δ depends only on � and not on x0 where 0 < x0 < 1.

If x and x0 are any points in 0 < x < 1, then

⏐x2 – x2
0⏐ = ⏐x + x0⏐⏐x – x0⏐ < 2⏐x – x0⏐

Thus, if ⏐x – x0⏐ < δ, it follows that ⏐x2 – x2
0⏐ < 2δ. Choosing δ = �/2, we see that ⏐x2 –x2

0⏐< � when ⏐x –x0⏐
< δ, where δ depends only on � and not on x0 Hence, f (x) = x2 is uniformly continuous in 0 < x < 1.

This can be used to prove that f (x) = x2 is uniformly continuous in 0 < x <  1.

Method 2: The function f (x) = x2 is continuous in the closed interval 0 < x <  1. Hence, by the theorem on 
Page 48, it is uniformly continuous in 0 < x <  1 and thus in 0 < x < 1.

3.30. Prove that f (x) = 1/x is not uniformly continuous in 0 < x < 1.

Method 1: Suppose f (x) is uniformly continuous in the given interval. Then, for any � > 0 we should be able 
to find δ, say, between 0 and 1, such that ⏐f (x) – f (x0)⏐ < � when ⏐x – x0⏐ < δ for all x and x0 in the interval.

0 0

0

Let and . Then | .
1 1 1

1 1 1 1
However, (since 0 < < 1).

x x x x

x x

δ δ εδ δ δ δ
ε ε ε

ε ε ε δ
δ δ δ

= = − = − = <
+ + +

+− = − = >

Thus, we have a contradiction, and it follows that f (x) = 1/x cannot be uniformly continuous in 0 < x < 1.

Method 2: Let x0 and x0 + δ be any two points in (0, 1). Then,

0 0
0 0 0 0

1 1
| ( ) ( |

( )
f x f x

x x x x

δδ
δ δ

− + = − =
+ +

can be made larger than any positive number by choosing x0 sufficiently close to 0. Hence, the function cannot 
be uniformly continuous.

Miscellaneous problems

3.31. If y = f (x) is continuous at x = x0, and z = g(y) is continuous at y = y0 where y0 = f (x0), prove that z = g{f (x)}
is continuous at x = x0.

Let h(x) = g{f (x)}. Since, by hypothesis, f (x) and g(y) are continuous at x0 and y0, respectively, we have

0 0

0 0

0

0 0

lim ( ) ( lim ) ( )

lim ( ) (lim ) ( ) { ( )}

x x x x

y y y y

f x f x f x

g y g y g y g f x

→ →

→ →

= =

= = =

Then

0 0 0
0 0lim ( ) lim { ( )} {lim ( )} { ( )} ( )

x x x x x x
h x g f x g f x g f x h x

→ → →
= = = =

which proves that h(x) = g{f (x)} is continuous at x = x0.

⏐x – x0⏐
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3.32. Prove Theorem 8, Page 52.

Suppose that f (a) < 0 and f (b) > 0. Since f (x) is continuous, there must be an interval (a, a + h), h > 0, for 
which f (x) < 0. The set of points (a, a + h) has an upper bound and so has a least upper bound, which we call 
c. Then f (c) <  0. Now we cannot have f (c) < 0, because if f(c) were negative we would be able to find an 
interval about c (including values greater than c) for which f (x) < 0; but since c is the least upper bound, this 
is impossible, and so we must have f (c) = 0 as required.

If f (a) > 0 and f (b) < 0, a similar argument can be used.

3.33. (a) Given f (x) = 2x3 – 3x2 + 7x – 10, evaluate f (1) and f (2). (b) Prove that f (x) = 0 for some real number x
such that 1 < x < 2. (c) Show how to calculate the value of x in (b).

(a) f (1) = 2(1)3 – 3(1)2 + 7(1) – 10 = –4, f (2) = 2(2)3 – 3(2)2 + 7(2) – 10 = 8.

(b) If f (x) is continuous in a < x < b and if f (a) and f (b) have opposite signs, then there is a value of x be-
tween a and b such that f (x) = 0 (Problem 3.32).

To apply this theorem, we need only realize that the given polynomial is continuous in 1 < x <  2, since we have 

already shown in (a) that f (1) < 0 and f (2) > 0. Thus, there exists a number c between 1 and 2 such that f (c) = 0.
(c) f (1.5) = 2(1.5)3 – 3(1.5)2 + 7(1.5) – 10 = 0.5. Then, applying the theorem of (b) again, we see that 

the required root lies between 1 and 1.5 and is “most likely” closer to 1.5 than to 1, since f (1.5) = 
0.5 has a value closer to 0 than f (1) = –4 (this is not always a valid conclusion but is worth pursuing 
in practice).

Thus, we consider x = 1.4. Since f(1.4) = 2(1.4)3 – 3(1.4)2 + 7(1.4) – 10 = –0.592, we conclude that there 
is a root between 1.4 and 1.5 which is most likely closer to 1.5 than to 1.4.

Continuing in this manner, we find that the root is 1.46 to 2 decimal places.

3.34. Prove Theorem 10, Page 52.

Given any � > 0, we can find x such that M – f (x) < � by definition of the l.u.b. M.

Then
1 1 1

, so that 
– ( ) ( )M f x M f xε

>
−

 is not bounded and, hence, cannot be continuous in view of 

Theorem 4, Page 52. However, if we suppose that f (x) � M, then, since M – f(x) is continuous, by hypothesis 

we must have 
1

( )M f x−
 also continuous. In view of this contradiction, we must have f (x) = M for at least 

one value of x in the interval.
Similarly, we can show that there exists an x in the interval such that f (x) = m (Problem 3.93).

SUPPLEMENTARY PROBLEMS

Functions

3.35. Give the largest domain of definition for which each of the following rules of correspondence supports the 
the construction of a function.

(a) (3 )(2 4)x x− +   (b) (x – 2)/(x2 – 4) (c) sin 3x  (d) log10(x
3 – 3x2 – 4x + 12)

Ans. (a) –2 < x <  3 (b) all x � ±2 (c) 2mπ/3 < x <  (2m + 1)π/3, m = 0, ±1, ±2, . . . (d) x > 3, –2 < x < 2

3.36. If 
3 1

( ) , 2,
2

x
f x x

x

+= ≠
−

 find: 
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(a)
5 ( 1) 2 (0) 3 (5)

6

f f f− − +
 (b) 

2
1

2
f

⎧ ⎫⎛ ⎞−⎨ ⎬⎜ ⎟⎝ ⎠⎩ ⎭
 (c) f (2x – 3) (d) f (x) + f (4/x), x � 0 

(e)
( ) (0)

0
f h f

h
h

− ≠  (f ) f ({ f (x)}

Ans. (a) 
61

81
(b)

1

25
 (c) 

6 8
, 0,

2 5

x
x

x

− ≠
−

5
,

2
2 (d)

5
, 0, 2

2
x ≠  (e) 

7
, 0, 2

2 4
h

h
≠

−
 (f) 

10 1
, 5, 2

5

x
x

x

+ ≠ −
+

3.37. If f (x) = 2x2, 0 < x <  2, find (a) the l.u.b. and (b) the g.l.b. of f (x). Determine whether f (x) attains its l.u.b. 
and g.l.b.

Ans. (a) 8 (b) 0

3.38. Construct a graph for each of the following functions.

(a) f (x) = ⏐x⏐, – 3 < x <  3 (f)
[ ]

where [ ] = greatest integer <
x x

x x
x

−

(b) ( ) 2 , 2 2
x

f x x
x

= − − < <  (g) f (x) = cosh x

(c)

0, 0

1
( ) , 0

2
1, 0

x

f x x

x

<⎧
⎪⎪= =⎨
⎪
⎪ >⎩

 (h)
sin

( )
x

f x
x

=

(d)
, 2 0

( )
, 0 2

x x
f x

x x

− − < <⎧⎪= ⎨ < <⎪⎩
 (i) ( )

( 1)( 2)( 3)

x
f x

x x x
=

− − −

(e) f (x) = x2 sin 1/x, x � 0 (j)
2

2

sin
( )

x
f x

x
=

3.39. Construct graphs for (a) x2/a2 + y 2/b2 = 1, (b) x2/a2 – y2/b2 = 1, (c) y2 = 2px, and (d) y = 2ax – x2, where a, b,
and p are given constants. In which cases, when solved for y, is there exactly one value of y assigned to each 
value of x, thus making possible definitions of functions f and enabling us to write y = f (x)? In which cases 
must branches be defined?

3.40. (a) From the graph of y = cos x, construct the graph obtained by interchanging the variables and from which 
cos–1 x will result by choosing an appropriate branch. Indicate possible choices of a principal value of cos–1

x. Using this choice, find cos–1(1/2) – cos– 1(–1/2). Does the value of this depend on the choice? Explain.

3.41. Work parts (a) and (b) of Problem 3.40 for (a) y = sec–1 x and (b) y = cot–1 x.

3.42. Given the graph for y = f (x), show how to obtain the graph for y = f (ax + b), where a and b are given 
constants. Illustrate the procedure by obtaining the graphs of (a) y = cos3x, (b) y = sin(5x + π/3), and 
(c) y = tan(π/6 – 2x).

3.43. Construct graphs for (a) y = e–⏐x⏐, (b) y = ln ⏐x⏐, and (c) y = e–⏐x⏐ sin x.
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3.44. Using the conventional principal values on Pages 45 and 46, evaluate:

(a) sin–1 (– 3 /2) (f) sin–1 x + cos– 1 x, –1 < x <  1

(b) tan–1(1) – tan–1(–1) (g) sin–1 (cos 2x), 0 < x < π/2

(c) cot–1(1/ 3 ) – cot–1(–1/ 3 ) (h) sin–1 (cos 2x), π/2 < x <  3π/2

(d) cosh–1 2  (i) tanh (csch–1 3x), x � 0

(e) e–coth–1 (25/7) ( j) cos(2 tan–1 x2)

Ans. (a) – π/3 (f) π/2

 (b) π/2 (g) π/2 – 2x

 (c) –π/3 (h) 2x – 3π/2

 (d) ln(1 + 2 ) (i) 
2

| |

9 1

x

x x +

 (e) 
3

4
(j) 

4

4

1

1

x

x

−
+

3.45. Evaluate (a) cos{π sinh(ln 2)} and (b) cosh –1 {coth(ln 3)}.

Ans. (a) – 2 /2 (b) ln 2

3.46. (a) Prove that tan–1 x + cot–1 x = π/2 if the conventional principal values on Pages 45 and 46 are taken. (b) Is 
tan–1 x + tan–1 (1/x) = π/2 also? Explain.

3.47. If f (x) = tan–1 x, prove that ( ) ( ) ,
1

x y
f x f y f

xy

⎛ ⎞++ = ⎜ ⎟−⎝ ⎠
 discussing the case xy = 1.

3.48. Prove that tan–1 a – tan–1 b = cot–1 b – cot–1 a.

3.49. Prove the identities: (a) 1 – tanh2 x = sech2 x, (b) sin 3x = 3 sin x – 4 sin3 x, (c) cos 3x = 4 cos3 x – 3 cos x,

(d) tanh 
1

2
x = (sinh x)/(1 + cosh x), and (e) ln ⏐csc x – cot x⏐ = ln ⏐tan

1

2
x ⏐.

3.50. Find the relative and absolute maxima and minima of (a) f (x) = (sin x)/x, f (0) = 1 and (b) f (x) = (sin2 x)/x2,
f (0) = 1. Discuss the cases when f (0) is undefined or f (0) is defined but � 1.

Limits

3.51. Evaluate the following limits, first by using the definition and then by using theorems on limits.

(a)
3

lim
x→

 (x2 – 3x + 2) (d) 
4

2
lim

4x

x

x→

−
−

(b)
1

1
lim

2 5x x→− −
(e)

4

0

(2 ) 16
lim
h

h

h→

+ −

(c)
2

2

4
lim

2x

x

x→

−
−

(f)
1

lim
1x

x

x→ +
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Ans. (a) 2 (b) – 
1

7
 (c) 4 (d) – 

1

4
 (e) 32 (f) 

1

2

3.52. Let 

3 1, 0

 ( ) 0, 0 .

2 5, 0

x x

f x x

x x

− <⎧
⎪= =⎨
⎪ + >⎩

(a) Construct a graph of f (x). Evaluate (b) 
2

lim
x→

f (x), (c) 
3

lim
x→−

f (x), (d) 
0

lim
x→ +

f (x), (e) 
0

lim
x→ −

f (x), and 

(f)
0

lim
x→

f (x), justifying your answer in each case.

Ans. (b) 9 (c) –10 (d) 5 (e) –1 (f) does not exist

3.53. Evaluate (a) 
0

( ) (0 )
lim
h

f h f

h→ +

− +
 and (b) 

0

( ) (0 )
lim
h

f h f

h→ −

− −
, where f (x) is the function of Problem 3.52.

Ans. (a) 2 (b) 3

3.54. (a) If f (x) = x2 cos 1/x, evaluate 
0

lim
x→

f (x), justifying your answer. (b) Does your answer to (a) still remain 

the same if we consider f (x) = x2 cos 1/x, x � 0, f (0) = 2? Explain.

3.55. Prove that 
3

lim
x→

 10–1/(x – 3)2 = 0, using the definition.

3.56. Let 
1/

1 /

1 10 1
( ) , 0, (0) .

22 10

x

x
f x x f

−

−

+= ≠ =
−

 Evaluate (a) 
0

lim
x→ +

f (x), (b) 
0

lim
x→ −

f (x), and (c) 
0

lim
x→

f (x),

justifying answers in all cases.

Ans. (a) 
1

2
 (b) – 1 (c) does not exist.

3.57. Find (a) 
0

| |
lim
x

x

x→ +
 and (b) 

0

| |
lim .
x

x

x→ −
Illustrate your answers graphically.

Ans. (a) 1 (b) –1

3.58. If f (x) is the function defined in Problem 3.56, does 
0

lim
x→

f (⏐x⏐) exist? Explain.

3.59. Explain exactly what is meant when you write:

(a)
23

2
lim

( 3)x

x

x→

− = −
−

–� (b) 
0

lim
x→ +

 (1 – e1/x) = –� (c) 
2 5 2

lim
3 2 3x

x

x→∞

+ =
−

3.60. Prove that (a) lim
x→∞

 10–x = 0 and (b) 
cos

lim 0.
x

x

x π→−∞
=

+

3.61. Explain why (a) lim
x→∞

 sin x does not exist and (b) lim
x→∞

e–x sin x does not exist.

3.62. If 
3 | |

 ( ) ,
7 5 | |

x x
f x

x x

+=
−

 evaluate (a) lim
x→∞

f (x) (b) lim
x→−∞

f (x), (c) 
0

lim
x→ +

f (x), (d) 
0

lim
x→ −

f (x), and 

(e)
0

lim
x→

f (x).

Ans. (a) 2 (b) 
1
6

 (c) 2 (d) 
1
6

 (e) does not exist
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3.63. If [x] = largest integer < x, evaluate (a) 
2

lim
x→ +

{x – [x]} and (b) 
2

lim
x→ −

{x – [x]}.

Ans. (a) 0 and (b) 1

3.64. If 
0

lim
x x→

f (x) = A, prove that (a) 
0

lim
x x→

{f (x)}2 = A2 and (b) 
0

lim
x x→

33 ( ) .f x A=  What generalizations of 

these do you suspect are true? Can you prove them?

3.65. If 
0

lim
x x→

f (x), = A and lim g(x), = B, prove that (a)
0

lim
x x→

 {f (x) – g(x)} = A – B and (b) 
0

lim
x x→

 {af (x) + 

bg(x)} = aA + bB, where a, b = any constants.

3.66. If the limits of f (x), g(x), and h(x) are A, B, and C respectively, prove that (a) 
0

lim
x x→

 {f (x) + g(x) + h(x)} = 

A + B + C and (b) 
0

lim
x x→

f (x)g(x)h(x) = ABC. Generalize these results.

3.67. Evaluate each of the following using the theorems on limits.

(a)
2

21/ 2

2 1 2 3
lim

(3 2)(5 3) 5 3x

x x

x x x x→

⎧ ⎫− −−⎨ ⎬+ − − +⎩ ⎭

(b)
(3 1)(2 3)

lim
(5 3)(4 5)x

x x

x x→∞

− +
− +

(c)
3 2

lim
1 1x

x x

x x→−∞

⎛ ⎞
−⎜ ⎟− +⎝ ⎠

(d)
1

1 1 2
lim

1 3 3 5x

x

x x x→

⎛ ⎞
−⎜ ⎟− + +⎝ ⎠

Ans. (a) −8/21 (b) 3/10 (c) 1 (d) 1/32

3.68. Evaluate 
3

0

8 2
lim .
h

h

h→

+ −
 (Hint: Let 8 + h = x3.)

Ans. 1/12

3.69. If 
0

lim
x x→

f (x) = A and 
0

lim
x x→

g(x) = B � 0, prove directly that 
0

( )
lim .

( )x x

f x A

g x B→
=

3.70. Given 
0

sin 3
lim 1,
x

x

x→
=  evaluate:

(a)
0

sin 3
lim
x

x

x→
 (e) 

0

6 sin 2
lim

2 3 sin 4x

x x

x x→

−
+

(b)
0

1 cos
lim
x

x

x→

−
 (f) 

20

cos cos
lim
x

ax bx

x→

−

(c)
20

1 cos
lim
x

x

x→

−
 (g) 

20

1 2cos cos 2
lim
x

x x

x→

− +

(d)
3

lim
x→

(x – 3) csc πx  (h) 
31

3 sin sin 3
lim
x

x x

x

π π
→

−

Ans. (a) 3 (b) 0 (c) 
1

2
 (d) –1/π (e) 

2
7

 (f) 
1

2
 (b2 – a2) (g) –1 (h) 4π3
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3.71. If 
0

1
lim 1,

x

x

e

x→

− =  prove that (a) 
0

lim
ax bx

x

e e
b a

x

− −

→

− = − , (b) 
0

lim ln , , 0
x x

x

a b a
a b

x b→

− = > , and 

(c)
0

tanh 
lim .
x

ax
a

x→
=

3.72. Prove that 
0

lim
x x→

f (x) = l if and only if 
0

lim
x x+→

f (x) = l.

Continuity
In the following problems, assume the largest possible domain unless otherwise stated.

3.73. Prove that f (x) = x2 – 3x + 2 is continuous at x = 4.

3.74. Prove that f (x) = 1/x is continuous (a) at x = 2 and (b) in 1 < x <  3.

3.75. Investigate the continuity of each of the following functions at the indicated points:

(a)
sin

( ) ; 0, (0) 0; 0
x

f x x f x
x

= ≠ = =  (c) 
3

2

8
( ) ; 2, (2) 3; 2

4

x
f x x f x

x

−= ≠ = =
−

(b) f (x) = x – ⏐x⏐; x = 0 (d) 
sin , 0 1

( ) ; 1
ln 1 2

x x
f x x

x

π < <⎧
= =⎨ < <⎩

Ans. (a) discontinuous, (b) continuous, (c) continuous, (d) discontinuous

3.76. If [x] = greatest integer < x, investigate the continuity of f (x) = x – [x] in the interval (a) 1 < x < 2 and 
(b) 1 < x <  2.

3.77. Prove that f (x) = x3 is continuous in every finite interval.

3.78. If f (x)/g(x) and g(x) are continuous at x = x0, prove that f (x) must be continuous at x = x0.

3.79. Prove that f (x) = (tan–1 x)/x, f (0) = 1 is continuous at x = 0.

3.80. Prove that a polynomial is continuous in every finite interval.

3.81. If f (x) and g(x) are polynomials, prove that f (x)/g(x) is continuous at each point x = x0 for which g (x0) � 0.

3.82. Give the points of discontinuity of each of the following functions.

(a) ( )
( 2)( 4)

x
f x

x x
=

− −
  (c) ( ) ( 3)(6 ), 3 6f x x x x= − − < <

(b) f (x) = x2 sin 1/x, x � 0, f (0) = 0 (d) 
1

( )
1 2 sin

f x
x

=
+

Ans. (a) x = 2, 4 (b) none (c) none (d) x = 7π/6 ± 2mπ, 11π/6 ± 2mπ, m = 0, 1, 2, . . . 
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Uniform continuity

3.83. Prove that f (x) = x3 is uniformly continuous in (a) 0 < x < 2 (b) 0 < x <  2 and (c) any finite interval.

3.84. Prove that f (x) = x2 is not uniformly continuous in 0 < x < �.

3.85. If a is a constant, prove that f (x) = 1/x2 is (a) continuous in a < x < � if a >  0, (b) uniformly continuous in 
a < x < � if a > 0, and (c) not uniformly continuous in 0 < x < 1.

3.86. If f (x) and g(x) are uniformly continuous in the same interval, prove that (a) f (x) ± g(x) and (b) f (x) g(x) are 
uniformly continuous in the interval. State and prove an analogous theorem for f (x)/g(x).

Miscellaneous problems

3.87. Give an “�, δ” proof of the theorem of Problem 3.31.

3.88. (a)  Prove that the equation tan x = x has a real positive root in each of the intervals π/2 < x < 3π/2, 3π/2 < x
< 5π/2, 5π/2 < x < 7π/2, . . . 

(b) Illustrate the result in (a) graphically by constructing the graphs of y = tan x and y = x and locating their 
points of intersection.

(c) Determine the value of the smallest positive root of tan x = x.

Ans. (c) 4.49 approximately

3.89. Prove that the only real solution of sin x = x is x = 0.

3.90. (a)  Prove that cos x cosh x + 1 = 0 has infinitely many real roots. (b) Prove that for large values of x, the 
roots approximate those of cos x = 0.

3.91. Prove that 
2

0

sin(1/ )
lim 0.

sinx

x x

x→
=

3.92. Suppose f (x) is continuous at x = x0 and assume f (x0) > 0. Prove that there exists an interval (x0 – h, x0 + h),
where h > 0, in which f (x) > 0. (See Theorem 5, page 52.) (Hint: Show that we can make ⏐f (x) – f (x0)⏐

<
1

2
f (x0). Then show that f (x) > f (x0) – ⏐f (x) – f (x0)⏐ > 

1

2
f (x0) > 0.)

3.93. (a) Prove Theorem 10, Page 52, for the greatest lower bound m (see Problem 3.34). (b) Prove Theorem 9, 
Page 52, and explain its relationship to Theorem 10.
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Derivatives

The Concept and Definition of a Derivative

Concepts that shape the course of mathematics are few and far between. The derivative, the fundamental 
element of the differential calculus, is such a concept. That branch of mathematics called analysis, of which 
advanced calculus is a part, is the end result. There were two problems that led to the discovery of the de-
rivative. The older one of defining and representing the tangent line to a curve at one of its points had con-
cerned early Greek philosophers. The other problem of representing the instantaneous velocity of an object 
whose motion was not constant was much more a problem of the seventeenth century. At the end of that 
century, these problems and their relationship were resolved. As is usually the case, many mathematicians 
contributed, but it was Isaac Newton and Gottfried Wilhelm Leibniz who independently put together organ-
ized bodies of thought upon which others could build.

The tangent problem provides a visual interpretation of the derivative and can be brought to mind no mat-
ter what the complexity of a particular application. It leads to the definition of the derivative as the limit of 
a difference quotient in the following way. (See Figure 4.1.)

Figure 4.1

Let P0 (x0) be a point on the graph of y = f (x). Let P(x) be a nearby point on this same graph of the func-
tion f. Then the line through these two points is called a secant line. Its slope, ms, is the difference quotient

0

0

( ) ( )
s

f x f x y
m

x x x

− Δ= =
− Δ

 (1)

where Δx and Δy are called the increments in x and y, respectively. Also this slope may be written

0 0( ) ( )
s

f x h f x
m

h

+ −
=  (2)

where h = x – x0 = Δx. See Figure 4.2.

CHAPTER 4
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 Figure 4.2 Figure 4.3

We can imagine a sequence of lines formed as h → 0. It is the limiting line of this sequence that is the natu-
ral one to be the tangent line to the graph at P0.

To make this mode of reasoning precise, the limit (when it exists), is formed as follows:

0 0

0

( ) ( )
( ) lim

h

f x h f x
f x

h→

+ −′ =  (3a)

As indicated, this limit is given the name f ′(x0). It is called the derivative of the function f at its domain 
value x0. If this limit can be formed at each point of a subdomain of the domain of f, then f is said to be dif-
ferentiable on that subdomain and a new function f ′ has been constructed.

This limit concept was not understood until the middle of the nineteenth century. A simple example il-
lustrates the conceptual problem that faced mathematicians from 1700 until that time. Let the graph of f be 
the parabola y = x2; then a little algebraic manipulation yields

2
0

0

2
2s

x h h
m x h

h

+
= = +  (3b)

Newton, Leibniz, and their contemporaries simply let h = 0 and said that 2x0 was the slope of the tangent line 

at P0. However, this raises the ghost of a 
0

0
 form in the middle term. True understanding of the calculus is in the 

comprehension of how the introduction of something new (the derivative, i.e., the limit of a difference quotient) 
resolves this dilemma.

Note 1: The creation of new functions from difference quotients is not limited to f ′. If, starting with f ′,
the limit of the difference quotient exists, then f ″ may be constructed, and so on.

Note 2: Since the continuity of a function is such a strong property, one might think that differentiability 
followed. This is not necessarily true, as is illustrated in Figure 4.3.

The following theorem puts the matter in proper perspective.

Theorem: If f is differentiable at a domain value, then it is continuous at that value.
As indicated, the converse of this theorem is not true.

Right- and Left-Hand Derivatives

The status of the derivative at endpoints of the domain of f, and in other special circumstances, is clarified 
by the following definitions.
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The right-hand derivative of f (x) at x = x0 is defined as

0 0
0 0

( ) ( )
( ) lim

h

f x h f x
f x

h+ → +

+ −′ =  (5)

if this limit exists. Note that in this case h(= Δx) is restricted only to positive values as it approaches zero.
Similarly, the left-hand derivative of f (x) at x = x0 is defined as

0 0
0 0

( ) ( )
( ) lim

h

f x h f x
f x

h− → −

+ −′ =  (6)

if this limit exists. In this case h is restricted to negative values as it approaches zero.
A function f has a derivative at x = x0 if and only if f ′+(x0) = f ′–(x0).

Differentiability in an Interval

If a function has a derivative at all points of an interval, it is said to be differentiable in the interval. In par-
ticular, if f is defined in the closed interval a < x < b—i.e. [a, b]—then f is differentiable in the interval if 

and only if f ′(x0) exists for each x0 such that a < x0 < b and if both f ′+(a) and f ′– (b) exist.
If a function has a continuous derivative, it is sometimes called continuously differentiable.

Piecewise Differentiability

A function is called piecewise differentiable or piecewise smooth in an interval a < x < b if f ′(x) is piecewise 

continuous. An example of a piecewise continuous function is shown graphically on Page 47.
An equation for the tangent line to the curve y = f (x) at the point where x = x0 is given by

 y – f (x0) = f ′(x0)(x – x0) (7)

The fact that a function can be continuous at a point and yet not be differentiable there is shown graphi-
cally in Figure 4.3. In this case there are two tangent lines at P, represented by PM and PN. PN. The slopes 
of these tangent lines are f ′–(x0) and f ′+ (x0), respectively.

Differentials

Let Δx = dx be an increment given to x. Then

 Δy = f (x + Δx) – f (x) (8)

is called the increment in y = f (x). If f (x) is continuous and has a continuous first derivative in an interval, 
then

 Δy = f ′(x) Δx + �Δx = f ′(x)dx + dx (9)

where � → 0 as Δx → 0. The expression

 dy = f ′(x)dx (10)

is called the differential of y or f (x) or the principal part of Δy. Note that Δy � dy, in general. However, if 
Δx = dx is small, then dy is a close approximation of Δy (see Problem 4.11). The quantities dx (called the 
differential of x) and dy need not be small.

Because of the definitions given by Equations (8) and (10), we often write

0 0

( ) ( )
( ) lim lim

x x

dy f x x f x y
f x

dx x xΔ → Δ →

+ Δ − Δ′= = =
Δ Δ

 (11)
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It is emphasized that dx and dy are not the limits of Δx and Δy as Δ x → 0, since these limits are zero, whereas 
dx and dy are not necessarily zero. Instead, given dx, we determine dy from Equation (10); i.e., dy is a de-
pendent variable determined from the independent variable dx for a given x.

Geometrically, dy is represented in Figure 4.1, for the particular value x = x0 by the line segment SR,
whereas Δy is represented by QR.

The geometric interpretation of the derivative as the slope of the tangent line to a curve at one of its points 
is fundamental to its application. Also of importance is its use as representative of instantaneous velocity in 
the construction of physical models. In particular, this physical viewpoint may be used to introduce the notion 
of differentials.

Newton’s second and first laws of motion imply that the path of an object is determined by the forces 
acting on it and that, if those forces suddenly disappear, the object takes on the tangential direction of the 
path at the point of release. Thus, the nature of the path in a small neighborhood of the point of release be-
comes of interest. With this thought in mind, consider the following idea.

Suppose the graph of a function f is represented by y = f (x). Let x = x0 be a domain value at which f ′ exists 
(i.e., the function is differentiable at that value). Construct a new linear function

dy = f ′(x0) dx

with dx as the (independent) domain variable and dy the range variable generated by this rule. This linear 
function has the graphical interpretation illustrated in Figure 4.4.

Figure 4.4

That is, a coordinate system may be constructed with its origin at P0 and the dx- and dy-axes parallel to 
the x- and y-axes, respectively. In this system our linear equation is the equation of the tangent line to the 
graph at P0. It is representative of the path in a small neighborhood of the point, and if the path is that of an 
object, the linear equation represents its new path when all forces are released.

dx and dy are called differentials of x and y, respectively. Because the preceding linear equation is valid 
at every point in the domain of f at which the function has a derivative, the subscript may be dropped and we 
can write

dy = f ′(x) dx

The following important observations should be made. 
0 0

( ) ( )
( ) lim lim ,

x x

dy f x x f x y
f x

dx x xΔ → Δ →

+ Δ − Δ′= = =
Δ Δ

thus
dy

dx
is not the same thing as .

y

x

Δ
Δ

On the other hand, dy and Δy are related. In particular, 
0

lim ( )
x

y
f x

xΔ →

Δ ′=
Δ

means that for any � > 0 there 

exists δ > 0 such that 
y dy

x dx
ε εΔ− < − <

Δ
 whenever ⏐Δx⏐ < δ. Now dx is an independent variable and the 

axes of x and dx are parallel; therefore, dx may be chosen equal to Δx. With this choice,

–εΔx < Δy – dy < εΔx
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or

dy – εΔx < Δy < dy + εΔx

From this relation we see that dy is an approximation to Δy in small neighborhoods of x, dy is called the 
principal part of Δy.

The representation of f ′ by 
dy

dx
 has an algebraic suggestiveness that is very appealing and appears in much 

of what follows. In fact, this notation was introduced by Leibniz (without the justification provided by knowl-
edge of the limit idea) and was the primary reason his approach to the calculus, rather than Newton’s, was 
followed.

The Differentiation of Composite Functions

Many functions are a composition of simpler ones. For example, if f and g have the rules of correspondence u
= x3 and y = sin u, respectively, then y = sin x3 is the rule for a composite function F = g(f). The domain of F
is that subset of the domain of F whose corresponding range values are in the domain of g. The rule of com-

posite function differentiation is called the chain rule and is represented by [ ( ) ( ) ( )].
dy dy du

F x g u f x
dx du dx

′ ′ ′= =
In the example,

3
3 2(sin )

cos (3 )
dy d x

x x dx
dx dx

≡ =

The importance of the chain rule cannot be too greatly stressed. Its proper application is essential in the 
differentiation of functions, and it plays a fundamental role in changing the variable of integration, as well 
as in changing variables in mathematical models involving differential equations.

Implicit Differentiation

The rule of correspondence for a function may not be explicit. For example, the rule y = f (x) is implicit to 
the equation x2 + 4xy5 + 7xy + 8 = 0. Furthermore, there is no reason to believe that this equation can be 
solved for y in terms of x. However, assuming a common domain (described by the independent variable x),
the left-hand member of the equation can be construed as a composition of functions and differentiated ac-
cordingly. (The rules for differentiation are listed here for your review.)

In this example, differentiation with respect to x yields

5 42 4 5 7 0
dy dy

x y xy y x
dx dx

⎛ ⎞ ⎛ ⎞
+ + + + =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

Observe that this equation can be solved for 
dy

dx
 as a function of x and y (but not of x alone).

Rules for Differentiation

If f, g, and h are differentiable functions, the following differentiation rules are valid.

1. { ( ) ( )} ( ) ( ) ( ) ( )
d d d

f x g x f x g x f x g x
dx dx dx

′ ′+ = + = +  (Addition rule)

2. { ( ) ( )} ( ) ( ) ( ) ( )
d d d

f x g x f x g x f x g x
dx dx dx

′ ′− = − = −

3. { ( )} ( ) ( ) where  is any constant
d d

C f x C f x Cf x C
dx dx

′= =
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4. { ( ) ( )} ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
d d d

f x g x f x g x g x f x f x g x g x f x
dx dx dx

′ ′= + = +  (Product rule)

5.
2 2

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )
if ( ) 0

( ) [ ( )] [ ( )]

d d
g x f x f x g xd f x g x f x f x g xdx dx g x

dx g x g x g x

− ′ ′⎧ ⎫ −= = ≠⎨ ⎬
⎩ ⎭

 (Quotient rule)

6. If y = f(u) where u = g(x), then

( ) { ( )} ( )
dy dy du du

f u f g x g x
dx du dx dx

′ ′ ′= ⋅ = =  (12)

Similarly, if y = f(u) where u = g(v) and v = h(x), then

dy dy du d

dx du d dx

υ
υ

= ⋅ ⋅   (13)

The results (12) and (13) are often called chain rules for differentiation of composite functions.
These rules probably are the most misused (or perhaps unused) rules in the application of the calculus.

7. If y = f (x) and x = f –1(y), then dy/dx and dx/dy are related by

1

/

dy

dx dx dy
=  (14)

8. If x = f (t) and y = g(t), then

/ ( )

/ ( )

dy dy dt g t

dx dx dt f t

′
= =

′
 (15)

Similar rules can be formulated for differentials. For example,

d{f (x) + g(x)} = df (x) + dg(x) = f ′(x)dx + g′(x)dx = {f ′(x) + g′(x)}dx

d{f (x)g(x)} = f (x)dg(x) + df (x) = {f (x)g′(x) + g(x) f ′(x)}dx

Derivatives of Elementary Functions

In the following we assume that u is a differentiable function of x; if u = x, du/dx = 1. The inverse functions 
are defined according to the principal values given in Chapter 3.

1. ( ) 0
d

C
dx

= 16. 1
2

1
cot

1

d du
u

dx dxu
− = −

+

2. 1n nd du
u nu

dx dx
−= 17. 1

2

if 11
sec

if < 11

ud du
u

udx dxu u

− + >⎧
= + ⎨− −⎩−

3. sin cos
d du

u u
dx dx

= 18. 1

2

if 11
csc

if 11

ud du
u

udx dxu u

− − >⎧
= + ⎨+ < −⎩−

4. cos sin
d du

u u
dx dx

= − 19. sinh cosh
d du

u u
dx dx

=

5. 2tan sec
d du

u u
dx dx

= 20. cosh sinh
d du

u u
dx dx

=

6. 2cot csc
d du

u u
dx dx

= − 21. 2tanh sec
d du

u h u
dx dx

=

7. sec sec tan
d du

u u u
dx dx

= 22. 2coth csch
d du

u u
dx dx

= −
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8. csc csc cot
d du

u u u
dx dx

= − 23. sech sech tanh
d du

u u u
dx dx

= −

9.
log

log 0, 1a
a

ed du
u a a

dx u dx
= > ≠ 24. csch csch coth

d du
u u u

dx dx
= −

10.
1

log lne
d d du

u u
dx dx u dx

= = 25. 1

2

1
sinh

1

d du
u

dx dxu

− =
+

11. lnu ud du
a a a

dx dx
= 26. 1

2

1
cosh

1

d du
u

dx dxu

− =
−

12. u ud du
e e

dx dx
= 27. 1

2

1
tanh , | | 1

1

d du
u u

dx dxu
− = <

−

13. 1

2

1
sin

1

d du
u

dx dxu

− =
−

28. 1
2

1
coth , | | 1

1

d du
u u

dx dxu
− = >

−

14. 1

2

1
cos

1

d du
u

dx dxu

− = −
−

29. 1

2

1
sech

1

d du
u

dx dxu u

− =
−

15. 1

2

1
tan

1

d du
u

dx dxu

− =
+

30. 1

2

1
csch

1

d du
u

dx dxu u

− = −
+

Higher-Order Derivatives

If f (x) is differentiable in an interval, its derivative is given by f ′(x), y′ or dy/dx, where y = f (x). If f ′(x) is also 

differentiable in the interval, its derivative is denoted by f ″(x), y″ or 
2

2
.

d dy d y

dx dx dx

⎛ ⎞ =⎜ ⎟⎝ ⎠
 Similarly, the nth de-

rivative of f (x), if it exists, is denoted by ( ) ( )( ), or ,
n

n n
n

d y
f x y

dx
 where n is called the order of the derivative. 

Thus, derivatives of the first, second, third, . . . orders are given by f ′(x), f ″(x), f ′′′ (x), . . . .

Computation of higher-order derivatives follows by repeated application of the differentiation rules given 
here.

Mean Value Theorems

These theorems are fundamental to the rigorous establishment of numerous theorems and formulas. (See 
Figure 4.5.)

Figure 4.5

1. Rolle’s theorem. If f (x) is continuous in [a, b] and differentiable in (a, b) and if f (a) = f (b) = 0, then 
there exists a point ξ in (a, b) such that f ′(ξ) = 0.
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Rolle’s theorem is employed in the proof of the mean value theorem. It then becomes a special case 
of that theorem.

2. The mean value theorem. If f (x) is continuous in [a, b] and differentiable in (a, b), then there exists 
a point ξ in (a, b) such that

( ) ( )
( )

f b f a
f a b

b a
ξ ξ− ′= < <

−
 (16)

Rolle’s theorem is the special case of this where f (a) = f (b) = 0.

The result (16) can be written in various alternative forms; for example, if x and x0 are in (a, b),
then

 f (x) = f (x0) + f ′(ξ)(x – x0) ξ between x0 and x (17)

We can also write result (16) with b = a + h, in which case ξ = a + θh, where 0 < θ < 1.

The mean value theorem is also called the law of the mean.

3. Cauchy’s generalized mean value theorem. If f (x) and g(x) are continuous in [a, b] and differen-
tiable in (a, b), then there exists a point ξ in (a, b) such that

( ) ( ) ( )

( ) ( ) ( )

f b f a f
a b

g b g a g

ξ ξ
ξ

′− = < <
′−

 (18)

where we assume g(a) � g(b) and f ′(x), g′(x) are not simultaneously zero. Note that the special case 
g(x) = x yields (16).

L’Hospital’s Rules

If
0

lim
x x→

f(x) = A and 
0

lim
x x→

g(x) = B, where A and B are either both zero or both infinite, 
0

( )
lim

( )x x

f x

g x→
 is often 

called an indeterminate of the form 0/0 or �/�, respectively, although such terminology is somewhat mis-
leading since there is usually nothing indeterminate involved. The following theorems, called L’Hospital’s 
rules, facilitate evaluation of such limits.

1. If f (x) and g(x) are differentiable in the interval (a, b) except possibly at a point x0 in this interval, and 
if g′(x) � 0 for x � x0, then

0 0

( ) ( )
lim lim

( ) ( )x x x x

f x f x

g x g x→ →

′=
′

 (19)

 whenever the limit on the right can be found. In case f ′(x) and g′(x) satisfy the same conditions as f (x)
and g(x) given above, the process can be repeated.

2. If 
0

lim
x x→

f (x) = � and 
0

lim
x x→

g(x) = �, the result (19) is also valid.

These can be extended to cases where x → � or –�, and to cases where x0 = a or x0 = b in which only 
one-sided limits, such as x → a+ or x → b–, are involved.

Limits represented by the indeterminate forms 0 · �, �0, 00, 1�, and � – � can be evaluated on replacing 
them by equivalent limits for which the aforementioned rules are applicable (see Problem 4.29).
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Applications

Relative Extrema and Points of Inflection
See Chapter 3, where relative extrema and points of inflection are described and a diagram is presented. In 
this chapter such points are characterized by the variation of the tangent line and then by the derivative, which 
represents the slope of that line.

Assume that f has a derivative at each point of an open interval and that P1 is a point of the graph of f as-
sociated with this interval. Let a varying tangent line to the graph move from left to right through P1. If the 
point is a relative minimum, then the tangent line rotates counterclockwise. The slope is negative to the left 
of P1 and positive to the right. At P1 the slope is zero. At a relative maximum a similar analysis can be made 
except that the rotation is clockwise and the slope varies from positive to negative. Because f ″ designates the 
change of f ′, we can state the following theorem. (See Figure 4.6.)

Figure 4.6

Theorem Assume that x1 is a number in an open set of the domain of f at which f ′ is continuous and f ″ is 
defined. If f ′(x1) = 0 and f ″(x1) � 0, then f (x1) is a relative extreme of f. Specifically:

(a) If f ″(x1) > 0, then f (x1) is a relative minimum.

(b) If f ″(x1) < 0, then f (x1) is a relative maximum.

(The domain value x1 is called a critical value.)
This theorem may be generalized in the following way. Assume existence and continuity of derivatives as 

needed and suppose that f ′(x1) = f ″(x1) = . . . f (2p–1) (x1) = 0 and f (2p) (x1) � 0 (p a positive integer). Then:

(a) f has a relative minimum at x1 if f
(2p) (x1) > 0.

(b) f has a relative maximum at x1 if f
(2p) (x1) < 0.

(Notice that the order of differentiation in each succeeding case is two greater. The nature of the intermediate 
possibilities is suggested in the next paragraph.)

It is possible that the slope of the tangent line to the graph of f is positive to the left of P1, zero at the point, 
and again positive to the right. Then P1 is called a point of inflection. In the simplest case this point of inflec-
tion is characterized by f ′(x1) = 0, f ″(x1) = 0, and f ′′′  (x1) � 0.

Particle Motion
The fundamental theories of modern physics are relativity, electromagnetism, and quantum mechanics. Yet 
Newtonian physics must be studied because it is basic to many of the concepts in these other theories, and 
because it is most easily applied to many of the circumstances found in everyday life. The simplest aspect of 
Newtonian mechanics is called kinematics, or the geometry of motion. In this model of reality, objects are 
idealized as points and their paths are represented by curves. In the simplest (one-dimensional) case, the 
curve is a straight line, and it is the speeding up and slowing down of the object that is of importance. The 
calculus applies to the study in the following way.

If x represents the distance of a particle from the origin and t signifies time, then x = f (t) designates the 
position of a particle at time t. Instantaneous velocity (or speed in the one-dimensional case) is represented 
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by
0

( )
lim
t

dx f t t

dt tΔ →

+ Δ=
Δ

 (the limiting case of the formula change in 
change in distance

change in time
 in time for speed 

when the motion is constant). Furthermore, the instantaneous change in velocity is called acceleration and 

represented by 
2

2

d x

dt
.

Path, velocity, and acceleration of a particle will be represented in three dimensions in Chapter 7, on vec-
tors.

Newton’s Method
It is difficult or impossible to solve algebraic equations of higher degree than two. In fact, it has been proved 

that there are no general formulas representing the roots of algebraic equations of degree five and higher in 
terms of radicals. However, the graph y = f (x) of an algebraic equation f (x) = 0 crosses the x axis at each single-
valued real root. Thus, by trial and error, consecutive integers can be found between which a root lies. Newton’s 
method is a systematic way of using tangents to obtain a better approximation of a specific real root. The pro-
cedure is as follows. (See Figure 4.7.)

Figure 4.7

Suppose that f has as many derivatives as required. Let r be a real root of f (x) = 0; i.e., f (r) = 0. Let x0 be 
a value of x near r—for example, the integer preceding or following r. Let f ′(x0) be the slope of the graph of 
y = f (x) at P0[x0, f (x0)]. Let Q1(x1, 0) be the x-axis intercept of the tangent line at P0; then

0
0

0

0 – ( )
( )

–

f x
f x

x x
= ′

where the two representations of the slope of the tangent line have been equated. The solution of this relation 
for x1 is

0
1 0

0

( )
–

( )

f x
x x

f x
=

′
Starting with the tangent line to the graph at P1[x1, f(x1)] and repeating the process, we get

01 1
2 1 0

1 0 1

( )( ) ( )
– – –

( ) ( ) ( )

f xf x f x
x x x

f x f x f x
= =

′ ′ ′
and, in general,

0
0

( )
–

( )

n
k

n
kk

f x
x x

f x=

=
′∑

Under appropriate circumstances, the approximation xn to the root r can be made as good as desired.
Note: Success with Newton’s method depends on the shape of the function’s graph in the neighborhood 

of the root. There are various cases which have not been explored here.



CHAPTER 4  Derivatives 81

SOLVED PROBLEMS

Derivatives

4.1. (a) Let
3

( ) , 3.
3 –

x
f x x

x

+= ≠  Evaluate f ′(2) from the definition.

0 0 0 0

(2 ) – (2) 1 5 1 6 6
(2) lim lim – 5 lim lim 6

1 – 1 – 1 –h h h h

f h f h h
f

h h h h h h→ → → →

⎛ ⎞+ +′ = = = ⋅ = =⎜ ⎟
⎝ ⎠

Note: By using rules of differentiation we find

2 2 2

(3 – ) (3 ) – (3 ) (3 – ) (3 – ) (1) – (3 ) (–1) 6
( )

(3 – ) (3 – ) (3 – )

d d
x x x x x xdx dxf x

x x x

+ + +′ = = =

at all points x where the derivative exists. Putting x = 2, we find f ′(2) = 6. Although such rules are often useful, 
one must be careful not to apply them indiscriminately (see Problem 4.5).
(b) Let f (x) = 2 1x − . Evaluate f ′(5) from the definition.

0 0

0 0 0

9 2 – 3(5 ) – (5)
(5) lim lim

9 2 – 3 9 2 3 9 2 – 9 2 1
lim lim lim

39 2 3 ( 9 2 3 9 2 3

h h

h h h

hf h f
f

h h

h h h

h h h h h

→ →

→ → →

++′ = =

+ + + += ⋅ = = =
+ + + + + +

By using rules of differentiation we find 1/ 2 –1/ 21
( ) (2 – 1) (2 – 1) (2 – 1)

2

d d
f x x x x

dx dx
′ = = =

–1/ 2(2 – 1) .x  Then 1/ 2 1
(5) 9 .

3
f −′ = =

4.2. (a) Show directly from definition that the derivative of f (x) = x3 is 3x2.

(b) Show from definition that 
1

) .
2

d
x

dx x
=

(a) 3 3

3 2 2 2 3 2 2

( ) – ( ) 1
[( ) – ]

1
[ 3 3 ] – ] 3 3

f x h f x
x h x

h h

x x h xh h x x xh h
h

+ = +

= + + + = + +

Then

2

0

( ) – ( )
( ) lim 3

h

f x h f x
f x x

h→

+′ = =f ( f (
f ′(

(b)
0 0

–( ) – ( )
lim lim
h h

x h xf x h f x

h h→ →

++ =f ( f (

The result follows by multiplying numerator and denominator by x h x+ −  and then letting h → 0.

4.3. If f (x) has a derivative at x = x0, prove that f (x) must be continuous at x = x0.

0 0
0 0

( ) – ( )
( ) – ( ) , 0

f x h f x
f x h f x h h

h

+
+ = ⋅ ≠f (

f (

Then

0 0
0 0 0

0 0 0

( ) – ( )
lim ( ) – ( ) lim lim ( ) 0 0
h h h

f x h f x
f x h f x h f x

h→ → →

+
+ = ⋅ = ′ ⋅ =
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since f ′(x0) exists by hypothesis. Thus,

0
lim
h→

f (x0 + h) – f (x0) = 0   or   
0

lim
h→

f (x0 + h) = f (x0)

showing that f (x) is continuous at x = x0.

4.4. Let 
sin 1 / , 0

( ) .
0, 0

x x x
f x

x

≠⎧
= ⎨ =⎩

(a) Is f (x) continuous at x = 0? (b) Does f (x) have a derivative at x = 0?

(a) By Problem 3.22(b), f (x) is continuous at x = 0.

(b)
0 0 0 0

(0 ) – (0) ( ) – (0) sin 1/ – 0 1
(0) lim lim lim lim sin

h h h h

f h f f h f h h
f

h h h h→ → → →

+′ = = = =

which does not exist.
This example shows that even though a function is continuous at a point, it need not have a derivative at 

the point; i.e., the converse of the theorem in Problem 4.3 is not necessarily true.
It is possible to construct a function which is continuous at every point of an interval but has a derivative no-

where.

4.5. Let
2 sin 1/ , 0

( ) .
0, 0

x x x
f x

x

⎧ ≠⎪= ⎨
=⎪⎩

(a) Is f (x) differentiable at x = 0? (b) Is f ′(x) continuous at x = 0?

(a)
2

0 0 0

( ) – (0) sin 1/ – 0 1
(0) lim lim lim sin 0

h h h

f h f h h
f h

h h h→ → →
′ = = = =

by Problem 3.13. Then f (x) has a derivative (is differentiable) at x = 0 and its value is 0.

(b) From elementary calculus differentiation rules, if x � 0,

2 2 2

2
2

1 1 1
( ) sin sin sin ( )

1 1 1 1 1
cos – sin (2 ) – cos 2 sin

d d d
f x x x x

dx x dx x x dx

x x x
x x x xx

⎛ ⎞ ⎛ ⎞ ⎛ ⎞′ = = +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠
⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + = +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠

Since
0 0

1 1
lim ( ) lim – cos 2 sin
x x

f x x
x x→ →

⎛ ⎞′ = +⎜ ⎟⎝ ⎠
 does not exist (because 

0
lim
x →

 cos 1/x does not exist). f ′(x)

cannot be continuous at x = 0 in spite of the fact that f ′(0) exists.
This shows that we cannot calculate f ′(0) in this case by simply calculating f ′(x) and and putting x = 0, 

as is frequently supposed in elementary calculus. It is only when the derivative of a function is continuous at 
a point that this procedure gives the right answer. This happens to be true for most functions arising in elemen-
tary calculus.

4.6. Present an “�, δ” definition of the derivative of f (x) at x = x0.

f (x) has a derivative f ′(x0) at x = x0 if, given any � > 0, we can find δ > 0 such that

0 0
0

( ) – ( )
– ( ) when 0

f x h f x
f x h

h
ε δ

+
′ < < <
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Right- and left-hand derivatives

4.7. Let f (x) = ⏐x⏐. (a) Calculate the right-hand derivatives of f (x) at x = 0. (b) Calculate the left-hand derivative 
of f (x) at x = 0. (c) Does f (x) have a derivative at x = 0? (d) Illustrate the conclusions in (a), (b), and (c) 
from a graph.

(a) f ′+
0 0 0

– 0( ) – (0)
(0) lim lim lim 1

h h h

hf h f h

h h h→ + → + → +
= = = =

since ⏐h⏐ = –h for h > 0.

(b) f ′−
0– 0– 0–

– 0( ) – (0) –
(0) lim lim lim –1

h h h

hf h f h

h h h→ → →
= = = =

since ⏐h⏐ = –h for h < 0.

(c) No. The derivative at 0 does not exist if the right- and left-
hand derivatives are unequal.

(d) The required graph is shown in Figure 4.8. Note that the 
slopes of the lines y = x and y = –x are 1 and –1, respec-
tively, representing the right- and left-hand derivatives at 
x = 0. However, the derivative at x = 0 does not exist.

4.8. Prove that f (x) = x2 is differentiable in 0 < x <  1.

Let x0 be any value such that 0 < x0 < 1. Then
2 2

0 0 0 0
0 0 0

0 0 0

( ) – ( ) ( ) –
( ) lim lim lim (2 ) 2

h h h

f x h f x x h x
f x x h x

h h→ → →

+ +
′ = = = + =

At the endpoint x = 0,

f ′+
2

0 0 0

(0 ) – (0) – 0
(0) lim lim lim 0

h h h

f h f h
h

h h→ + → + → +

+= = = =

At the end point x = 1,

f ′− 

2

0– 0– 0–

(1 ) – (1) (1 ) – 1
(1) lim lim lim (2 ) 2

h h h

f h f h
h

h h→ → →

+ += = = + =

Then f (x) is differentiable in 0 < x <  1. We may write f ′(x) = 2x for any x in this interval. It is customary 

to write f ′+ (0) = f ′(0) and f ′−(1) = f ′(1) in this case.

4.9. Find an equation for the tangent line to y = x2 at the point where (a) x = 1/3 and (b) x = 1.

(a) From Problem 4.8. f ′(x0) = 2x0 so that f ′(1/3) = 2/3. Then the equation of the tangent line is

0 0 0
1 2 1 2 1

( ) ( )( ) or ( ). i.e., y =
9 3 3 3 9

y f x f x x x y x x− = − − = − −

(b) As in part (a), y – f (1) = f ′(1)(x – 1) or y – 1 = 2(x – 1), i.e., y = 2x – 1.

Figure 4.8
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Differentials

4.10. If y = f (x) = x3 – 6x, find (a) Δy, (b) dy, and (c) Δy – dy.

(a) Δy = f (x + Δx) – f (x)  = {(x + Δx)3 –6(x + Δx)} – {x3 – 6x}
= x3 + 3x2 Δx + 3x(Δx)2 + (Δx)3 – 6x – 6Δx – x3 + 6x
= (3x2 – 6) Δx + 3x(Δx)2 + (Δx)3

(b) dy = principal part of Δy = (3x2 – 6)Δx = (3x2 – 6)dx, since by definition Δx = dx.

Note that f ′(x) = 3x2 – 6 and dy = (3x2 – 6)dx, i.e.; dy/dx = 3x2 – 6. It must be emphasized that dy and dx
are not necessarily small.

(c) From (a) and (b), Δy – dy = 3x(Δx)2 + (Δx)3 = �Δx, where � = 3xΔx + (Δx)2.

Note that � → 0 as Δx → 0; i.e., 
–

0
y dy

x

Δ →
Δ

 as Δx → 0. Hence, Δy – dy is an infinitesimal of higher 

order than Δx (see Problem 4.83).
In case Δx is small, dy and Δy are approximately equal.

4.11. Evaluate 3 25  approximately by use of differentials.

If Δx is small, Δy = f (x + Δx) – f (x) = f ′(x) Δx approximately.

Let f (x) = 3 x . Then 2 /333 1

3
x x x x x−+ Δ − ≈ Δ  (where ≈ denotes approximately equal to).

If x = 27 and Δx = –2, we have

2 /33 33 1
27 2 27 (27) ( 2), i.e., 25 3 2 / 27

3
−− − ≈ − − ≈ −

Then 3 25 ≈ 3 – 2/27 or 2.926.
It is interesting to observe that (2.926)3 = 25.05, so the approximation is fairly good.

Differentiation rules: differentiation of elementary functions

4.12. Prove the formula { ( ) ( )} ( ) ( ) ( ) ( ),
d d d

f x g x f x g x g x f x
dx dx dx

= + , assuming f and g are differentiable.

By definition,

0

0

0 0

( ) ( ) – ( ) ( )
{ ( ) ( )} lim

( ) { ( ) – ( )} ( ) { ( ) – ( )}
lim

( ) – ( ) ( ) – ( )
lim ( ) lim ( )

( ) ( ) ( ) ( )

x

x

x x

d f x x g x x f x g x
f x g x

dx x

f x x g x x g x g x f x x f x

x

g x x g x f x x f x
f x x g x

x x

d d
f x g x g x f x

dx dx

Δ →

Δ →

Δ → Δ →

+ Δ + Δ=
Δ

+ Δ + Δ + + Δ=
Δ

⎧ ⎫ ⎧ ⎫+ Δ + Δ= + Δ +⎨ ⎬ ⎨ ⎬Δ Δ⎩ ⎭ ⎩ ⎭

= +

Another method:
Let u = f (x), υ = g(x). Then Δu = f (x + Δx) – f (x) and Δ υ = g(x + Δx) – g(x); i.e., f (x + Δx) = u + Δu,

g(x + Δx) = υ + Δυ. Thus,

0 0

0

( )( )
lim lim

lim

x x

x

d u u u u u u
uv

dx x x

u u d du
u u

x x x dx dx

υ υ υ υ υ υ

υ υυ υ υ

Δ → Δ →

Δ →

+ Δ + Δ − Δ + Δ + Δ Δ= =
Δ Δ

Δ Δ Δ⎛ ⎞= + + Δ = +⎜ ⎟Δ Δ Δ⎝ ⎠
where it is noted that Δυ → 0 as Δx → 0, since υ is supposed differentiable and thus continuous.
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4.13. If y = f (u) where u = g(x), prove that .
dy dy du

dx du dx
= , assuming that f and g are differentiable.

Let x be given an increment Δx � 0. Then, as a consequence, u and y take on increments Δu and Δy, re-
spectively, where

 Δy = f (u + Δu) – f (u),   Δu = g(x + Δx) – g(x) (1)

Note that as Δx → 0, Δy → 0 and Δu → 0.

If Δu � 0, let us write 
y dy

u du

Δ∈ = −
Δ

 so that � → 0 as Δu → 0 and

dy
y u u

du
Δ = Δ + ∈ Δ  (2)

If Δu = 0 for values of Δx, then Equation (1) shows that Δy = 0 for these values of Δx. For such cases, we 
define � = 0.

It follows that in both cases. Δu � 0 or Δu = 0, Equation (2) holds. Dividing Equation (2) by Δx � 0 and 
taking the limit as Δx → 0, we have

0 0 0 0 0
lim lim . lim lim lim
x x x x x

dy y dy u u dy u u

dx x du x x du x xΔ → Δ → Δ → Δ → Δ →

Δ Δ Δ Δ Δ⎛ ⎞= = + ∈ = + ∈.⎜ ⎟Δ Δ Δ Δ Δ⎝ ⎠  (3)

0
dy du

du dx
= + ⋅ 

du dy

dx du
⋅ 

du

dx

4.14. Given (sin ) cos and (cos ) sin ,
d d

x x x x
dx dx

= = −  derive the following formulas:

(a) 2(tan ) sec
d

x x
dx

=    (b) 1

2

1
(sin )

1

d
x

dx x

− =
−

(a)
2

2
2 2

cos (sin ) sinsin
(tan )

cos cos
(cos )(cos ) (sin )( sin ) 1

cos cos

d d
x x xd d x dx dxx

dx dx x x
x x x x

x
x x

−⎛ ⎞= =⎜ ⎟⎝ ⎠
− −= = =

(b) If y = sin–1 x, then x = sin y. Taking the derivative with respect to x,

2 2

1 1 1
1 cos or

cos 1 sin 1

dy dy
y

dx dx y y x
= = = =

− −

We have supposed here that the principal value –π/2 <  sin–1 x < π/2 is chosen so that cos y is positive, 

thus accounting for our writing cos y = 21 sin y−  rather than cos y = ± 21 sin y− .

4.15. Derive the formula 
log

(log ) ( 0, 1),a
a

ed du
u a a

dx u dx
= > ≠  where u is a differentiable function of x.

Consider y = f (u) = logau. By definition,

0 0

/

0 0

log ( ) log( ) ( )
lim lim

1 1
lim log lim log 1

a a

u u

u u

a au u

u u udy f u u f u

du u u

u u u

u u u u

Δ → Δ →

Δ

Δ → Δ →

+ Δ −+ Δ −= =
Δ Δ

+ Δ Δ⎛ ⎞ ⎛ ⎞= = +⎜ ⎟ ⎜ ⎟Δ ⎝ ⎠ ⎝ ⎠

Since the logarithm is a continuous function, this can be written
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/

0

1 1
log lim 1 log

u u

a au

u
e

u u u

Δ

Δ →

⎧ ⎫Δ⎪ ⎪⎛ ⎞+ =⎨ ⎬⎜ ⎟⎝ ⎠⎪ ⎪⎩ ⎭
by Problem 2.19, with x = u/Δu.

Then by Problem 4.13, 
log

(log ) .a
a

ed du
u

dx u dx
=

4.16. Calculate dy/dx if (a) xy3 – 3x2 = xy + 5 and (b) exy + y ln x = cos 2x.

(a) Differentiate with respect to x, considering y as a function of x. (We sometimes say that y is an implicit
function of x, since we cannot solve explicitly for y in terms of x.) Then

2 2 2 3( ) (3 ) ( ) (5) or ( )(3 ') ( )(1) 6 ( )( ') ( )(1) 0
d d d d

xy x xy x y y y x x y y
dx dx dx dx

− = + + − = + +y ′y ′

where y ′ = dy/dx. Solving, 

y ′ = (6x – y3 + y)/(3xy2 – x)

(b) ( ) ( In) (cos2 ). ( ' ) (In ) ' 2sin 2 .xy xyd d d y
e u x e xy y x y x

dx dx dx x
+ = + + + = −y ′xy ′

Solving,

y ′
2

2 sin 2

In

xy

xy

x x xye y

x e x x

+ += −
+

4.17. If y = cosh(x2 – 3x + 1), find (a) dy/dx and (b) d2y/dx2.

(a) Let y = cosh u, where u = x2 – 3x + 1. Then dy/dx = sinh u, du/dx = 2x – 3, and

2. (sinh )(2 3) (2 3)sinh( 3 1)
dy dy du

u x x x x
dx du dx

= = − = − − +

(b)
22 2

2 2
sinh sinh cosh

d y d dy d du d u du
u u u

dx dx dx dx dxdx dx

⎛ ⎞ ⎛ ⎞ ⎛ ⎞= = = +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 = (sinh u)(2) + (cosh u)(2x – 3)2 = 2 sinh(x2 – 3x + 1) + (2x – 3)2 cosh(x2 – 3x + 1)

4.18. If x2y + y3 = 2, find (a) y′ and (b) y″ at the point (1, 1).

(a) Differentiating with respect to x, x2y′ + 2xy + 3y2y′ = 0 and

y ′
2 2

2 1
at (1,1)

23

xy

x xy

−= = −
+

(b) y″
2 2

2 2 2 2 2

2 ( 3 )(2 ' 2 ) (2 )(2 6 ')
( ')

3 ( 3 )

d d xy x y xy y xy x yy
y

dx dx x y x y

− + + − +⎛ ⎞= = = −⎜ ⎟+ +⎝ ⎠
y ′

xy ′ yy ′

Substituting x = 1, y = 1, and y′ = –
1

2
, we find y″ = –

3

8
.

Mean value theorems

4.19. Prove Rolle’s theorem.

Case 1: f (x) ≡ 0 in [a, b]. Then f ′(x) = 0 for all x in (a, b).

Case 2: f (x) ≡/  0 in [a, b]. Since f (x) is continuous, there are points at which f (x) attains its maximum and 
minimum values, denoted by M and m, respectively (see Problem 3.34).

Since f (x) ≡/  0, at least one of the values M, m is not zero. Suppose, for example, M ≡/  0 and that f (ξ) = 
M (see Figure 4.9). For this case, f (ξ + h) < f (ξ).
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Figure 4.9

( ) ( )
If 0, then 0 and

f h f
h

h

ξ ξ+ −> ≤

0

( ) ( )
lim 0
h

f h f

h

ξ ξ
→ +

+ − ≤  (1)

( ) ( )
If 0, then 0 and

f h f
h

h

ξ ξ+ −< >

0

( ) ( )
lim 0
h

f h f

h

ξ ξ
→ −

+ − >  (2)

But, by hypothesis, f (x) has a derivative at all points in (a, b). Then the right-hand derivative (1) must 
be equal to the left-hand derivative (2). This can happen only if they are both equal to zero, in which case 
f ′(ξ) = 0 as required.

A similar argument can be used in case M = 0 and m � 0.

4.20. Prove the mean value theorem.

Define 
( ) ( )

( ) ( ) ( ) ( ) .
f b f a

F x f x f a x a
b a

−= − − −
−Then f (a) = 0 and f (b) = 0.

Also, if f (x) satisfies the conditions on continuity and differentiability specified in Rolle’s theorem, then 
F(x) satisfies them also.

Then, applying Rolle’s theorem to the function F(x), we obtain

F ′(ξ ) = f ′ ( ) ( )
( ) 0, or

f b f a
a b

b a
ξ ξ−− = < <

−
f ′(ξ )

( ) ( )
,

f b f a
a b

b a
ξ−= < <

−

4.21. Verify the mean value theorem for f (x) = 2x2 – 7x + 10, a = 2, b = 5.

f (2) = 4, f (5) = 25, f ′(ξ) = 4ξ – 7. Then the mean value theorem states that 4ξ – 7 = (25 – 4)/(5 – 2) or ξ = 
3.5. Since 2 < ξ < 5, the theorem is verified.

4.22. If f ′(x) = 0 at all points of the interval (a, b), prove that f (x) must be a constant in the interval.

Let x1 < x2 be any two different points in (a, b). By the mean value theorem for x1 < ξ < x2,
2

1
2 2

( ) ( )f x f x

x x

−
=

−
f ′(ξ ) = 0

Thus f (x1) = f (x2) = constant. From this it follows that if two functions have the same derivative at all points 
of (a, b), the functions can differ only by a constant.

4.23. If f ′(x) > 0 at all points of the interval (a, b), prove that f (x) is strictly increasing.

Let x1 < x2 be any two different points in (a, b). By the mean value theorem for x1 < ξ < x2,
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2 1

2 1

( ) ( )
( ) 0

f x f x
f

x x
ξ

− ′= >
−

Then f (x2) > f (x1) for x2 > x1, and so f (x) is strictly increasing.

4.24. (a) 1 1
2 2

Pr ove that tan tan if .
1 1

b a b a
b a a b

b a
− −− −< − < <

+ +

(b) 13 4 1
Show that tan .

4 25 3 4 6

π π−+ < < +

(a) Let f (x) = tan–1x. Since f ′(x) = 1/(1 + x2) and f ′(ξ) = 1/(1 + ξ 2 ), we have by the mean value theorem

1 1

2

tan tan 1

1

b a
a b

b a
ξ

ξ

− −− = < <
− +

Since ξ > a, 1/(1 + ξ2) < 1/(1 + a2). Since ξ < b, 1/(1 + ξ2) > 1/(1 + b2). Then

1 1

2 2

1 tan tan 1

1 1

b a

b ab a

− −−< <
−+ +

and the required result follows on multiplying by b – a.

(b) Let b = 4/3 and a = 1 in the result of (a). Then, since tan+ 1 = π/4, we have

1 1 13 4 1 3 4 1
tan tan 1 or tan

25 3 6 4 25 3 4 6

π π− − −< − < + < < +

4.25. Prove Cauchy’s generalized mean value theorem.

Consider G(x) = f (x) – f (a) – α{g(x) – g(a)}, where α is a constant. Then G(x) satisfies the conditions of 
Rolle’s theorem, provided f (x) and g(x) satisfy the continuity and differentiability conditions of Rolle’s theo-

rem and if G(a) = G(b) = 0. Both latter conditions are satisfied if the constant α = ( ) ( )

( ) ( )

f b f a

g b g a

−
−

.

Applying Rolle’s theorem, G′(ξ) = 0 for a < ξ < b, we have

( ) ( ) ( )
( ) ( ) 0 or ,

( ) ( ) ( )

f f b f a
f ag a b

g g b g a

ξξ ξ ξ
ξ

′ −′ ′− = = < <
′ −

as required.

L’Hospital’s rule

4.26. Prove L’Hospital’s rule for the case of the “indeterminate forms” (a) 0/0 and (b) �/�.

(a) We shall suppose that f (x) and g(x) are differentiable in a < x < b and f (x0) = 0, g(x0) = 0, where a < x0 < b.

By Cauchy’s generalized mean value theorem (Problem 4.25),

0
0

0

( ) ( )( ) ( )

( ) ( ) ( ) ( )

f x f xf x f
x x

g x g x g x g

ξ ξ
ξ

′−
= = < <

′−
Then

0 0 0

( ) ( ) ( )
lim lim lim

( ) ( ) ( )x x x x x x

f x f f x
L

g x g g x

ξ
ξ→ + → + → +

′ ′
= = =

′ ′

since as x → x0+, ξ → x0+.
Modification of this procedure can be used to establish the result if x → x0 –, x → x0, x → �, or x → –�.

(b) We suppose that f (x) and g(x) are differentiable in a < x < b, and 
0

lim
x x→ +

f (x) = �,
0

lim
x x→ +

g(x) = � where 
a < x0 < b.
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Assume x1 is such that a < x0 < x < x1 < b. By Cauchy’s generalized mean value theorem,

1
1

1

( ) ( ) ( )

( ) ( ) ( )

f x f x f
x x

g x g x g

ξ ξ
ξ

′−
= < <

′−
Hence,

1 1

1 1

( ) ( ) 1 ( ) / ( )( ) ( )

( ) ( ) ( ) 1 ( ) / ( ) ( )

f x f x f x f xf x f

g x g x g x g x g x g

ξ
ξ

′− −
= ⋅ =

′− −
from which we see that

( )

( )

f x

g x
= ( )

( )

f

g

ξ
ξ

′
′

1

1

1 ( )/ ( )

1 ( )/ ( )

g x g x

f x f x

−
⋅

−
 (1)

Let us now suppose that 
0

( )
lim

( )x x

f x
L

g x→ +

′
=

′
 and write Equation (1) as

1 1

1 1

1 ( )/ ( ) 1 ( )/ ( )( ) ( )

( ) ( ) 1 ( )/ ( ) 1 ( )/ ( )

g x g x g x g xf x f
L L

g x g x f x f x f x f x

ξ′ − −⎛ ⎞ ⎛ ⎞⎛ ⎞= − +⎜ ⎟ ⎜ ⎟⎜ ⎟′ − −⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 (2)

We can choose x1 so close to x0 that ⏐f ′(ξ)/g′(ξ) – L⏐ < �. Keeping x1 fixed, we see that

0

1

1

1 ( ) / ( )
lim 1

1 ( ) / ( )x x

g x g x

f x f x→ +

−⎛ ⎞ =⎜ ⎟−⎝ ⎠
 since l

0

lim
x x→ +

f (x)1 = � and 
0

lim
x x→ +

g(x) = �

Then taking the limit as x → x0+ on both sides of (2), we see that, as required,

0 0

( ) ( )
lim lim

( ) ( )x x x x

f x f x
L

g x g x→ + → +

′
= =

′

Appropriate modifications of this procedure establish the result if x → x0 –, x → x0, x → �, or x → –�.

4.27. Evaluate (a) 
2

0

1
lim

x

x

e

x→

−
and (b)

21

1 cos
lim

2 1x

x

x x

π
→

+
− +

.

All of these have the “indeterminate form” 0/0.

(a)
2 2

0 0

1 2
lim lim 2

1

x x

x x

e e

x→ →

− = =

(b)
2 2

21 1 1

1 cos sin cos
lim lim lim

2 2 2 22 1x x x

x x x

xx x

π π π π π π
→ → →

+ − − += = =
−− +

Note: Here L’Hospital’s rule is applied twice, since the first application again yields the “indeterminate 
form” 0/0 and the conditions for L’Hospital’s rule are satisfied once more.

4.28. Evaluate (a) 
2

2

3 5
lim

5 6 3x

x x

x x→∞

− +
− −

 and (b) 2lim x

x
x e−

→∞
.

All of these have or can be arranged to have the “indeterminate form” �/�.

(a)
2

2

3 5 6 1 6 3
lim lim lim

10 6 10 55 6 3x x x

x x x

xx x→∞ →∞ →∞

− + −= = =
+− −

(b)
2

2 2 2
lim lim lim lim 0x

x x xx x x x

x x
x e

e e e
−

→∞ →∞ →∞ →∞
= = = =

4.29. Evaluate 
0

lim
x→ +

x2 ln x.

2
2

30 0 00

In 1/
lim In lim lim lim 0

21 2 /2x x xx

x x x
x x =

/x x→ + → + → +→ +

−= =
−

The given limit has the “indeterminate form” 0 · �. In the second step the form is altered so as to give the 
indeterminate form �/�, and L’Hospital’s rule is then applied.
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4.30. Find 
21 /

0
lim (cos ) x

x
x

→
.

Since
0

lim
x→

 cos x = 1 and 
0

lim
x→

1/x2 = �, the limit takes the “indeterminate form” 1�.

Let F(x) = (cos x)1/x2. Then ln F(x) = (ln cos x)/x2, to which L’Hospital’s rule can be applied. We have

20 0 0 0

In cos ( sin )/(cos ) sin cos 1
lim lim lim lim .

2 2 cos 2 sin 2cos 2x x x x

x x x x x

x x x x x xx→ → → →

− − −= = = = −
− +

Thus,
0

1
lim ln ( ) .

2x
F x

→
= −  But since the logarithm is a continuous function, 

0 0
lim ln ( ) ln(lim ( )).
x x

F x F x
→ →

=
Then

21/ 1 / 2

0 0 0

1
ln(lim ( )) or lim ( ) lim (cos )

2
x

x x x
F x F x x e−

→ → →
= − = =

4.31. If F(x) = (e3x – 5x)1/x, find (a)
0

lim
x→

F(x) and (b)
0

lim
x→

F(x).

The respective indeterminate forms in (a) and (b) are �0 and 1�.

Let G(x) = ln
3( ( 5 )

( ) .
xIn e x

F x
x

−= ln
 Then lim

x→∞
G(x) and 

0
lim
x→

G(x) assume the indeterminate forms 

�/� and 0/0, respectively, and L’Hospital’s rule applies. We have

(a)
3 3 3 3

3 3 30 0

In( 5 ) 3 5 9 27
lim lim lim lim 3

5 3 5 9

x x x x

x x xx x x x

e x e e e

x e x e e→ →∞ → →∞

− −= = = =
− −

ln

Then, as in Problem 4.30, lim
x→∞

 (e3x – 5x)1/x = e3.

(b)
3 3

30 0

In ( 5 ) 3 5
lim lim

5

x x

xx x

e x e

x e x→ →

− −= =
−

ln
–2

4.32. Suppose the equation of motion of a particle is x = sin(c1t + c2), where c1 and c2 are constants (simple 
harmonic motion). (a) Show that the acceleration of the particle is proportional to its distance from the 
origin. (b) If c1 = 1, c2 = π, and t ≥ 0, determine the velocity and acceleration at the endpoints and at the 
midpoint of the motion.

(a)
2

2 2
1 1 2 1 1 2 12

cos( ), sin( )
dx d x

c c t c c c t c c x
dt dt

+ = + = −

This relation demonstrates the proportionality of acceleration and distance.
(b) The motion starts at 0 and moves to –1. Then it oscillates between this value and 1. The absolute value of 

the velocity is zero at the endpoints, and that of the acceleration is maximum there. The particle coasts 
through the origin (zero acceleration), while the absolute value of the velocity is maximum there.

4.33. Use Newton’s method to determine 3  to three decimal points of accuracy.

3  is a solution of x2 – 3 = 0, which lies between 1 and 2. Consider f (x) = x2 – 3, then f ′(x) = 2x. The 
graph of f crosses the x axis between 1 and 2. Let x0 = 2. Then f (x0) = 1 and f ′(x0) = 1.75. According to the 

Newton formula, 0
1 0

0

( )
2 .25 1.75.

( )

f x
x x

f x
= − = − =

′

Then 1
2 1

1

( )
1.732.

( )

f x
x x

f x
= − =

′
 To verify the three-decimal-point accuracy, note that (1.732)2 = 2.9998 

and (1.7333)2 = 3.0033.
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Miscellaneous problems

4.34. If x = g(t) and y = f (t) are twice differentiable, find (a) dy/dx and (b) d2y/dx2.

(a) Letting primes denote derivatives with respect to t, we have

/ ( )
( ) 0

/ ( )

dy dy dt f t
if g t

dx dx dt g t

′ ′= = ≠
′

(b)

[ ] [ ]

2

2

2 3

( ) ( )
( ) ( )( )

( ) / ( )

1 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) 0

( ) ( ) ( )

n n

d f t d f t

dt g t dt g td y d dy d f t

dx dx dx g t dx dt g tdx

g t f t f t g t g t f t f t g t
if g t

g t g t g t

′ ′⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟′ ′′⎛ ⎞ ⎛ ⎞ ⎝ ⎠ ⎝ ⎠= = =⎜ ⎟ ⎜ ⎟′ ′⎝ ⎠ ⎝ ⎠

⎧ ⎫′ ′′ ′ ′′ ′ ′− −⎪ ⎪ ′= = ≠⎨ ⎬′ ′ ′⎪ ⎪⎩ ⎭

4.35. Let 
1/ 2 , 0

( ) .
0, 0

xe x
f x

x

−⎧ ≠
= ⎨

≠⎩
 Prove that (a) f ′(0) = 0 and (b) f ″(0) = 0.

(a)

2 21/ 1/

0 0 0

( ) (0) 0
'(0) lim lim lim

h h

h h h

f h f e e
f

h h h

− −

+ → + → + → +

− −= = =

If h = 1/u, using L’Hospital’s rule this limit equals
2 2 2

lim lim / lim 1/2 0u u u

u u u
ue u e ue−

→∞ →∞ →∞
= = =

Similarly, replacing h → 0+ by h → 0– and u → � by u → –�, we find f ′–(0) = 0. Thus, f ′+(0) = f ′–(0) = 0, 
and so f ′(0) = 0.

(b)

2 2

2

1/ 3 1/ 4

0 0 0

( ) (0) 2 0 2 2
(0) lim lim lim lim 0

h h

uh h h u

f h f e h e u
f

h h h e

− − −

+ → + → + → + →∞

′ ′− ⋅ −′′ = = = = =

by successive applications of L’Hospital’s rule.
Similarly, f ″–(0) = 0 and so f ″(0) = 0.
In general, f (n)(0) = 0 for n = 1,2,3, . . . 

4.36. Find the length of the longest ladder which can be carried around the 
corner of a corridor whose dimensions are indicated in Figure 4.10, if 
it is assumed that the ladder is carried parallel to the floor.

The length of the longest ladder is the same as the shortest
straight-line segment AB (Figure 4.10), which touches both outer walls 
and the corner formed by the inner walls.

As seen from Figure 4.10, the length of the ladder AB is L = a sec 
θ + b csc θ.

L is a minimum when dL/dθ = a sec θ tan θ – b csc θ cot θ = 0; 

i.e., asin3 θ = b cos3 θ or tanθ = 3 /b a . Then 
2 / 3 2 / 3

1/ 3
sec

a b

a
θ

+
=

&2 / 3a

and
2 / 3 2 / 3

1/ 3
cos

a b

b
θ

+
= so that L = a secθ + b cscθ = (a2/3 + b2/3)3/2.

Although it is geometrically evident that this gives the minimum length, we can prove this analytically by 
showing that d 2L/dθ 2 for θ = tan–1 3 /b a  is positive (see Problem 4.78).

Figure 4.10
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SUPPLEMENTARY PROBLEMS

Derivatives

4.37. Use the definition to compute the derivatives of each of the following functions at the indicated point: (a) (3x
– 4)/(2x +3), x = 1, (b) x3 – 3x2 + 2x – 5, x = 2, (c) ,x x = 4, and (d) 3 6 4,x − x = 2.

Ans.  (a) 17/25, (b) 2, (c) 
1

4
, (d) 

1

2

4.38. Show from definition that (a) 4 34
d

x x
dx

= and (b) 
2

3 6
, 3

3 (3 )

d x
x

dx x x

+ = ≠
− −

.

4.39. Let f (x) = 
3 sin1/ , 0

0, 0

x x x

x

⎧ ≠
⎨

=⎩
 Prove that (a) f (x) is continuous at x = 0. (b) f (x) has a derivative at x = 0, 

and (c) f ′(x) is continuous at x = 0.

4.40. Let f (x) = 

21/ , 0
.

0, 0

xxe x

x

−⎧ ≠⎪
⎨

=⎪⎩
 Determine whether f (x) (a) is is continuous at x = 0, and (b) has a derivative at 

x = 0.

Ans. (a) Yes (b) Yes, 0

4.41. Give an alternative proof of the theorem in Problem 4.3, using “�, δ” definitions.

4.42. If f (x) = ex, show that f ′(x0) = ex0 depends on the result 
0

lim( 1) / 1.h

h
e h

→
− =

4.43. Use the results 
0 0

lim(sin ) / 1. lim(1 cos ) / 0
h h

h h h h
→ →

= − =  to prove that if f (x) = sin x, f ′(x0) = cosx0.

Right-and left-hand derivatives

4.44. Let f (x) = x⏐x⏐. (a) Calculate the right-hand derivative of f (x) at x = 0. (b) Calculate the left-hand derivative 
of f (x) at x = 0. (c) Does f (x) have a derivative at x = 0? (d) Illustrate the conclusions in (a), (b), and (c) from 
a graph.

Ans. (a) 0 (b) 0 (c) Yes, 0

4.45. Discuss the (a) continuity and (b) differentiability of f (x) = xp sin 1/x, f (0) = 0, where p is any positive 
number. What happens in case p is any real number?

4.46. Let f (x) = 
2

2 3, 0 2
.

3, 2 4

x x

x x

− < <⎧⎪
⎨ − < <⎪⎩

 Discuss the (a) continuity and (b) differentiability of f (x) in 0 < x <  4.

4.47. Prove that the derivative of f (x) at x = x0 exists if and only if f ′+ (x0) = f ′– (x0).

4.48. (a) Prove that f (x) = x3 – x2 + + 5x – 6 is differentiable in a < x < b, where a and b are any constants. 

(b) Find equations for the tangent lines to the curve y = x3 – x2 + 5x – 6 at x = 0 and x = 1. Illustrate by 
means of a graph. (c) Determine the point of intersection of the tangent lines in (b). (d) Find f ′(x), f ″(x),
f ′′′(x), f (IV)(x), . . . 
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Ans. (b) y = 5x – 6, y = 6x – 7 (c) (1, – 1) (d) 3x2 – 2x + 5, 6x – 2, 6, 0, 0, 0, . . . 

4.49. If f (x) = x2⏐x⏐, discuss the existence of successive derivatives of f (x) at x = 0.

Differentials

4.50. If y = f (x) = x + 1/x, find (a) Δy, (b) dy, (c) Δy – dy, (d) (Δy – dy)/Δx, and (e) dy/dx.

Ans. (a)
( )

x
x

x x x

ΔΔ −
+ Δ

 (b)
2

1
1 x

x

⎛ ⎞− Δ⎜ ⎟⎝ ⎠
 (c)

2

2

( )

( )

x

x x x

Δ
+ Δ

 (d)
2 ( )

x

x x x

Δ
+ Δ

 (e)
2

1
1

x
−

Note: Δx = dx.

4.51. If f (x) = x2 + 3x, find (a) Δy, (b) dy, (c) Δy/Δx, (d) dy/ dx, and (e) (Δy – dy)/Δx, if x = 1 and Δx = .01.

Ans. (a) .0501, (b) .05, (c) 5.01, (d) 5, (e) .01

4.52. Using differentials, compute approximate values for each of the following: (a) sin 31º, (b) ln(1.12), (c) 5 36 .

Ans. (a) 0.515, (b) 0.12, (c) 2.0125

4.53. If y = sin x, evaluate (a) Δy and (b) dy. (c) Prove that (Δy – dy)/Δx → 0 as Δx → 0.

Differentiation rules and elementary functions

4.54. Prove the following:

(a) { }( ) ( ) ( ) ( )
d d d

f x g x f x g x
dx dx dx

+ = +

(b) { }( ) ( ) ( ) ( )
d d d

f x g x f x g x
dx dx dx

− = −

(c)
[ ]2

( ) ( ) ( ) ( ) ( )
, ( ) 0.

( ) ( )

d f x g x f x f x g x
g x

dx g x g x

′ ′⎧ ⎫ −= ≠⎨ ⎬
⎩ ⎭ 2

4.55. Evaluate (a) atln
d

dx
x x x x3 2 2 5− +( ){ } = 1 and (b) si

d

dx
nn ( / .2 3 6 0x x+{ } =π at

Ans. (a) 3 ln 4 (b)
3

3
2

4.56. Derive these formulas: (a) ln , 0, 1; csc csc cot ;u ud du d du
a a a a a u u u

dx dx dx dx
= > ≠ = −  and 

(c) 2tanh sec h
d du

u u
dx dx

=  where u is a differentiable function of x.

4.57. Compute (a) 1tan ,
d

x
dx

− (b) 1csc ,
d

x
dx

− (c) 1sinh ,
d

x
dx

− and (d) 1coth ,
d

x
dx

−  paying attention to the 

use of principal values.

4.58. If y = xx, compute dy/dx. (Hint: Take logarithms before differentiating.)

Ans. xx(1 + ln x)
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4.59. If y = {ln(3x + 2)}sin–1(2x+.5), find dy/dx at x = 0.

Ans. / 621n 1n 2
(1n 2)

41n 2 3
ππ⎛ ⎞

+⎜ ⎟
⎝ ⎠

4.60. If y = f (u), where u = g(υ) and υ = h(x), prove that 
dy dy du dv

dx du dv dx
= ⋅ ⋅  assuming f, g, and h are differentiable.

4.61. Calculate (a) dy/dx and (b) d2 y/dx2 if xy – ln y = 1.

Ans. (a) y2/(1 – xy) (b) (3y3 – 2xy4)/(1 – xy)3, provided xy � 1

4.62. If y = tan x, prove that y′′′  = 2(1 + y2)(1 + 3y2).

4.63. If x = sec t and y = tan t, evaluate (a) dy/dx, (b) d2y/dx2, and (c) d3y/dx3, at t = π/4.

Ans. (a) 2 (b) –1 (c) 3 2

4.64. Prove that 

32 2

2 2
,

d y d x dx

dydx dy

⎛ ⎞= − ⎜ ⎟
⎝ ⎠

 stating precise conditions under which it holds.

4.65. Establish formulas (a) 7 and (b) 18 on Pages 73 and 78.

Mean value theorems

4.66. Let f (x) = 1 – (x – 1)2/3, 0 < x <  2. (a) Construct the graph of f (x). (b) Explain why Rolle’s theorem is not 
applicable to this functions; i.e., there is no value ξ for which f ′(ξ) = 0, 0 < ξ < 2.

4.67. Verify Rolle’s theorem for f (x) = x2(1 – x)2, 0 < x <  1.

4.68. Prove that between any two real roots of ex sinx = 1 there is at least one real root of ex cos x = –1. (Hint: 
Apply Rolle’s theorem to the function e–x – sin x.)

4.69. (a) If 0 < a < b, prove that (1 – a/b) < ln b/a < (b/a – 1). (b) Use the result of (a) to show that 
1 1

ln 1.2
6 5

< .

4.70. Prove that (π/6 + 3 /15 ) < sin–1. 6 < (π/6 + 1/8) by using the mean value theorem.

4.71. Show that the function F(x) in Problem 4.20 represents the difference in ordinates of curve ACB and line AB
at any point x in (a, b).

4.72. (a) If f ′(x) <  0 at all points of (a, b), prove that f (x) is monotonic decreasing in (a, b). (b) Under what 
conditions is f (x) strictly decreasing in (a, b)?

4.73. (a) Prove that (sin x)/x is strictly decreasing in (0, π/2). (b) Prove that 0 <  sin x <  2x/π for 0 < x < π/2.

4.74. (a) Prove that 
sin sin

cot ,
cos cos

b a

a b
ξ− =

−
 where ξ is between a and b. (b) By placing a = 0 and b = x in (a),

show that ξ = x/2. Does the result hold if x < 0?
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L’Hospital’s Rule

4.75. Evaluate each of the following limits.

(a)
30

sin
lim
x

x x

x→

−
 (i) 

0
lim (1/ csc )
x

x x
→

−

(b)
2

0

2 1
lim

cos3 2cos2 cos

x ex

x

e

x x x→

− +
− +

 (j) sin

0
lim x

x
x

→

(c) 2

1
lim ( 1) tan / 2
x

x xπ
→

−  (k) 2 2lim(1/ cot )
x

x x
→∞

−

(d) 3 2lim x

x
x e−

→∞
 (l) 

1 1

0

tan sin
lim

(1 cos )x

x x

x x

− −

→

−
−

(e) 3

0
lim ln
x

x x
→ +

 (m) 
3

lim 1n
3x

x
x

x→∞

⎛ ⎞+
⎜ ⎟−⎝ ⎠

(f)
0

lim (3 2 ) /x x

x
x

→
−  (n) 

21/

0

sin
lim

x

x

x

x→

⎛ ⎞
⎜ ⎟⎝ ⎠

(g) 2lim(1 3/ ) x

x
x

→∞
−  (o) 2 1/lim( )x x x

x
x e e

→∞
+ +

(h) 1/ 3lim(1 2 ) x

x
x

→∞
+  (p) 1/ ln

0
lim (sin ) x

x
x

→ +

Ans. (a) 
1

6
 (b) –1 (c) –4/π (d) 0 (e) 0 (f) ln 3/2 (g) e–6 (h) 1 (i) 0 (j) 1 (k) 

2

3
 (l) 

1

3
 (m) 6 (n) e–1/6 (o) e2 (p) e

Miscellaneous problems

4.76. Prove that 
1

1 ln(1 )
1 if 0 1.

1 sin

x x
x

x x−

− +< < < <
+

4.77. If Δf (x) = f (x + Δx) – f (x), (a) prove that Δ{Δf (x)} = Δ2f (x) = f (x + 2Δx) – 2f (x + Δx) + f (x); (b) derive an 

expression for Δnf (x) where n is any positive integer; and (c) show that ( )

0

( )
lim ( )

( )

n
n

nx

f x
f x

xΔ →

Δ =
Δ

 if this limit 
exists.

4.78. Complete the analytic proof mentioned at the end of Problem 4.36.

4.79. Find the relative maximum and minima of f (x) = x2, x > 0.

Ans. f (x) has a relative minimum when x = e–1.

4.80. A train moves according to the rule x = 5t3 + 30t, where t and x are measured in hours and miles, 
respectively. (a) What is the acceleration after 1 minute? (b) What is the speed after 2 hours?

4.81. A stone thrown vertically upward has the law of motion x = –16t2 + 96t. (Assume that the stone is at ground 
level at t = 0, that t is measured in seconds, and that x is measured in feet.) (a) What is the height of the stone 
at t = 2 seconds? (b) To what height does the stone rise? (c) What is the initial velocity, and what is the 
maximum speed attained?

4.82. A particle travels with constant velocities υ1 and υ2 in mediums I and II, respectively (see Figure 4.11). Show that 
in order to go from point P to point Q in the least time, it must follow path PAQ where A is such that

(sin θ1)/(sinθ2) = υ1/υ2
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Note: This is Snell’s law, a fundamental law of optics first discovered experimentally and then derived 
mathematically.

4.83. A variable α is called an infinitesimal if it has zero as a limit. Given two 
infinitesimals α and β, we say that α is an infinitesimal of higher order (or 
the same order) if lim α/β = 0 (or lim α/β = l � 0). Prove that as x → 0, (a) 
sin22x and (1 – cos3x) are infinitesimals of the same order, and (b) (x3 – 
sin3 x) is an infinitesimal of higher order than {x – ln(1 + x) – 1 + cos x}.

4.84. Why can we not use L’Hospital’s rule to prove that 
2

0

sin1/
lim 0

sinx

x x

x→
=

(see Problem 3.91)?

4.85. Can we use L’Hospital’s rule to evaluate the limit of the sequence un = n3e–n2, n = 1, 2, 3, . . . ? Explain.

4.86. (1) Determine decimal approximations with at least three places of accuracy for each of the following 

irrational numbers: (a) 2 , (b) 5 , and (c) 71/3.

(2) The cubic equation x3 – 3x2 + x – 4 = 0 has a root between 3 and 4. Use Newton’s method to determine it 
to at least three places of accuracy.

4.87. Using successive applications of Newton’s method, obtain the positive root of (a) x3 – 2x2 – 2x – 7 = 0 and 
(b) 5 sin x = 4x to three decimal places.

Ans. (a) 3.268 (b) 1.131

4.88. If D denotes the operator d/dx so that Dy ≡ dy/dx while Dky ≡ dky/dxk, prove Leibniz’s formula

Dn(uυ) = (Dnu)υ + nC1(D
n–1u)(Dυ) + nC2(D

n–2u) (D2 υ) + . . . + nCr (D
n–ru)Dr υ + . . . + uDnυ

where nCr = ( )h
r  are the binomial coefficients (see Problem 1.95).

4.89. Prove that 
n

n

d

dx
 (x2 sin x) = {x2 – n(n – 1)} sin(x + nπ/2) – 2nxcos(x + nπ/2).

4.90. If f ′(x0) = f ″(x0) = . . . = f (2n) (x0) = 0 but f (2n+1) (x0) � 0, discuss the behavior of f (x) in the neighborhood of 
x = x0. The point x0 in such case is often called a point of inflection. This is a generalization of the previously 
discussed case corresponding to n = 1.

4.91. Let f (x) be twice differentiable in (a, b) and suppose that f ′(a) = f ′(b) = 0. Prove that there exists at least one 

point ξ in (a, b) such that ⏐f ″(ξ)⏐ <
2

4

( )b a−
 {f (b) – f (a)}. Give a physical interpretation involving the 

velocity and acceleration of a particle.

Figure 4.11
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Integrals

Introduction of the Definite Integral

The geometric problems that motivated the development of the integral calculus (determination of lengths, 
areas, and volumes) arose in the ancient civilizations of northern Africa. Where solutions were found, they 
related to concrete problems such as the measurement of a quantity of grain. Greek philosophers took a more 
abstract approach. In fact, Eudoxus (around 400 B.C.) and Archimedes (250 B.C.) formulated ideas of integra-
tion as we know it today.

Integral calculus developed independently and without an obvious connection to differential calculus. The 
calculus became a “whole” in the last part of the seventeenth century when Isaac Barrow, Isaac Newton, and 
Gottfried Wilhelm Leibniz (with help from others) discovered that the integral of a function could be found 
by asking what was differentiated to obtain that function.

The following introduction of integration is the usual one. It displays the concept geometrically and then 
defines the integral in the nineteenth-century language of limits. This form of definition establishes the basis 
for a wide variety of applications.

Consider the area of the region bound by y = f (x), the x axis, and the joining vertical segments (ordinates) 
x = a and x = b. (See Figure 5.1.)

Figure 5.1

Subdivide the interval a < x < b into n subintervals by means of the points x1, x2, . . . , xn–1, chosen arbi-
trarily. In each of the new intervals (a, x1), (x1, x2), . . . , (xn–1, b) choose points ξ1, ξ2, . . . , ξn arbitrarily. Form 
the sum

1 1 2 2 1 3 3 2 1( )( ) ( )( ) ( )( ) ( )( )n nf x a f x x f x x f b xξ ξ ξ ξ −− + − + − + + −L. . .  (1)

By writing x0 = a, xn = b, and xk – xk–1 = Δxk, this can be written

CHAPTER 5
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1
1 1

( )( ) ( )
n n

k k k k k
k k

f x x f xξ ξ−
= =

− = Δ∑ ∑  (2)

Geometrically, this sum represents the total area of all rectangles in Figure 5.1.
We now let the number of subdivisions n increase in such a way that each Δ xk → 0. If, as a result, the sum 

(1) or (2) approaches a limit which does not depend on the mode of subdivision, we denote this limit by

1

( ) lim ( )
nb

k ka n
k

f x dx f xξ
→∞ =

= Δ∑∫  (3)

This is called the definite integral of f (x) between a and b. In this symbol, f (x) dx is called the integrand and 
[a, b] is called the range of integration. We call a and b the limits of integration, a being the lower limit of 
integration and b the upper limit.

The limit (3) exists whenever f (x) is continuous (or piecewise continuous) in a < x < b (see Problem 
5.31). When this limit exists we say that f is Riemann integrable or simply integrable in [a, b].

The definition of the definite integral as the limit of a sum was established by Cauchy around 1825. It was 
named for Georg Friedrich Bernhard Riemann because he made extensive use of it in this 1850 exposition 
of integration.

Geometrically, the value of this definite integral represents the area bounded by the curve y = f (x), the x
axis, and the ordinates at x = a and x = b only if f (x) >  0. If f (x) is sometimes positive and sometimes nega-
tive, the definite integral represents the algebraic sum of the areas above and below the x axis, treating areas 
above the x axis as positive and areas below the x axis as negative.

Measure Zero

A set of points on the x axis is said to have measure zero if the sum of the lengths of intervals enclosing all 
the points can be made arbitrarily small (less than any given positive number ε). We can show (see Problem 
5.6) that any countable set of points on the real axis has measure zero. In particular, the set of rational num-
bers which is countable (see Problems 1.17 and 1.59), has measure zero.

An important theorem in the theory of Riemann integration is the following:

Theorem. If f (x) is bounded in [a, b], then a necessary and sufficient condition for the existence of ∫
b

a f (x)
dx is that the set of discontinuities of f (x) have measure zero.

Properties of Definite Integrals

If f (x) and g(x) are integrable in [a, b], then

1. { ( ) ( )} ( ) ( )
b b b

a a a
f x g x dx f x dx g x dx± = ±∫ ∫ ∫

2. ( )
b

a
Af x dx∫ ( )

b

a
A f x dx= ∫ where  is any constantA

3. ( ) ( ) ( )
b c b

a a c
f x dx f x dx f x dx= +∫ ∫ ∫ provided f (x) is integrable in [a, c] and [c, b]

4. ( ) ( )
b a

a b
f x dx f x dx= −∫ ∫

5. ( ) 0
a

a
f x dx =∫

6. If in a < x < b, m < f (x) < M where m and M are constants, then ( ) ( ) ( – )
b

a
m b a f x dx M b a− ≤ ≤∫

7. If in a < x < b, f (x) < g(x), then ( ) ( )
b b

a a
f x dx g x dx≤∫ ∫

8. ( ) | ( ) |
b b

a a
f x dx f x dx≤∫ ∫ if a b<
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Mean Value Theorems for Integrals

As in differential calculus, the mean value theorems listed here are existence theorems. The first one gener-
alizes the idea of finding an arithmetic mean (i.e., an average value of a given set of values) to a continuous 
function over an interval. The second mean value theorem is an extension of the first one, which defines a 
weighted average of a continuous function.

By analogy, consider determining the arithmetic mean (i.e., average value) of temperatures at noon for a 
given week. This question is resolved by recording the seven temperatures, adding them, and dividing by 7. 
To generalize from the notion of arithmetic mean and ask for the average temperature for the week is much 
more complicated because the spectrum of temperatures is now continuous. However, it is reasonable to 
believe that there exists a time at which the average temperature takes place. The manner in which the inte-
gral can be employed to resolve the question is suggested by the following example.

Let f be continuous on the closed interval a < x < b. Assume the function is represented by the corre-
spondence y = f (x), with f (x) > 0. Insert points of equal subdivision, a = x0, x1, . . . , xn = b. Then all Δxk = xk

– xk–1 are equal and each can be designated by Δx. Observe that b – a = n Δ x. Let ξk be the midpoint of the 
interval Δxk and f (ξk) the value of f there. Then the average of these functional values is

1 1

1

( ) ( ) [ ( ) ( ) 1
( )

–

n
n n

k k
k

f f f f x
f

n b a b a

ξ ξ ξ ξ
ξ ξ

=

+ + + + Δ
= = Δ

− ∑L L. . . . . .

This sum specifies the average value of the n functions at the midpoints of the intervals. However, we may 
abstract the last member of the string of equalities (dropping the special conditions) and define

1

1 1
lim ( ) ( )

n b

k k an
k

f f x dx
b a b a

ξ ξ
→∞ =

Δ =
− −∑ ∫

as the average value of f on [a, b].
Of course, the question of for what value x = ξ the average is attained is not answered; in fact, in general, 

only existence, not the value, can be demonstrated. To see that there is a point x = ξ such that f (ξ) represents 
the average value of f on [a, b], recall that a continuous function on a closed interval has maximum and 
minimum values M and m, respectively. (Think of the integral as representing the area under the curve; see 
Figure 5.2.) Thus,

( ) ( ) ( )
b

a
m b a f x dx M b a− ≤ ≤ −∫

or

1
( )

b

a
m f x dx M

b a
≤ ≤

− ∫

Figure 5.2
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Since f is a continuous function on a closed interval, there exists a point x = ξ in (a, b) intermediate to m
and M such that

1
( ) ( )

b

a
f f x dx

b a
ξ =

− ∫
While this example is not a rigorous proof of the first mean value theorem, it motivates it and provides an 

interpretation. (See Chapter 3, Theorem 10.)

First Mean Value Theorem If f (x) is continuous in [a, b], there is a point ξ in (a, b) such that

( ) ( ) ( )
b

a
f x dx b a f ξ= −∫  (4)

Generalized First Mean Value Theorem If f(x) and g(x) are continuous in [a, b], and g(x) does not 
change sign in the interval, then there is a point ξ in (a, b) such that

( ) ( ) ( ) ( )
b b

a a
f x g x dx f g x dxξ=∫ ∫  (5)

This reduces to Equation (4) if g(x) = 1.

Connecting Integral and Differential Calculus

In the late seventeenth century the key relationship between the derivative and the integral was established. 
The connection which is embodied in the fundamental theorem of calculus was responsible for the creation 
of a whole new branch of mathematics called analysis.

Definition Any function F such that F´(x) = f (x) is called an antiderivative, primitive, or indefinite integral
of f.

The antiderivative of a function is not unique. This is clear from the observation that for any constant c

(F(x) + c)´ = F´(x) = f (x)

The following theorem is an even stronger statement.

Theorem Any two primitives (i.e., antiderivatives) F and G of f differ at most by a constant; i.e., F(x) – 
G(x) = C.

(See the problem set for the proof of this theorem.)

EXAMPLE. If F´(x) = x2, then 
3

2( )
3

x
F x x dx c= = +∫  is an indefinite integral (antiderivative or primitive) 

of x2.

The indefinite integral (which is a function) may be expressed as a definite integral by writing

( ) ( )
x

c
f x dx f t dt=∫ ∫

The functional character is expressed through the upper limit of the definite integral which appears on the 
right-hand side of the equation.

This notation also emphasizes that the definite integral of a given function depends only on the limits of 
integration, and thus any symbol may be used as the variable of integration. For this reason, that variable is 
often called a dummy variable. The indefinite integral notation on the left depends on continuity of f on a 
domain that is not described. One can visualize the definite integral on the right by thinking of the dummy 
variable t as ranging over a subinterval [c, x]. (There is nothing unique about the letter t; any other convenient 
letter may represent the dummy variable.)
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The previous terminology and explanation set the stage for the fundamental theorem. It is stated in two 
parts. Part 1 states that the antiderivative of f is a new function, the integrand of which is the derivative of 
that function. Part 2 demonstrates how that primitive function (antiderivative) enables us to evaluate definite 
integrals.

The Fundamental Theorem of the Calculus

Part 1. Let f be integrable on a closed interval [a, b]. Let c satisfy the condition a < c < b, and define a 
new function

( ) ( ) if
x

c
F x f t dt a x b= ≤ ≤∫

Then the derivative F´(x) exists at each point x in the open interval (a, b), where f is continuous and F´(x)
= f (x). (See Problem 5.10 for proof of this theorem.)

Part 2. As in Part 1, assume that f is integrable on the closed interval [a, b] and continuous in the open 
interval (a, b). Let F be any antiderivative so that F´(x) = f (x) for each x in (a, b). If a < c < b, then for any x
in (a, b)

( ) ( ) ( )
x

c
f t dt F x F c= −∫

If the open interval on which f is continuous includes a and b, then we may write

( ) ( ) ( ). (See Problem 5.11)
b

a
f x dx F b F a= −∫

This is the usual form in which the theorem is used.

EXAMPLE. To evaluate 
2 2

1
x dx∫  we observe that 

3
2( ) , ( )

3

x
F x x F x c′ = = + , and 

3
2 2

1

2

3
x dx c

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
∫ −

31 7
.

3 3
c

⎛ ⎞
+ =⎜ ⎟

⎝ ⎠
 Since c subtracts out of this evaluation, it is convenient to exclude it and simply write 

3 32 1
.

3 3
−

Generalization of the Limits of Integration

The upper and lower limits of integration may be variables. For example:

cos2
cos 2 2

sin
sin

(cos sin ) / 2
2

x
x

x
x

t
t dt x x

⎡ ⎤
= = −⎢ ⎥

⎣ ⎦
∫

In general, if F´(x) = f (x), then

( )

( )
( ) [ ( )] [ ( )]

x

u x
f t dt F x F u x

υ
υ= =∫

Change of Variable of Integration

If a determination of ∫ f (x) dx is not immediately obvious in terms of elementary functions, useful results 
may be obtained by changing the variable from x to t according to the transformation x = g(t). [This change 
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of integrand that follows is suggested by the differential relation dx = g´(t) dt.] The fundamental theorem 
enabling us to do this is summarized in the statement

( ) { ( )} ( )f x dx f g t g t dt′=∫ ∫  (6)

where, after obtaining the indefinite integral on the right, we replace t by its value in terms of x; i.e., t = g–1

(x). This result is analogous to the chain rule for differentiation (see Page 76).
The corresponding theorem for definite integrals is

( ) { ( )} ( )
b

a
f x dx f g t g t dt

β

α
′=∫ ∫  (7)

where g(α) = a and g(β) = b; i.e., α = g–1 (a), β = g–1(b). This result is certainly valid if f (x) is continuous in 
[a, b] and if g(t) is continuous and has a continuous derivative in α < t < β.

Integrals of Elementary Functions

The following results can be demonstrated by differentiating both sides to produce an identity. In each case, 
an arbitrary constant c (which has been omitted here) should be added.

1.
1

–1
1

n
n u

u du n
n

+

= ≠
+∫  18.  coth ln | sinh |u du u=∫

2. 1n | |
du

u
u

=∫ 1n  19.  1sech tan (sinh )u du u−=∫
3. sin cosu du u= −∫  20.  1csch coth (cosh )u du u−= −∫
4. cos sinu du u=∫  21.  2sech tanhu du u=∫

5.
tan 1n | sec |

1n | cos |

u du u

u

=

= −
∫ 1n

1n
 22.  2csc cothh u du u= −∫

6. cot 1n | sin |u du u=∫ 1n  23.  sech tanh sechu u du u= −∫

7.
sec ln | sec tan |

ln | tan ( / 2 / 4) |

u du u u

u π

= +

= +
∫  24.  csch coth cschu u du u= −∫

8.
csc ln | csc cot |

ln | tan / 2 |

u du u u

u

= −

=
∫  25.  1 1

2 2
sin or cos

du u u

a as u

− −= −
−

∫

9. 2sec tanu du u=∫  26.  2 2

2 2
ln | |

du
u u a

u a
= + ±

±
∫

10. 2csc cotu du u= −∫  27.  1 1
2 2

1 1
tan or cot

du u u

a a a au a
− −= −

+∫

11. sec tan secu u du u=∫  28. 
2 2

1
1n

2

du u a

a u au a

−=
+−∫

12. csc cot cscu u du u= −∫  29.  
2 2 2 2

1
ln

du u

au a u a a u
=

± + ±
∫

13. 0, 1
In

u
u a

a du a a
a

= > ≠∫  30 1 1

2 2

1 1
cos or sec

du a u

a u a au u a

− −=
−

∫
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14. u ue du e=∫  31. 

2 2 2 2

2
2 2

2

In | |
2

u
u a du u a

a
u u a

± = ±

± + ±

∫

15. sinh coshu du u=∫  32.  
2

2 2 2 2 1sin
2 2

u a u
a u du a u

a
−− = − +∫

16. cosh sinhu du u=∫  33.  
2 2

( sin cos )
sin

au
au e a bu b bu

e bu du
a b

−=
+∫

17. tanh ln coshu du u=∫  34.  
2 2

( cos sin )
cos

au
au e a bu b bu

e bu du
a b

+=
+∫

Special Methods of Integration

1. Integration by Parts Let u and υ be differentiable functions. According to the product rule for dif-
ferentials,

( )d u u d duυ υ υ= +

Upon taking the antiderivative of both sides of the equation, we obtain

u u d duυ υ υ= +∫ ∫
This is the formula for integration by parts when written in the form

or ( ) ( ) ( ) ( ) ( ) ( )dv uv du f x g x dx f x g x f x g x dxυ υ ′ ′= − = −∫ ∫ ∫ ∫
where u = f(x) and υ = g(x). The corresponding result for definite integrals over the interval [a, b] is certainly 
valid if f (x) and g(x) are continuous and have continuous derivatives in [a, b]. See Problems 5.17 to 5.19.

2. Partial Fractions Any rational function 
( )

( )

P x

Q x
 where P(x) and Q(x) are polynomials, with the degree 

of P(x) less than that of Q(x), can be written as the sum of rational functions having the form 

2
,

( ) ( )r r

A Ax B

ax b ax bx c

+
+ + +

 where r = 1, 2, 3, . . . , which can always be integrated in terms of elementary 

functions.

EXAMPLE 1.

3 3 2

3 2

4 3 (2 5)(4 3)(2 5) (2 5) (2 5)

x A B C D

x xx x x x

− = + + +
− +− − + +

EXAMPLE 2.

2

2 2 2 2 2

5 2

1( 2 4) ( 1) ( 2 4) 2 4

x x Ax B Cx D E

xx x x x x x x

− + + += + +
−+ + − + + + +

The constants, A, B, C, etc., can be found by clearing of fractions and equating coefficients of like powers 
of x on both sides of the equation or by using special methods (see Problem 5.20).

3. Rational Functions of sin x and cos x These can always be integrated in terms of elementary func-
tions by the substitution tan x/2 = u (see Problem 5.21).
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4. Special Devices Depending on the particular form of the integrand, special devices are often em-
ployed (see Problems 5.22 and 5.23).

Improper Integrals

If the range of integration [a, b] is not finite or if f(x) is not defined or not bounded at one or more points of 
[a, b], then the integral of f (x) over this range is called an improper integral. By use of appropriate limiting 
operations, we may define the integrals in such cases.

EXAMPLE 1

1 1
2 20 0 0

lim lim tan lim tan / 2
1 1

M M

M M M

dx dx
x M

x x
π

∞ − −

→∞ →∞ →∞
= = = =

+ +∫ ∫

EXAMPLE 2

11 1

0 0 0 0
lim lim 2 lim (2 2 ) 2

dx dx
x

x x∈∈→ + ∈→ + ∈→ +∈
= = = − ∈ =∫ ∫

EXAMPLE 3

11 1

0 0 0 0
lim lim ln lim ( ln )

dx dx
x

xx ∈∈→ + ∈→ + ∈→ +∈
= = = − ∈∫ ∫

Since this limit does not exist, we say that the integral diverges (i.e., does not converge).

For further examples, see Problems 5.29 and 5.74 through 5.76. For further discussion of improper integrals, 
see Chapter 12.

Numerical Methods for Evaluating Definite Integrals

Numerical methods for evaluating definite integrals are available in case the integrals cannot be evaluated 
exactly. The following special numerical methods are based on subdividing the interval [a, b] into n equal 
parts of length Δx = (b – a)/n. For simplicity we denote f (a + kΔx) = f (xk) by yk, where k = 0, 1, 2, . . . , n.
The symbol ≈ means “approximately equal.” In general, the approximation improves as n increases.

1. Rectangular Rule

0 1 2 1 1 2 3( ) { } or { }
b

n na
f x dx x y y y y x y y y y−≈ Δ + + + + Δ + + + +∫ L L. . .. . .  (8)

The geometric interpretation is evident from Figure 5.1. When left endpoint function values y0, y1, . . ., yn–1 are 
used, the rule is called the left-hand rule. Similarly, when right endpoint evaluations are employed, it is called the 
right-hand rule.

2. Trapezoidal Rule

0 1 2 1( ) { 2 2 2 }
2

b

n na

x
f x dx y y y y y−

Δ≈ + + + + +∫ L. . .  (9)

This is obtained by taking the mean of the approximations in Equation (8). Geometrically, this replaces 
the curve y = f (x) by a set of approximating line segments.
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3. Simpson’s Rule

0 1 2 3 4 5 2 1( ) { 4 2 4 2 4 2 4 }
3

b

n n na

x
f x dx y y y y y y y y y− −

Δ≈ + + + + + + + + +∫ L. . .  (10)

This formula is obtained by approximating the graph of y = g(x) by a set of parabolic arcs of the form y
= ax2 + bx + c. The correlation of two observations lead to Equation (10). First,

2 2[ ] [2 6 ]
3

h

h

h
ax bx c dx ah c

−
+ + = +∫

The second observation is related to the fact that the vertical parabolas employed here are determined by 
three nonlinear points. In particular, consider (–h, y0), (0, y1), (h, y2), then y0 = a(–h)2 + b(–h) + c, y1 = c, y2

= ah2 + bh + c. Consequently, y0 + 4y1 + y2 = 2ah2 + 6c. Thus, this combination of ordinate values (corre-
sponding to equally spaced domain values) yields the area bounded by the parabola, vertical segments, and 
the x axis. Now these ordinates may be interpreted as those of the function f whose integral is to be ap-
proximated. Then, as illustrated in Figure 5.3:

1 1 0 1 2 3 4 5 2 1
1

[ 4 ] [ 4 2 4 2 4 2 4 ]
3 3

n

k k k n n n
k

h x
y y y y y y y y y y y y− + − −

=

Δ+ + = + + + + + + + + +∑ L. . .

The Simpson rule is likely to give a better approximation than the others for smooth curves.

Applications

The use of the integral as a limit of a sum enables us to solve many physical and geometrical problems such 
as determination of areas, volumes, arc lengths, moments of intertia, and centroids.

Figure 5.3

Arc Length

As you walk a twisting mountain trail, it is possible to determine the distance covered by using a pedometer. 
To create a geometric model of this event, it is necessary to describe the trail and a method of measuring 
distance along it. The trail might be referred to as a path, but in more exacting geometric terminology the 
word curve is appropriate. That segment to be measured is an arc of the curve. The arc is subject to the fol-
lowing restrictions:

1. It does not intersect itself (i.e., it is a simple arc).
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2. There is a tangent line at each point.

3. The tangent line varies continuously over the arc.

These conditions are satisfied with a parametric representation x = f (t), y = g(t), z = h(t), a < t < b, where 
the functions f, g, and h have continuous derivatives that do not simultaneously vanish at any point. This arc 
is in Euclidean three-dimensional space and is discussed in Chapter 10. In this introduction to curves and 
their arc length, we let z = 0, thereby restricting the discussion to the plane.

A careful examination of your walk would reveal movement on a sequence of straight segments, each 
changed in direction from the previous one. This suggests that the length of the arc of a curve is obtained as 
the limit of a sequence of lengths of polygonal approximations. (The polygonal approximations are charac-
terized by the number of divisions n → � and no subdivision is bound from zero. (See Figure 5.4.)

Figure 5.4

Geometrically, the measurement of the kth segment of the arc 0 < t < s is accomplished by employing 
the Pythagorean theorem; thus, the measure is defined by

2 2 1/ 2

1

lim {( ) ( ) }
n

k kn
k

x y
→∞ =

Δ + Δ∑

or, equivalently,
1/ 22

1

lim 1 ( )
n

k
kn

k k

y
x

x→∞ =

⎧ ⎫⎛ ⎞Δ⎪ ⎪+ Δ⎨ ⎬⎜ ⎟Δ⎝ ⎠⎪ ⎪⎩ ⎭
∑

where Δxk = xk – xk–1 and Δyk = yk – yk–1.
Thus, the length of the arc of a curve in rectangular Cartesian coordinates is

1/ 22 2
2 2 1/ 2{[ ( ) ] [ ( )] }

b

a

dx dy
L f t g t dt dt

dt dt

⎧ ⎫⎪ ⎪⎛ ⎞ ⎛ ⎞′ ′= + = +⎨ ⎬⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭
∫ ∫

(This form may be generalized to any number of dimensions.)
Upon changing the variable of integration from t to x we obtain the planar form

1/ 22
( )

( )
1

f b

f a

dy
L

dx

⎧ ⎫⎪ ⎪⎡ ⎤= +⎨ ⎬⎢ ⎥⎣ ⎦⎪ ⎪⎩ ⎭
∫

(This form is appropriate only in the plane.)
The generic differential formula ds2 = dx2 + dy2 is useful, in that various representations algebraically arise 

from it. For example,

ds

dt

expresses instantaneous speed.
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Area

Area was a motivating concept in introducing the integral. Since many applications of the integral are geo-
metrically interpretable in the context of area, an extended formula is listed and illustrated here.

Let f and g be continuous functions whose graphs intersect at the graphical points corresponding to x = a
and x = b, a < b. If g(x) ε f (x) ε f (x) on [a, b], then the area bounded by f (x) and g(x) is

{ ( ) ( )}
b

a
A g x f x dx= −∫

If the functions intersect in (a, b), then the integral yields an algebraic sum. For example, if g(x) = sin x
and f (x) = 0 then

22

0 0
sin cos 0x dx x

ππ
= =∫

Volumes of Revolution

Disk Method Assume that f is continuous on a closed interval a < x < b and that f (x) ε 0. Then the solid 
realized through the revolution of a plane region R [bound by f (x), the x axis, and x = a and x = b] about the 
x axis has the volume

2[ ( )]
b

a
V f x dxπ= ∫

This method of generating a volume is called the disk method because the cross sections of revolution are 
circular disks. See Figure 5.5(a).

Figure 5.5

EXAMPLE. A solid cone is generated by revolving the graph of y = kx, k > 0, and 0 < x < b about the x axis. 
Its volume is

3 3 3 3
2 2

0 03 3

bb k x k b
V k x dxπ π π= = =∫

Shell Method Suppose f is a continuous function on [a, b], a ε 0, satisfying the condition f (x) ε 0. Let R
be a plane region bounded by f(x), x = a, x = b, and the x axis. The volume obtained by orbiting R about the 
y axis is

2 ( )
b

a
V x f x dxπ= ∫
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This method of generating a volume is called the shell method because of the cylindrical nature of the 
vertical lines of revolution. See Figure 5.5(b).

EXAMPLE. If the region bounded by y = kx, 0 < x < b, and x = b (with the same conditions as in the previ-

ous example) is orbited about the y axis, the volume obtained is

3 3

0 0
2 ( ) 2 2

3 3

b bx b
V x kx dx k kπ π π= = =∫

By comparing this example with that in the section on the disk method, it is clear that for the same plane 
region the disk method and the shell method produce different solids and, hence, different volumes.

Moment of Inertia Moment of inertia is an important physical concept that can be studied through its 
idealized geometric form. This form is abstracted in the following way from the physical notions of kinetic 
energy K = 1/2 mυ2 and angular velocity υ = ωr (m represents mass and υ signifies linear velocity). Upon 
substituting for υ,

2 2 2 21 1
( )

2 2
K m r mrω ω= =

When this form is compared to the original representation of kinetic energy, it is reasonable to identify 
mr2 as rotational mass. It is this quantity, l = mr2, that we call the moment of inertia.

Then in a purely geometric sense, we denote a plane region R described through continuous functions f
and g on [a, b], where a > 0 and f (x) and g(x) intersect at a and b only. For simplicity, assume g(x) ε f (x) > 
0. Then

2[ ( ) ( )]
b

a
l x g x f x dx= −∫

By idealizing the plane region R as a volume with uniform density one, the expression [f (x) – g(x)] dx
stands in for mass and r2 has the coordinate representation x2. See Problem 5.25(b) for more details.

SOLVED PROBLEMS

Definition of a definite integral

5.1. If f (x) is continuous in [a, b], prove that 
1

( )
lim ( )

n b

an
k

b a k b a
f a f x dx

n n→∞ =

− −⎛ ⎞+ =⎜ ⎟⎝ ⎠
∑ ∫ .

Since f (x) is continuous, the limit exists independent of the mode of subdivision (see Problem 5.31). 
Choose the subdivision of [a, b] into n equal parts of equal length Δx = (b – a)/n see Figure 5.1. Let ξk = a + 
k(b – a)/n, k = 1, 2, . . ., n. Then

1 1

( )
lim ( ) lim ( )

n n b

k k an n
k k

b a k b a
f x f a f x dx

n n
ξ

→∞ →∞= =

− −⎛ ⎞Δ = + =⎜ ⎟⎝ ⎠
∑ ∑ ∫

5.2. Express 
1

1
lim

n

n
k

k
f

n n→∞ =

⎛ ⎞
⎜ ⎟⎝ ⎠

∑  as a definite integral.

Let a = 0, b = 1 in Problem 5.1. Then

1

0
1

1
lim ( )

n

n
k

k
f f x dx

n n→∞ =

⎛ ⎞ =⎜ ⎟⎝ ⎠
∑ ∫
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5.3. (a) Express 
1 2

0
x∫ dx as a limit of a sum, and use the result to evaluate the given definite integral. (b) Interpret 

the result geometrically.

(a) If f (x) = x2, then f (k/n) = (k/n)2 = k2/n2. Thus, by Problem 5.2,

2
1 2

2 0
1

1
lim

n

n
k

k
x dx

n n→∞ =

=∑ ∫

This can be written, using Problem 1.29,

2 2 2 2 2 2
1 2

2 2 2 30

3

1 1 2 1 2
lim lim

( 1)(2 1)
lim

6
(1 1/ )(2 1/ ) 1

lim
6 3

n n

n

n

n n
x dx

n n n n n

n n n

n
n n

→∞ →∞

→∞

→∞

⎛ ⎞ + + += + + + =⎜ ⎟
⎝ ⎠

+ +=

+ += =

∫
L

L. . .
. . .

which is the required limit.
Note: By using the fundamental theorem of the calculus, we observe that ∫

1

0 x2 dx = (x3/3)⏐
1

0 = 13/3 – 03/3
= 1/3.

(b) The area bounded by the curve y = x2, the x axis, and the line x = 1 is equal to 
1

3
.

5.4. Evaluate 
1 1 1 .lim

1 2n n n n n→∞

⎧ ⎫+ + +⎨ ⎬+ + +⎩ ⎭
L. . .

The required limit can be written

1 1
00

1

1 1 1 1 1 1
lim lim ln |1 + | ln 2

1 1/ 1 2/ 1 / 1 / 1

n

n n k

dx
x

n n n n n n k n x→∞ →∞ =

⎧ ⎫
+ + + = = = =⎨ ⎬+ + + + +⎩ ⎭

∑ ∫L. . .

using Problem 5.2 and the fundamental theorem of the calculus.

5.5. Prove that 
1 2 ( 1) 1 cos .lim sin sin sin

n

t t n t t

n n n n t→∞

⎧ ⎫− −+ + + =⎨ ⎬
⎩ ⎭

L. . .

Let a = 0, b = t, f (x) = sin x in Problem 1. Then

0

1
lim sin sin 1 cos

n t

n
k=1

kt
x dx t

n n→∞
= = −∑ ∫

and so

1 1 cos
lim sin

n-1

n
k=1

kt t

n n t→∞

−=∑

using the fact that 
sin

lim 0.
n

t

n→∞
=

Measure zero
5.6. Prove that a countable point set has measure zero.

Let the point set be denoted by x1, x2, x3, x4, . . . and suppose that intervals of lengths less than ε/2, ε/4,
ε/8, ε/16, . . . , respectively, enclose the points, where ε is any positive number. Then the sum of the lengths of 
the intervals is less than ε/2 + ε/4 + ε/8 + . . . = ε [let a = ε/2 and r = 1/2 in Problem 2.25(a)], showing that the 
set has measure zero.
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Properties of definite integrals

5.7. Prove that ( ) | ( ) | if .
b b

a a
f x dx f x dx a b< <∫ ∫

By absolute value property 2, on Page 4,

1 1 1

( ) | ( ) | | ( ) |
n n n

k k k k k k
k k k

f x f x f xξ ξ ξ
= = =

Δ < Δ = Δ∑ ∑ ∑

Taking the limit as n → � and each Δxk → 0, we have the required result.

5.8. Prove that 
2

2 20

sin
lim 0.
n

nx
dx

x n

π

→∞
=

+∫

2 2 2

2 2 2 2 2 20 0 0

sin sin 2nx nx dx
dx dx

x n x n n n

π π π π< < =
+ +∫ ∫ ∫

Then
2

2 20

sin
lim 0,
n

nx
dx

x n

π

→∞
=

+∫  and so the required result follows.

Mean value theorems for integrals

5.9. Given the right triangle pictured in Figure 5.6: (a) Find the average value of h. (b) At what point does this 

average value occur? (c) Determine the average value of f (x) = sin–1 x, 0 < x < 1

2
. (Use integration by 

parts.) (d) Determine the average value of f (x) = cos2 x, 0 < x <
2

π
.

Figure 5.6

(a) h(x) = 
H

B
x. According to the mean value theorem for integrals, the average value of the function h on 

the interval [0, B] is

0

1

2

B H H
A x dx

B B
= =∫

(b) The point ξ, at which the average value of h occurs, may be obtained by equating f (ξ) with that average 

value, i.e., . Thus, .
2 2

H H B

B
ξ ξ= =

Fundamental theorem of the calculus

5.10. If F(x) = ( )
x

a
f t dt∫  where f (x) is continuous in [a, b], prove that F´(x) = f (x).

F x h F x

h h
f t dt f t dt

h
f

a

x

a

x h( ) ( )
( ) ( )

(

+ − = −{ }
=

∫∫ +1

1
tt dt f x x h

x

x h
) ( )= +

+∫ ξ ξ between and

by the first mean value theorem for integrals (Page 99).
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Then if x is any point interior to [a, b],

0 0

( ) ( )
( ) lim lim ( ) ( )

h h

F x h F x
F x f f x

h
ξ

→ →

+ −′ = = =

since f is continuous.
If x = a or x = b, we use right-or left-hand limits, respectively, and the result holds in these cases as 

well.

5.11. Prove the fundamental theorem of the calculus, Part 2 (Page 101).

By Problem 5.10, if F(x) is any function whose derivative is f (x), we can write

( ) ( )
x

a
F x f t dt c= +∫

where c is any constant (see the last line of Problem 4.22).

Since F(a) = c, it follows that ( ) ( ) ( ) or ( ) ( ) ( )
b b

a a
F x f t dt F a f t dt F b F a= + = −∫ ∫

5.12. If f (x) is continuous in [a, b], prove that ( ) ( )
b

a
F x f t dt= ∫  is continuous in [a, b].

If x is any point interior to [a, b], then, as in Problem 5.10,

0 0
lim ( ) ( ) lim ( ) 0
h h

F x h F x hf ξ
→ →

+ − = =

and F(x) is continuous.
If x = a and x = b, we use right- and left-hand limits, respectively, to show that F(x) is continuous at 

x = a and x = b.

Another Method: By Problems 5.10 and 4.3, it follows that F´(x) exists, and so F(x) must be continuous.

Change of variables and special methods of integration

5.13. Prove the result in Equation (7), Page 102, for changing the variable of integration.

Let ( ) ( ) and ( ) { ( )} ( )
x x

a a
F x f x dx G t f g t g t dt′= =∫ ∫ , where x = g(t)

Then dF = f (x)dx, dG = f {g(t)} g´(t)dt.
Since dx = g´(t) dt, it follows that f(x)dx = f{g(t)} g´(t)dt so that dF(x) = dG(t), from which F(x) = G(t) + c.
Now, when x = a, t = α or F(a) = G(α) + c. But F(a) = G(α) = 0, so that c = 0. Hence, F(x) = G(t). Since 

x = b when t = β, we have

( ) { ( )} ( )
b

a
f x dx f g t g t dt

β

α
′=∫ ∫

as required.

5.14. Evaluate:

(a) ∫(x + 2) sin (x2 + 4x – 6) dx  (c) 
1

1 ( 2) (3 )

dx

x x− + −∫  (e) 
1 2

1/ 2

0 4

sin

1

x x
dx

x

−

−
∫

(b)
cot(ln )x

dx
x∫  (d) ∫ 2–x tanh 21–x dx (f) 

2 1

x dx

x x+ +
∫

(a) Method 1: Let x2 + 4x – 6 = u. Then (2x + 4) dx = du, (x + 2) dx = 
1

2
du, and the integral becomes 

21 1 1
sin cos cos( 4 6)

2 2 2
u du u c x x c= − + = − + − +∫ .
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Method 2:
2 2 2

2

1
( 2)sin ( 4 _ 6) sin( 4 6) ( 4 6)

2
1

cos( 4 6)
2

x x x dx x x d x x

x x c

+ + = + − + −

= − + − +

∫ ∫

(b) Let ln x = u. Then (dx)/x = du and the integral becomes ∫ cot u du = ln ⏐sin u⏐ + c = ln ⏐sin(ln x)⏐ + c.

(c) Method 1:
2 2 2( 2)(3 ) 6 6 ( ) 1

25/4
2

dx dx dx dx

x x x x x x
x

= = =
+ − + − + − ⎛ ⎞− −⎜ ⎟⎝ ⎠

∫ ∫ ∫ ∫ .

Letting x – 
1

2
 = u, this becomes 1 1

2

2 1
sin sin

5/2 525/4

du u x
c c

u

− − −⎛ ⎞= + = +⎜ ⎟⎝ ⎠−
∫

Then
1

1 1 1 1 1 1

1
1

2 1 1 3
sin sin sin sin .2 sin .6

5 5 5( 2)(3 )

dx x

x x
− − − − −

−
−

−⎛ ⎞ ⎛ ⎞ ⎛ ⎞= = − − = +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠+ −∫

Method 2: Let x – 
1

2
 = u as in Method 1. Now, when x = –1, u = – 

3

2
, and when x = 1, u = 

1

2
. Thus, 

by Formula 25, Page 102,

1/ 2
1 1 1/ 2 1

1 1 3 / 22 2
3 / 2

sin
5/2( 2)(3 ) 25/41

25/4
2

dx dx du u

x x u
x

−

− − −
−

= = =
+ − −⎛ ⎞− −⎜ ⎟⎝ ⎠

∫ ∫ ∫

 = sin1 .2 + sin–1 .6

(d) Let 21–x = u. Then –21–x(ln 2)dx = du and 2–x dx = – ,
2 ln 2

du
 so that the integral becomes

11 1
tanh ln cosh 2

2 ln 2 2 ln 2
xu du c−= − +

− ∫
(e) Let sin–1 x2 = u.

2 2 4

1 2
Then 2

1 ( ) 1

x dx
du x dx

x x
= =

− −
 and the integral becomes

2 1 2 21 1 1
(sin )

2 4 4
u du u c x c−= + = +∫

Thus,

21 2 21/ 21/ 2 1 2 2 1

0 4 0

sin 1 1 1 .(sin ) sin
4 4 2 1441

x x
dx x

x

π−
− −⎛ ⎞= = ⎜ ⎟⎝ ⎠−

∫

(f)
2 2 2 2

1 2 1 1 1 2 1 1

2 2 21 1 1 1

xdx x x dx
dx dx

x x x x x x x x

+ − += = −
+ + + + + + + +

∫ ∫ ∫
1/ 22 2

2

1 1
( 1) ( 1)

2 2 1 3
2 4

dx
x x d x x

x

−
= + + + + −

⎛ ⎞+ +⎜ ⎟⎝ ⎠

∫ ∫

2
2 1 1 1 3

1 ln
2 2 2 4

x x x x c
⎛ ⎞= + + − + + + + +⎜ ⎟⎝ ⎠

5.15. Show that 
2

2 3 / 21

1.
6( 2 4)

dx

x x
=

− +∫
Write the integral as 

2

2 3 / 21
.

[( 1) 3]

dx

x − +∫  Let x – 1 = 3  tan u, dx = 3  sec2 u du. When x = 1, u = 

tan–1 0 = 0; when x = 2, u = tan–1 1/ 3  = π/6. Then the integral becomes
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/ 62 2
/ 6 / 6 / 6

2 3 / 2 2 3 / 20 0 0
0

3 sec 3 sec 1 1 1
cos sin

3 3 6[3 3tan ] [3sec ]

u du u du
u du u

u u

π
π π π

= = = =
+∫ ∫ ∫

5.16. Determine 
2

3
.

(ln )

e

e

dx

x x∫
Let ln x = y, (dx)/x = dy. When x = e, y = 1; when x = e2, y = 2. Then the integral becomes

2
2 2

31 1

3

2 8

dy y

y

−

= =
−∫

5.17. Find ∫ xn ln x dx if (a) n � –1 and if (b) n = –1.

(a) Use integration by parts, letting u = ln x, dυ = xn dx, so that du = (dx)/x, υ = xn+1/(n + 1). Then
1 1

1 1

2

.ln ln
1 1

ln
1 ( 1)

n n
n

n n

x x dx
x x dx u d u du x

n n x

x x
x c

n n

υ υ υ
+ +

+ +

= = − = −
+ +

= − +
+ +

∫ ∫ ∫ ∫

(b) 1 21
ln ln (ln ) (ln ) .

2
x x dx x d x x c− = = +∫ ∫

5.18. Find 2 13 .x dx+∫
Let 2 1x +  = y, 2x + 1 = y2. Then dx = y dy and the integral becomes ∫ 3y · y dy.
Integrate by parts, letting u = y, dυ = 3y dy; then du = dy, ν = 3y/(ln 3), and we have

2

. 3 3 . 3 3.3
ln 3 ln 3 ln 3 (ln 3)

y y y y
y y y

y dy u d u du dy cυ υ υ= = − = − = − +∫ ∫ ∫ ∫

5.19. Find 
1

0
ln ( 3) .x x dx+∫

Let u = ln(x + 3), dυ = x dx. Then du = 
2

, .
3 2

dx x

x
υ =

+
 Hence, on integrating by parts,

2 2 2

2 2

1 1 9
ln ( 3) ln ( 3) ln ( 3) 3

2 2 3 2 2 3

1
ln ( 3) 3 9 ln ( 3)

2 2 2

x x dx x
x x dx x x x dx

x x

x x
x x x c

⎛ ⎞
+ = + − = + − − +⎜ ⎟+ +⎝ ⎠

⎧ ⎫
= + − − + + +⎨ ⎬

⎩ ⎭

∫ ∫ ∫

Then
1

0

5 9
ln ( 3) 4 ln 4 ln 3

4 2
x x dx+ = − +∫

5.20. Determine 
6

.
( 3)(2 5)

x
dx

x x

−
− +∫

Use the method of partial fractions. Let 
6 .

( 3)(2 5) 3 2 5

x A B

x x x x

− = +
− + − +

Method 1: To determine the constants A and B, multiply both sides by (x – 3)(2x + 5) to obtain

 6 – x = A(2x + 5) + B(x – 3) or 6 – x = 5A – 3B + (2A + B)x (1)

Since this is an identity, 5A – 3B = 6, 2A + B = –1 and A = 3/11, B = –17/11. Then
6 3 /11 17 /11 3 17

ln | 3 | ln | 2 5 |
( 3)(2 5) 3 2 5 11 22

x
dx dx dx x x c

x x x x

− −= + = − − + +
− + − +∫ ∫ ∫

Method 2: Substitute suitable values for x in the identity (1). For example, letting x = 3 and x = –5/2 in (1), 
we find at once A = 3/11, B = –17/11.
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5.21. Evaluate 
5 3cos

dx

x+∫  by using the substitution tan x/2 = u.

From Figure 5.7 we see that

2 2

1,sin / 2 cos / 2
1 1

u
x x

u u
= =

+ +

Figure 5.7

Then
2

2 2
2

1
cos cos / 2 sin / 2

1

u
x x x

u

−= − =
+

Also

2 2
2

1 2
sec / 2 or 2cos / 2

2 1

du
du x dx dx x du

u
= = =

+
Thus, the integral becomes 

1 1
2

1 1 1
tan / 2 tan tan / 2 .

2 2 24

du
u c x c

u
− − ⎛ ⎞= + = +⎜ ⎟+ ⎝ ⎠∫

5.22. Evaluate 
20

sin
.

1 cos

x x
dx

x

π

+∫
Let x = π – y. Then

2 2 2 20 0 0 0

sin ( )sin sin sin

1 cos 1 cos 1 cos 1 cos

x x y y y y y
I dx dy dy dy

x y y y

π π π ππ π−= = = −
+ + + +∫ ∫ ∫ ∫

1 2
20 0

(cos )
tan (cos ) / 2

1 cos

d y
I y I I

y

ππ
π π π−= − − = − = − = −

+∫
i.e., I = π2/2 – I or I = π2/4.

5.23. Prove that 
/ 2

0

sin .
4sin cos

x
dx

x x

π π=
+∫

Letting x = π/2 – y, we have

/ 2 / 2 / 2

0 0 0

cossin cos

sin cos cos sin cos sin

yx x
I dx dy dx

x x y y x x

π π π
= = =

+ + +∫ ∫ ∫
Then

/ 2 / 2

0 0

/ 2 / 2

0 0

sin cos

sin cos cos sin

sin cos

2sin cos

x x
I I dx dx

x x x x

x x
dx

x x

π π

π π π

+ = +
+ +

+= = =
+

∫ ∫

∫ ∫
from which 2I = π/2 and I = π/4.

The same method can be used to prove that for all real values of m,

/ 2

0

sin

4sin cos

m

m m

x
dx

x x

π π=
+∫

(see Problem 5.89).
Note: This problem and Problem 5.22 show that some definite integrals can be evaluated without first 

finding the corresponding indefinite integrals.
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Numerical methods for evaluating definite integrals

5.24. Evaluate 
1

20 1

dx

x+∫  approximately, using (a) the trapezodial rule, and (b) Simpson’s rule, where the interval 

[0, 1] is divided into n = 4 equal parts.

Let f (x) = 1/(1 + x2). Using the notation on Page 104, we find Δx = (b – a)/n = (1 – 0)/4 = 0.25. Then, 
keeping four decimal places, we have y0 = f(0) = 1.0000, y1 = f(0.25) = 0.9412, y2 = f(0.50) = 0.8000, y3 = 
f (0.75) = 0.6400, and y4 = f (1) = 0.50000.

(a) The trapezoidal rule gives

0 1 2 3 4

0.25
{ 2 2 2 } {1.0000 2(0.9412) 2(0.8000) 2(0.6400) 0.500}

2 2
0.7828.

x
y y y y y

Δ + + + + = + + + +

=
(b) Simpson’s rule gives

0 1 2 3 4

0.25
{ 4 2 4 } {1.0000 4(0.9412) 2(0.8000) 4(0.6400) 0.500}

3 2
0.7854.

x
y y y y y

Δ + + + + = + + + +

=
The true value is π/4 ≈ 0.7854.

Applications (area, arc length, volume, moment of inertia)

5.25. Find (a) the area and (b) the moment of inertia about the y axis of the region in the xy plane bounded by y = 
4 – x2 and the x axis.

(a) Subdivide the region into rectangles as in Figure 5.1. A typical rectangle is shown in Figure 5.8. Then

1

2

1

2 2

2

Required area lim ( )

lim (4 )

32
(4 )

3

n

k kn
k

n

k kn
k

f x

x

x dx

ξ

ξ

→∞ =

→∞ =

−

= Δ

= − Δ

= − =

∑

∑

∫
(b) Assuming unit density, the moment of inertia about the y axis of the typical rectangle shown in Figure 5.8 

is ξ2
k f (ξk) Δxk. Then

Figure 5.8

2 2 2

1 1

2 2 2

2

Required moment of inertia lim ( ) lim (4 )

128
(4 )

15

n n

k k k k k kn n
k k

f x x

x x dx

ξ ξ ξ ξ
→∞ →∞= =

−

= Δ = − Δ

= − =

∑ ∑

∫
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5.26. Find the length of arc of the parabola y = x2 from x = 0 to x = 1.
1 12 2

0 0

1 22 2

0 0

2

2 2

0

Required arc length 1 ( / ) 1 (2 )

1
1 4 1

2
1 1 1 1 1

1 ln( 1 ) 5 ln(2 5)
2 2 2 2 4

dy dx dx x dx

x dx u du

u u u u

= + = +

= + = +

⎧ ⎫= + + + + = + +⎨ ⎬
⎩ ⎭

∫ ∫

∫ ∫

5.27. (a) (Disk method.) Find the volume generated by revolving the region of Problem 5.25 about the x axis.

22 2 2

2
1

Required volume lim (4 ) 512 /15.
n

k kn
k

y x x dxπ π π
−→∞ =

= Δ = − =∑ ∫
(b) (Disk method.) Find the volume of the frustrum of a paraboloid obtained by revolving ( ) ,f x kx=

0 < a < x < b about the x axis.

2 2( )
2

b

a

k
V kxdx b a

ππ= = −∫
(c) (Shell method.) Find the volume obtained by orbiting the region of (b) about the y axis. Compare this 

volume with that obtained in (b).

3

0
2 ( ) 2 / 3

b
V x kx dx kbπ π= =∫

The solids generated by the two regions are different, as are the volumes.

Miscellaneous problems

5.28 If f (x) and g(x) are continuous in [a, b], prove Schwarz’s inequality for integrals:

f x g x dx f x dx g x dx
a

b

a

b

a

b
( ) ( ) { ( )} { ( )}∫ ∫∫( ) <

2
2 2

We have

2 2 2 2{ ( ) ( )} { ( )} 2 ( ) ( ) { ( )} 0
b b b b

a a a a
f x g x dx f x dx f x g x dx g x dxλ λ λ+ = + + >∫ ∫ ∫ ∫

for all real values of λ. Hence, using Equation (1) in Problem 1.13 with

2 2 2 2{ ( )} , { ( )} , ( ) ( )
b b b

a a a
A g x dx B f x dx C f x g x dx= = =∫ ∫ ∫

we find C2 < A2B2, which gives the required result.

5.29. Prove that 
40

.lim
84

M

M

dx

x

π
→∞

=
+∫

We have x4 + 4 = x4 + 4x2 + 4 – 4x2 = (x2 + 2)2 – (2x)2 = (x2 + 2 + 2x)(x2 + 2 – 2x). According to the method 
of partial fractions, assume

4 2 2

1

4 2 2 2 2

Ax B Cx D

x x x x x

+ += +
+ + + − +

Then 1 = (A + C)x3 + (B – 2A + 2C + D)x2 + (2A – 2B + 2C + 2D)x + 2B + 2D, so that A + C = 0, B – 2A

+ 2C + D = 0, 2A – 2B + 2C + 2D = 0, 2B + 2D = 1. Solving simultaneously, 
1 1 1 1 ., , ,
8 4 8 4

A B C D= = = − =
Thus,

4 2 2

2 2 2 2

2 1 2 1

1 2 1 2

8 84 2 2 2 2

1 1 1 1 1 1

8 8 8 8( 1) 1 ( 1) 1 ( 1) 1 ( 1) 1

1 1 1 1
ln( 2 2) tan ( 1) ln( 2 2) tan ( 1)

16 8 16 8

dx x x
dx dx

x x x x x

x dx x dx
dx dx

x x x x

x x x x x x C− −

+ −= −
+ + + − +

+ −= + − +
+ + + + − + − +

= + + + + − − + + − +

∫ ∫ ∫

∫ ∫ ∫ ∫
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Then

2
1 1

4 20

1 2 2 1 1
lim lim ln tan ( 1) tan ( 1)

16 8 8 84 2 2

M

M M

dx M M
M M

x M M

π− −

→∞ →∞

⎧ ⎫⎛ ⎞+ +⎪ ⎪= + + + − =⎨ ⎬⎜ ⎟+ − +⎪ ⎪⎝ ⎠⎩ ⎭
∫

We denote this limit by 
40

,
4

dx

x

∞

+∫  called an improper integral of the first kind. Such integrals are considered 

further in Chapter 12. See also Problem 5.74.

5.30. Evaluate 

3

0
40

sin
.lim

x

x

t dt

x→

∫

The conditions of L’Hospital’s rule are satisfied, so that the required limit is

3 3
3 2 3

0

3 20 0 0 04 3

sin (sin )sin 3 cos 1
lim lim lim lim

44 12( ) (4 )

x

x x x x

d d
t dt xx x xdx dx

d dx xx x
dx dx

→ → → →
= = = =

∫

5.31. Prove that if f (x) is continuous in [a, b], then ( )
b

a
f x dx∫ exists.

Let
1

( ) ,
n

k k
k

f xσ ξ
=

= Δ∑  using the notation of Page 99. Since f (x) is continuous, we can find numbers Mk and 

mk, representing the l.u.b. and g.l.b. of f (x) in the interval [xk–1, xk], i.e., such that mk < f (x) < Mk. We then have

1 1

( ) ( )
n n

k k k k k
k k

m b a s m x M x S M b aσ
= =

− < = Δ < < Δ = < −∑ ∑  (1)

where m and M are the g.l.b. and l.u.b. of f (x) in [a, b]. The sums s and S are sometimes called the lower and 
upper sums, respectively.

Now choose a second mode of subdivision of [a, b] and consider the corresponding lower and upper sums 
denoted by s´ and S´ respectively. We have must

 s´ < S and S´ ε s (2)

To prove this we choose a third mode of subdivision obtained by using the division points of both the first and 
second modes of subdivision and consider the corresponding lower and upper sums, denoted by t and T, re-
spectively. By Problem 5.84, we have

 s < t < T < S´ and s´ < t < T < S (3) 

which proves (2).
From (2) it is also clear that as the number of subdivisions is increased, the upper sums are monotonic 

decreasing and the lower sums are monotonic increasing. Since, according to Equation (1), these sums are also 
bounded, it follows that they have limiting values, which we shall call s  and S, respectively. By By Problem 
5.85, s < S. In order to prove that the integral exists, we must show that s  = S.

Since f (x) is continuous in the closed interval [a, b], it is uniformly continuous. Then, given any ε > 0, we 
can take each Δxk so small that Mk – mk < ε/(b – a). It follows that

1 1

( )
n n

k k k k
k k

S s M m x x
b a= =

∈− = − Δ < Δ = ∈
−∑ ∑ε

ε<  (4)

Now S – s = (S – S) + (S – s ) + ( s  – s) and it follows that each term in parentheses is positive and so is less 
than ε, by Equation (4). In particular, since S – s  is a definite number, it must be zero; i.e., S = s . Thus, the 
limits of the upper and lower sums are equal and the proof is complete.
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SUPPLEMENTARY PROBLEMS

Definition of a definite integral

5.32. (a) Express 
1 3

0
Express x dx∫  as a limit of a sum. (b) Use the result of (a) to evaluate the given definite 

integral. (c) Interpret the result geometrically.

Ans. (b) 
1

4

5.33. Using the definition, evaluate (a) 
2

0
(3 1) ,x dx+∫  and (b) 

6 2

3
( 4 ) .x x dx−∫

Ans. (a) 8 (b) 9

5.34. Prove that 
2 2 2 2 2 2

.lim
41 2n

n n n

n n n n

π
→∞

⎧ ⎫
+ + + =⎨ ⎬+ + +⎩ ⎭

L. . .

5.35. Prove that 
1

1 2 3 1
lim if 1

1

p p p p

pn

n
p

pn +→∞

⎧ ⎫+ + + + = > −⎨ ⎬+⎩ ⎭

L. . .

5.36. Using the definition, prove that .
b x b a

a
e dx e e= −∫

5.37. Work Problem 5.5 directly, using Problem 1.94.

5.38. Prove that 
2 2 2 2 2 2

1 1 1
lim ln(1 2).

1 2n n n n n→∞

⎧ ⎫⎪ ⎪+ + + = +⎨ ⎬
+ + +⎪ ⎪⎩ ⎭

L. . .

5.38. Prove that 
1

2 2 2
1

tan
lim if 0.

n

n
k

n x
x

xn k x

−

→∞ =

= ≠
+∑

Properties of definite integrals

5.40. Prove (a) Property 2 and (b) Property 3, on Page 102.

5.41. If f (x) is integrable in (a, c) and (c, b), prove that ( ) ( ) ( ) .
b c b

a a c
f x dx f x dx f x dx= +∫ ∫ ∫

5.42. If f (x) and g(x) are integrable in [a, b] and f (x) < g(x), prove that ( ) ( ) .
b b

a a
f x dx g x dx<∫ ∫

5.43. Prove that 1 – cos x ε x2/π for 0 < x < π/2.

5.44. Prove that 
1

0

cos
ln 2 for all .

1

nx
dx n

x
<

+∫

5.45. Prove that 
3

21

sin .
121

xe x
dx

ex

π−

<
+∫
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Mean value theorems for integrals

5.46. Prove result (5), Page 100. [Hint: If m < f (x) < M, then mg(x) < f (x)g(x) < Mg(x). Now integrate and 

divide by ( ) .
b

a
g x dx∫  Then apply Theorem 9, from Chapter 3.]

5.47. Prove that there exist values ξ1 and ξ2 in 0 < x <  1 such that

1

22 20
1

sin 2
sin

41 ( 1)

x
dx

x

π π πξ
π ξ

= =
+ +∫

(Hint: Apply the first mean value theorem.)

5.48. (a) Prove that there is a value ξ in 0 < x < π such that 
0

xe
π −∫ cos x dx = sin ξ. (b) Suppose a wedge in the 

shape of a right triangle is idealized by the region bounded by the x axis, f (x) = x, and x = L. Let the weight 
distribution for the wedge be defined by W(x) = x2 + 1. Use the generalized mean value theorem to show that 

the point at which the weighted value occurs is 
2

2

3 2 .
4 3

L L

L

+
+

Change of variables and special methods of integration

5.49. Evaluate: 

(a)
32 sin 3cosxx e x dx∫  (b) 

1
1

20

tan
.

1

t
dt

t

−

+∫ (c)
3

1 24

dx

x x−
∫ (d)

2csch
.

u
du

u∫

Ans. (a) 
3sin1

3
xe c+  (b) 2 / 32π  (c) / 3π  (d) 2coth u c− + (e)

1
ln 3

4

5.50. Show that (a) 
1

2 3 / 20

3

12(3 2 )

dx

x x
=

+ −∫  and (b) 
2

2 2

1

1

xdx
c

xx x

−
= +

−
∫

5.51. Prove that (a) 2 2 2 2 2 2 21 1
ln | |

2 2
u a du u u a a u u a± = ± ± + ±∫  and 

(b) 2 2 2 2 2 11 1
sin / , 0.

2 2
a u du u a u a u a c a−− = − + + >∫

5.52. Find 
2 2 5

x dx

x x+ +
∫

Ans. 2 22 5 ln | 1 2 5 | .x x x x x c+ + − + + + + +

5.53. Establish the validity of the method of integration by parts.

5.54. Evaluate (a) 
0

cos3x x dx
π

∫  and (b) 3 2 xx e dx−∫
Ans. (a) 2 / 9− (b) 2 3 21

(4 6 6 3)
3

xe x x x c−− + + + +
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5.55. Show that (a) 
1 2 1

0

1 1 1
tan ln 2

12 6 6
x x dx π− = − +∫ and (b) 

2 2

2

5 7 3 3 3 5 2 7
1 ln

4 4 8 2 3 3
x x dx

−

⎛ ⎞++ + = + + ⎜ ⎟⎜ ⎟−⎝ ⎠
∫

5.56. (a) If u = f (x) and υ = g(x) have continuous nth derivatives, prove that 

( ) ( 1) ( 2) ( 3) ( )( 1)n n n n n nu dx u u u u dxυ υ υ υ υ− − −′ ′′= − + − − −∫ ∫L. . . , called generalized integration by parts.

(b) What simplifications occur if u(n) = 0? Discuss. (c) Use (a) to evaluate 4

0
sin .x x dx

π

∫
Ans. (c) 4 212 48π π− +

5.57. Show that 
1

2 20

2

8( 1) ( 1)

x dx

x x

π −=
+ +∫  [Hint: Use partial fractions; i.e., assume 

2 2 2 21( 1) ( 1) ( 1) 1

x A B Cx D

xx x x x

+= + +
++ + + +

 and find A, B, C, D.]

5.58. Prove that 
0 2

, 1.
cos 1

dx

x

π π α
α α

= >
− −

∫

Numerical methods for evaluating definite integrals

5.59. Evaluate 
1

0 1

dx

x+∫  approximately, using (a) the trapezoidal rule and (b) Simpson’s rule, taking n = 4. 

Compare with the exact value, ln 2 = 0.6931.

5.60. Using (a) the trapezoidal rule and (b) Simpson’s rule, evaluate 
/ 2 2

0
sin x dx

π

∫ by obtaining the values of 

sin2 x at x = 0º, 10º, . . ., 90º and compare with the exact value π/4.

5.61. Prove (a) the rectangular rule and (b) the trapezoidal rule, i.e., Equations (8) and (9), Page 104.

5.62. Prove Simpson’s rule.

5.63. Evaluate the following to three decimal places using numerical integration: 

(a)
2

21 1

dx

x+∫  (b) 
1 2

0
cosh x dx∫

Ans. (a) 0.322 (b) 1.105

Applications

5.64. Find (a) the area and (b) the moment of inertia about the y axis of the region in the xy plane bounded by y = 
sin x, 0 < x < π, and the x axis, assuming unit density.

Ans. (a) 2 (b) π2 – 4

5.65. Find the moment of inertia about the x axis of the region bounded by y = x2 and y = x, if the density is 
proportional to the distance from the x axis.

Ans.
1
8

M, where M = mass of the region
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5.66. (a) Show that the arc length of the catenary y = cosh x from x = 0 to x = ln 2 is 
3

4
. (b) Show that the length 

of arc of 3 / 2 3 / 2343
, 2 5 is 2 2 11 .

27
y x x= < < −

5.67. Show that the length of one arc of the cycloid x = a(θ – sin θ), y = a(1 – cos θ), (0 < τ <  2π) is 8a.

5.68. Prove that the area bounded by the ellipse x2/a2 + y2/b2 = 1 is πab.

5.69. (a) (Disk method.) Find the volume of the region obtained by revolving the curve y = sin x, 0 < x < π,
about the x axis.

Ans. (a) π2/2

(b) (Disk method.) Show that the volume of the frustrum of a paraboloid obtained by revolving f (x) = kx , 0 < 

a < x < b about the x axis is 2 2( ).
2

b

a

k
kx dx b a

ππ = −∫  (c) Determine the volume obtained by rotating the 

region bound by f (x) = 3, g(x) = 5 – x2 on – 2 < x < 2 . (d) (Shell method.) A spherical bead of radius a has 
a circular cylindrical hole of radius b, b < a, through the center. Find the volume of the remaining solid by the 
shell method. (e) (Shell method.) Find the volume of a solid whose outer boundary is a torus [i.e., the solid is 
generated by orbiting a circle (x – a)2 – y2 = b2 about the y axis (a > b)].

5.70. Prove that the centroid of the region bounded by y = 2 2 ,a x−  –a < x < a, and the x axis is located at 
(0, 4a/3π).

5.71. (a) If ρ = f (φ) is the equation of a curve in polar coordinates, show that the area bounded by this curve and 

the lines φ = θ and φ = φ2 is 
1

21

2

ø

ø
døρ∫ φ. (b) Find the area bounded by one loop of the lemniscate ρ2 = a2 cos 2φ.

Ans. (b) a2

5.72. (a) Prove that the arc length of the curve in Problem 5.71(a) is 
2

1

2 2( / ) .
ø

ø
d dø døρ ρ+∫ φ.φ  (b) Find the length 

of arc of the cardioid ρ = a(1 – cos φ).

Ans. (b) 8a

Miscellaneous problems

5.73. Establish the mean value theorem for derivatives from the first mean value theorem for integrals. [Hint: Let 
f (x) = F´(x) in (4), Page 100.]

5.74. Prove that (a) 
4

00
lim 4,

4

dx

x

−∈

∈→ +
=

−∫  (b) 
3

30
lim 6,

dx

x∈∈→ +
=∫  (c) 

1

0 20
lim

21

dx

x

π−∈

∈→ +
=

−
∫ , and give a geometric 

interpretation of the results.

(These limits, denoted usually by 
4

0
,

4

dx

x−∫
3

30

dx

x∫ , and 
1

0 21

dx

x−
∫ , respectively, are called improper 

integrals of the second kind (see Problem 5.29), since the integrands are not bounded in the range of integra-
tion. For further discussion of improper integrals, see Chapter 12.)
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5.75. Prove that (a) 5

0
lim 4! 24,

M x

M
x e dx−

→∞
= =∫  and (b) 

2

10
.lim

2(2 )

dx

x x

π−∈

∈→ +
=

−∫

5.76. Evaluate (a) 
30

,
1

dx

x

∞

+∫ (b)
/ 2

4 / 30

sin 2
.

(sin )

x
dx

x

π

∫ , and (c) 
0 2

.
1

dx

x x

∞

+ +
∫

Ans. (a) 
2

3 3

π
 (b) 3 (c) does not exist

5.77. Evaluate

/ 22 sin

/ 2

/ / 4
.lim

1 cos 2

t

x

x

ex e e dt

x

π

π

π π
→

− +

+
∫

Ans. e/2π

5.78. Prove: (a) 
3

2

2 3 5 3 2( 1) 3 2 3 2
x

x

d
t t dt x x x x x

dx
+ + = + − + −∫ and

(b)
2

2 4 2cos 2 cos cos .
x

x

d
t dt x x x

dx
= −∫

5.79. Prove that (a) 
0

1 sin 4x dx
π

+ =∫ and (b) 
/ 2

0
2 ln( 2 1).

sin cos

dx

x x

π
= +

+∫

5.80. Explain the fallacy 
1 1

2 21 1
,

1 1

dx dy
I I

x y− −
= = − = −

+ +∫ ∫  using the transformation x = 1/y. Hence, I = 0. But 

I = tan–1(1) – tan–1(–1) = π/4 – (–π/4) = π/2. Thus, π/2 = 0.

5.81. Prove that 
1/ 2 1

0 2

cos 1 1 .tan
4 21

x
dx

x

π −<
+

∫

5.82. Evaluate 
3 / 2

1 2 2 1
.lim

n

n n n

n→∞

⎧ ⎫+ + + + + −⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭

LL

2
. (2 2 1)

3
Ans −

5.83.
1 if is irrational

Prove that ( ) is not Riemann integrable in [0, 1].
0 if is rational

x
f x

x

⎧
= ⎨

⎩
[Hint: In Equation (2), Page 98, let ξk, k = 1, 2, 3, . . ., n be first rational and then irrational points of 

subdivision and examine the lower and upper sums of Problem 5.31.]

5.84. Prove the result (3) of Problem 5.31. (Hint: First consider the effect of only one additional point of 
subdivision.)

5.85. In Problem 5.31, prove that s < S. (Hint: Assume the contrary and obtain a contradiction.)

5.86. If f (x) is sectionally continuous in [a, b], prove that ( )
b

a
f x dx∫ exists. (Hint: Enclose each point of 

discontinuity in an interval, noting that the sum of the lengths of such intervals can be made arbitrarily 
small. Then consider the difference between the upper and lower sums.)

5.87.
2

0

2 0 1

If ( ) 3 1 , find ( ) .

6 1 1 2

x x

f x x f x dx

x x

< <⎧
⎪= =⎨
⎪ − < <⎩

∫  Interpret the result graphically. 

Ans. 9
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5.88. Evaluate 
3

0

1
[ ]

2
x x dx

⎧ ⎫− +⎨ ⎬
⎩ ⎭∫  where [x] denotes the greatest integer less than or equal to x. Interpret the 

result graphically. 

Ans. 3

5.89. (a) Prove that 
/ 2

0

sin

4sin cos

m

m m

x
dx

x x

π π=
+∫  for all real values of m.

(b) Prove that 
2

40
.

1 tan

dx

x

π
π=

+∫

5.90. Prove that 
/ 2

0

sin
exists.

x
dx

x

π

∫

5.91. Show that 
1

0.5

0

tan
0.4872 approximately.

x
dx

x

−

=∫

5.92. Show that 
2

20
.

1 cos 2 2

xdx

x

π π=
+∫
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Partial Derivatives

Functions of Two or More Variables

The definition of a function was given in Chapter 3 (page 43). For us, the distinction for functions of two 
or more variables is that the domain is a set of n-tuples of numbers. The range remains one- dimensional 
and is referred to an interval of numbers. If n = 2, the domain is pictured as a two- dimensional region. The 
region is referred to a rectangular Cartesian coordinate system described through number pairs (x, y), and 
the range variable is usually denoted by z. The domain variables are independent, while the range variable 
is dependent.

We use the notation f (x, y), F(x, y), etc., to denote the value of the function at (x, y) and write z = f (x, y),
z = F(x, y), etc. We also sometimes use the notation z = z(x, y), although it should be understood that in this 
case z is used in two senses, namely, as a function and as a variable.

EXAMPLE. If f (x, y) = x2 + 2y3, then f (3, – 1) = (3)2 + 2(–1)3 = 7.

The concept is easily extended. Thus, w = F(x, y, z) denotes the value of a function at (x, y, z) (a point in 
three-dimensional space), etc.

EXAMPLE. If 2 21 ( ),z x y= − +  the domain for which z is real consists of the set of points (x, y) such that 

x2 + y2 <  1, i.e., the set of points inside and on a circle in the xy plane having center at (0, 0) and radius 1.

A three- dimensional rectangular Cartesian coordinate system is obtained by constructing three mutually 
perpendicular axes (the x, y, and z axes) intersecting in a point (designated by 0 and called the origin). This 
is a natural extension of the rectangular system x, y in the plane. A point in the three- dimensional Cartesian 
system is represented by the triple of coordinates (x, y, z). The collection of points P(x, y, z), represented by 
the implicit equation F(x, y, z) = 0, is a surface. The term surface is used in a very broad sense and requires 
refinement according to the context in which it is to be used. For example, x2 + y2 + z2 = r2 is the algebraic 
representation of a surface in the large. This form might be employed in topology to indicate the property of 
being closed rather than open. In analysis, which is the subject of this outline of advanced calculus, the con-
cern is with portions of a surface—that is, points and their neighborhoods. These may be obtained from 
implicit representations by imposing restrictions. For example,

z = �r2 − (x�2 + y2)� with 1x2 + y21 < r

signifies an open upper hemisphere. Problems in surface theory employ partial derivatives and relate to a 
point of a surface, the collection of points about it, the tangent plane at the point, and the properties of con-
tinuity and differentiability binding this structure. These concepts will be discussed in the following pages.

For functions of more than two variables such geometric interpretation fails, although the terminology is 
still employed. For example, (x, y, z, w) is a point in four-dimensional space, and w = f (x, y, z) [or F(x, y, z,
w) = 0] represents a hypersurface in four dimensions; thus, x2 + y2 + z2 + w2 = a2 represents a hypersphere in 

four dimensions with radius a > 0 and center at (0, 0, 0, 0). 2 2 2 2( ),w a x y z= − + + x2 + y2 + z2 < a2 de-
scribes a function generated from the hypersphere.

CHAPTER 6
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Neighborhoods

The set of all points (x, y) such that ⏐x – x0⏐ < δ, ⏐y – y0⏐ < δ where δ > 0 is called a rectangular δ neighbor-
hood of (x0, y0); the set 0 < ⏐x – x0⏐ < δ, 0 < ⏐y – y0⏐ < δ, which excludes (x0, y0), is called a rectangular 
deleted δ neighborhood of (x0, y0). Similar remarks can be made for made for other neighborhoods; e.g., (x
– x0)

2 + (y – y0)
2 < δ2 is a circular δ neighborhood of (x0, y0). The term open ball is used to designate this 

circular neighborhood. This terminology is appropriate for generalization 
to more dimensions. Whether neighborhoods are viewed as circular or 
square is immaterial, since the descriptions are interchangeable. Simply 
notice that given an open ball (circular neighborhood) of radius δ there is a 
centered square whose side is of length less than 2 δ that is interior to the 
open ball, and, conversely, for a square of side δ there is an interior centered 
circle of radius less than δ/2. (See Figure 6.1.)

A point (x0, y0) is called a limit point, accumulation point, or cluster 
point of a point set S if every deleted δ neighborhood of (x0, y0) contains 
points of S. As in the case of one-dimensional point sets, every bounded infinite set has at least one limit 
point (the Bolzano- Weierstrass theorem; see Chapter 1). A set containing all its limit points is called a 
closed set.

Regions

A point P belonging to a point set S is called an interior point of S if there exists a deleted δ neighborhood of 
P all of whose points belong to S. A point P not belonging to S is called an exterior point of S if there exists a 
deleted δ neighborhood of P all of whose points do not belong to S. A point P is called a boundary point of S
if every deleted δ neighborhood of P contains points belonging to S and also points not belonging to S.

If any two points of a set S can be joined by a path consisting of 
a finite number of broken line segments all of whose points belong 
to S, then S is called a connected set. A region is a connected set 
which consists of interior points or interior and boundary points. A 
closed region is a region containing all its boundary points. An open
region consists only of interior points. The complement of a set S in 
the xy plane is the set of all points in the plane not belonging to S.
(See Figure 6.2.)

Examples of some regions are shown graphically in Figure 6.3(a), 
(b), and (c) . The rectangular region of Figure 6.1(a), including the 
boundary, represents the sets of points a < x < b, c < y < d which 
is a natural extension of the closed interval a < x < b for one dimen-
sion. The set a < x < b, c < y < d corresponds to the boundary being excluded.

Figure 6.3

Figure 6.1

Figure 6.2
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In the regions of Figure 6.3(a) and (b), any simple closed curve (one which does not intersect itself any-
where) lying inside the region can be shrunk to a point which also lies in the region. Such regions are called 
simply connected regions. In Figure 6.3(c), however, a simple closed curve ABCD surrounding one of the 
“holes” in the region cannot be shrunk to a point without leaving the region. Such regions are called multiply
connected regions.

Limits

Let f (x, y) be defined in a deleted δ neighborhood of (x0, y0) [i.e., f (x, y) may be undefined at (x0, y0)]. We 
say that l is the limit of f (x,y) as x approaches x0 and y approaches y0 [or (x, y) approaches (x0, y0)] and write 

0

0

lim
x x
y y

→
→

f (x, y) = l [or 
0 0( , ) ( , )

lim
x y x y→

f (x, y) = l] if for any positive number δ we can find some positive number 

δ [depending on δ and (x0, y0), in general] such that ⏐f (x, y) – l⏐ < δ whenever 0 < ⏐x – x0⏐ < δ and 0 < 
⏐y – y0⏐ < δ.

If desired, we can use the deleted circular neighborhood open ball 0 < (x – x0)
2 + (y – y0)

2 < δ2 instead of 
the deleted rectangular neighborhood.

EXAMPLE. Let
3 if ( , ) (1, 2)

( , ) :
0 if ( , ) (1, 2)

xy x y
f x y

x y

≠⎧
= ⎨ =⎩

 As x → 1 and y → 2 [or (x, y) → (1, 2)], f (x, y) gets 

closer to 3(1)(2) = 6 and we suspect that 
1
2

lim
x
x

→
→

f (x, y) = 6. To prove this, we must show that the preceding defi-

nition of limit, with l = 6, is satisfied. Such a proof can be supplied by a method similar to that of Problem 6.4.

Note that 
1
2

lim
x
x

→
→

f (x, y) � f (1, 2) since f (1, 2) = 0. The limit would, in fact, be 6 even if f (x, y) were not 

defined at (1, 2). Thus, the existence of the limit of f (x, y) as (x, y) → (x0, y0) is in no way dependent on the 
existence of a value of f (x, y) at (x0, y0).

Note that in order for 
0 0( , ) ( , )

lim
x y x y→

f (x, y) to exist, it must have the same value regardless of the approach of 

(x, y) to (x0, y0). It follows that if two different approaches give different values, the limit cannot exist (see 
Problem 6.7). This implies, as in the case of functions of one variable, that if a limit exists it is unique.

The concept of one-sided limits for functions of one variable is easily extended to functions of more than 
one variable.

EXAMPLE 1. 1 1

0 0
1 1

lim tan ( / ) / 2, lim tan ( / ) / 2.
x x
y y

y x y xπ π− −

→ + → −
→ →

= = −

EXAMPLE 2. 1

0
1

lim tan ( / )
x
y

y x−

→
→

 does not exist, as is clear from the fact that the two different approaches of 

Example 1 give different results.

In general, the theorems on limits, concepts of infinity, etc., for functions of one variable (see Page 25) 
apply as well, with appropriate modifications, to functions of two or more variables.

Iterated Limits

The iterated limits lim lim ( , ) lim lim ( ,
x x y y y y x x

f x y f x
→ → → →{ }

0 0 0 0

and yy){ } [also denoted by 
0

lim
x x→ 0

lim
y y→

f (x, y) and 
0

lim
y y→ 0

lim
x x→

f (x, y), respectively] are not necessarily equal. Although they must be equal if 
0

0

lim
x x
y y

→
→

f (x, y) is to exist, their 
equality does not guarantee the existence of this last limit.
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EXAMPLE. If ( , ) ,
x y

x y
x y

−=
+

 then 
0 0 0 0 0 0

lim lim lim (1) 1 and lim lim lim( 1) 1.
x y y y x y

x y x y

x y x y→ → → → → →

⎛ ⎞ ⎛ ⎞− −= = = − = −⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠
Thus, the iterated limits are not equal and so 

0
0

lim
x
y

→
→

f (x, y) cannot exist.

Continuity

Let f (x, y) be defined in a δ neighborhood of (x0, y0) [i.e., f(x, y) must be defined at (x0, y0) as well as near it].
We say that f (x, y) is continuous at (x0, y0) if for any positive number δ we can find some positive number δ
[depending on δ and (x0, y0) in general] such that ⏐f (x, y) – f (x0, y0)⏐ < δ whenever ⏐x – x0⏐ < δ and ⏐y – y0⏐
< δ, or, alternatively, (x – x0)

2 + (y – y0)
2 < δ2.

Note that three conditions must be satisfied in order for f(x, y) to be continuous at (x0, y0):

1.
0 0( , ) ( , )

lim
x y x y→

f (x, y) = l; i.e., the limit exists as (x, y) → (x0, y0).

2. f (x0, y0) must exist; i.e., f (x, y) is defined at (x0, y0).

3. l = f (x0, y0).

If desired, we can write this in the suggestive form 
0

0

lim
x x
y y

→
→

f (x, y) = f (
0

lim
x x→

x,
0

lim
y y→

y).

EXAMPLE. If
3 ( , ) (1, 2)

f ( , ) ,
0 ( , ) (1, 2)

xy x y
f x y

x y

≠⎧
= ⎨ =⎩

 then 
( , ) (1,2)

lim ( , ) 6 (1, 2).
x y

f x y f
→

= ≠ Hence, f (x, y) is not 

continuous at (1, 2). If we redefine the function so that f (x, y) = 6 for (x, y) = (1, 2), then the function is contin-
uous at (1, 2).

If a function is not continuous at a point (x0, y0), it is said to be discontinuous at (x0, y0), which is then 
called a point of discontinuity. If, as in the preceding example, it is possible to redefine the value of a function 
at a point of discontinuity so that the new function is continuous, we say that the point is a removable dis-
continuity of the old function. A function is said to be continuous in a region ℜ of the xy plane if it is con-
tinuous at every point of ℜ.

Many of the theorems on continuity for functions of a single variable can, with suitable modification, be 
extended to functions of two more variables.

Uniform Continuity

In the definition of continuity of f (x, y) at (x0, y0), δ depends on δ and also (x0, y0) in general. If in a region ℜ
we can find a δ which depends only on δ but not on any particular point (x0, y0) in ℜ (i.e., the same δ will work 
for all points in ℜ), then f (x, y) is said to be uniformly continuous in ℜ. As in the case of functions of one 
variable, it can be proved that a function which is continuous in a closed and bounded region is uniformly 
continuous in the region.

Partial Derivatives

The ordinary derivative of a function of several variables with respect to one of the independent varia-
bles, keeping all other independent variables constant, is called the partial derivative of the function 
with respect to the variable. Partial derivatives of f (x, y) with respect to x and y are denoted by 

or , ( , ), and or , ( , ), ,x x y y
y x

f f f
f f x y f f x y

x x y y

⎡ ⎤ ⎡ ⎤∂ ∂ ∂ ∂
⎢ ⎥ ⎢ ⎥∂ ∂ ∂⎢ ⎥ ⎣ ⎦⎣ ⎦x∂

 respectively, the latter notations being used when 

needed to emphasize which variables are held constant.
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By definition,

0 0

( , ) ( , ) ( , ) ( , )
lim , lim

x y

f f x x y f x y f f x y y f x y

x x y yΔ → Δ →

∂ + Δ − ∂ + Δ −= =
∂ Δ ∂ Δ

 (1)

when these limits exist. The derivatives evaluated at the particular point (x0, y0) are often indicated by 

0 0 0 0

0 0 0 0
( , ) ( , )

( , ) and ( , ),x x
x y x y

f f
f x y f x y

x y

∂ ∂= =
∂ ∂

 respectively.

EXAMPLE. If f (x, y) = 2x3 + 3xy2, then fx = ∂f/∂x = 6x2 + 3y2 and fy = ∂f/∂y = 6xy. Also, f (1, 2) = 6(1)2 + 3(2)2

= 18, fy(1, 2) = 6(1)(2) = 12.

If a function f has continuous partial derivatives ∂f/∂x, ∂f/∂y in a region, then f must be continuous in the 
region. However, the existence of these partial derivatives alone is not enough to guarantee the continuity of f
(see Problem 6.9).

Higher-Order Partial Derivatives

If f (x, y) has partial derivatives at each point (x, y) in a region, then ∂f/∂x and ∂f/∂y are themselves functions 
of x and y, which may also have partial derivatives. These second derivatives are denoted by are denoted by

2 2 2 2

2 2
, , ,xx yy yx xy

f f f f f f f f
f f f f

x x y y x y x y y x y xx y

⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞= = = = = = = =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠
 (2)

If fxy and fyx are continuous, then fxy = fyx and the order of differentiation is immaterial; otherwise they may 
not be equal (see Problems 6.13 and 6.41).

EXAMPLE. If f (x, y) = 2x3 + 3xy2 (see preceding example), then fxx = 12x, fyy = 6x, and fxy = 6y = fyx. In such 
case fxx(1, 2) = 12, fyy (1, 2) = 6, and fxy(1, 2) = fyx(1, 2) = 12.

In a similar manner, higher order derivatives are defined. For example, 
3

2 yxx

f
f

x y

∂ =
∂ ∂

 is the derivative of f
taken once with respect to y and twice with respect to x.

Differentials

(The section on differentials in Chapter 4 should be read before beginning this one.)
Let Δx = dx and Δy = dy be increments given to x and y, respectively. Then

 Δz = f (x + Δx, y + Δy) – f (x, y) = Δf (3)

is called the increment in z = f (x, y). If f (x, y) has continuous first partial derivatives in a region, then

1 2 1 2

f f z z
z x y x y dx dy dx dy f

x y x y
ε ε ε ε∂ ∂ ∂ ∂Δ = Δ + Δ + Δ + Δ = + + + = Δ

∂ ∂ ∂ ∂
� � � �  (4)

where �1 and �2 approach zero as Δx and Δy approach zero (see Problem 6.14). The expression

or
z z f f

dz dx dy df dx dy
x y x y

∂ ∂ ∂ ∂= + = +
∂ ∂ ∂ ∂

 (5)

is called the total differential or simply the differential of z or f, or the principal part of Δz or Δf. Note that 
Δz � dz in general. However, if Δx = dx and Δy = dy are “small,” then dz is a close approximation of Δz (see 
Problem 6.15). The quantities dx and dy—called differentials of x and y, respectively—need not be small.

The form dz = fx(x0, y0)dx + fy(x0, y0)dy signifies a linear function with the independent variables dx and 
dy and the dependent range variable dz. In the one-variable case, the corresponding linear function represents 
the tangent line to the underlying curve. In this case, the underlying entity is a surface and the linear function 
generates the tangent plane at P0. In a small enough neighborhood, this tangent plane is an approximation of 
the surface (i.e., the linear representation of the surface at P0). If y is held constant, then we obtain the curve 
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of intersection of the surface and the coordinate plane y = y0. The differential form reduces to dz = fx(x0, y0)
dx (i.e., the one- variable case). A similar statement follows when x is held constant. (See Figure 6.4.)

Figure 6.4

If f is such that Δf (or Δz) can be expressed in the form of Equation (4) where �1 and �2 approach zero as 
Δx and Δy approach zero, we call f differentiable at (x, y). The mere existence of fx and fy does not in itself 
guarantee differentiability; however, continuity of fx and fy does (although this condition happens to be 
slightly stronger than necessary). In case fx and fy are continuous in a region ℜ, we say that f is continuously
differentiable in ℜ.

Theorems on Differentials

In the following, we assume that all functions have continuous first partial derivatives in a region ℜ; i.e., the 
functions are continuously differentiable in ℜ.

1. If z = f (x1, x2, . . . , xn), then

1 2
1 2

n
n

f f f
df dx dx dx

x x x

∂ ∂ ∂= + + +
∂ ∂ ∂

L. . .  (6)

regardless of whether the variables x1, x2, . . ., xn are independent or dependent on other variables (see 
Problem 6.20). This is a generalization of result in Equation (5). In Euqtion (6) we often use z in place 
of f.

2. If f (x1, x2, . . ., xn) = c, a constant, then df = 0. Note that in this case x1, x2, . . ., xn cannot all be inde-
pendent variables.

3. The expression P(x, y)dx + Q(x, y)dy, or, briefly, P dx + Q dy, is the differential of f (x, y) if and only 

if .
P Q

y x

∂ ∂=
∂ ∂

 In such case, P dx + Q dy is called an exact differential.

Note: Observe that 
P Q

y x

∂ ∂=
∂ ∂

 implies that 
2 2

.
f f

y x x y

∂ ∂=
∂ ∂ ∂ ∂

4. The expression P(x, y, z) dx + Q(x, y, z)dy + R(x, y, z)dz, or, briefly, P dx + Q dy + R dz, is the differ-

ential of f (x, y, z) if and only if , , .
P Q Q R R P

y x z y x z

∂ ∂ ∂ ∂ ∂ ∂= = =
∂ ∂ ∂ ∂ ∂ ∂

 In such case, P dx + Q dy + R dz is 

called an exact differential.

Proofs of Theorems 3 and 4 are best supplied by methods of later chapters (see Problems 10.13 and 10.30).
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Differentiation of Composite Functions

Let z = f(x, y) where x = g(r, s), y = h(r, s) so that z is a function of r and s. Then

,
z z x z y z z x z y

r x r y r s x s y s

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂= + = +
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

 (7)

In general, if u = F(x1, . . . , xn) where x1 = f1(r1, . . ., rp), . . ., xn = fn (r1, . . . , rp), then

1 2

1 2

1, 2, ,
k k k n k

x xu u u u u
k p

r x r x r x r

∂ ∂∂ ∂ ∂ ∂ ∂= + + + =
∂ ∂ ∂ ∂ ∂ ∂ ∂

L K. . . . . .  (8)

If, in particular, x1, x2, . . . , xn depend on only one variable s, then

1 2

1 2

n

n

dxdx dxdu u u u

ds x ds x ds x ds

∂ ∂ ∂= + + +
∂ ∂ ∂

L. . .  (9)

These results, often called chain rules, are useful in transforming derivatives from one set of variables to 
another.

Higher derivatives are obtained by repeated application of the chain rules.

Euler’s Theorem on Homogeneous Functions

A function represented by F(x1, x2, . . ., x2, . . . , xn) is called homogeneous of degree p if, for all values of the 
parameter λ and some constant p, we have the identity

 F(λx1, λx2, . . . , λxn) = λp F(x1, x2, . . . , xn) (10)

EXAMPLE. F(x, y) = x4 + 2xy3 – 5y4 is homogeneous of degree 4, since

F(λx, λy) = (λx)4 + 2(λx)(λy)3 – 5(λy)4 = λ4(x4 + 2xy3 – 5y4) = λ4F(x, y)

Euler’s theorem on homogeneous functions states that if F(x1, x2, . . . , xn) is homogeneous of degree p,
then (see Problem 6.25)

1 2
1 2

n
n

F F F
x x x pF

x x x

∂ ∂ ∂+ + + =
∂ ∂ ∂

L. . .  (11)

Implicit Functions

In general, an equation such as F(x, y, z) = 0 defines one variable—say, z—as a function of the other two 
variables x and y. Then z is sometimes called an implicit function of x and y, as distinguished from an explicit 
function f, where z = f (x, y), which is such that F[x, y, f (x, y)] ≡ 0.

Differentiation of implicit functions requires considerable discipline in interpreting the independent and 
dependent character of the variables and in distinguishing the intent of one’s notation. For example, suppose 
that in the implicit equation F[x, y, f (x, z)] = 0, the independent variables are x and y and that z = f (x, y). In 

order to find and ,
f f

x y

∂ ∂
∂ ∂

 we initially write the following [observe that F(x, t, z) is zero for all domain pairs 

(x, y); i.e., it is a constant]:

0 = dF = Fx dx + Fy dy + Fz dz

and then compute the partial derivatives Fx, Fy, Fz as though y, y, z constituted an independent set of variables. 

At this stage we invoke the dependence of z on x and y to obtain the differential form .
f f

dz dx dy
x y

∂ ∂= +
∂ ∂

Upon substitution and some algebra (see Problem 6.30), the following results are obtained:
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, yx

z z

FFf f

x F y F

∂ ∂= − = −
∂ ∂

EXAMPLE. If 0 = F(x, y, z) = x2z + yz2 + 2xy2 – z3 and z = f (x, y), then Fx = 2xz + 2y2, Fy = z2 + 4xy.
Fz = x2 + 2yz – 3z2. Then

2 2

2 2 2 2

(2 2 ) ( 4 )
,

2 3 2 3

f xz y f z xy

x yx yz z x yz x

∂ + ∂ += − = −
∂ ∂+ − + −

Observe that f need not be known to obtain these results. If that information is available, then (at least 
theoretically) the partial derivatives may be expressed through the independent variables x and y.

Jacobians

If F(u, υ) and G(u, υ) are differentiable in a region, the Jacobian determinant, or the Jacobian, of F and G
with respect to u and υ is the second-order functional determinant defined by

( , )

( , )
u

u

F F
F FF G u
G GG Gu

u

υ

υ

υ
υ

υ

∂ ∂
∂ ∂ ∂= =

∂ ∂∂
∂ ∂

 (12)

Similarly, the third-order determinant

( , , )

( , , )

u w

u w

u w

F F F
F G H

G G G
u w

H H H

υ

υ

υ

υ
∂ =
∂

is called the Jacobian of F, G, and H with respect to u, υ, and w. Extensions easily made.

Partial Derivatives Using Jacobians

Jacobians often prove useful in obtaining partial derivatives of implicit functions. Thus, for example, given 
the simultaneous equations

F(x, y, u, υ) = 0,   G(x, y, u, υ) = 0

we may, in general, consider u and υ as functions of x and y. In this case, we have (see Problem 6.31)

( , ) ( , ) ( , ) ( , )
( , ) ( , ) ( , ) ( , )

, , ,
( , ) ( , ) ( , ) ( , )
( , ) ( , ) ( , ) ( , )

F G F G F G F G
u ux y u x u y

F G F G F G F Gx y x y
u u u u

υ υυ υ

υ υ υ υ

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂∂ ∂ ∂ ∂= − = − = − = −

∂ ∂ ∂ ∂∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

The ideas are easily extended. Thus, if we consider the simultaneous equations

F(u, υ, w, x, y) = 0,   G(u, υ, w, x, y) y) = 0,   H(u, υ, w, x, y) = 0

we may, for example, consider u, υ, and w as functions of x and y. In this case,

( , , ) ( , , )
( , , ) ( , , )

,
( , , ) ( , , )
( , , ) ( , , )

F G H F G H
u wx w u y

F G H F G Hx y
u w u w

υ υ

υ υ

∂ ∂
∂ ∂∂ ∂= − = −

∂ ∂∂ ∂
∂ ∂

with similar results for the remaining partial derivatives (see Problem 6.33).
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Theorems on Jacobians

In the following we assume that all functions are continuously differentiable.

1. A necessary and sufficient condition that the equations F(u, υ, x, y, z) = 0 and G(u, υ, x, y, z) = 0 can 

be solved for u and υ (for example) is that 
( , )

( , )

F G

u υ
∂
∂

 is not identically zero in a region ℜ.

Similar results are valid for m equations in n variables, where m < n.

2. If x and y are functions of u and υ while u and υ are functions of and s, then (see Problem 6.43)

( , ) ( , ) ( , )

( , ) ( , ) ( , )

x y x y u

r s u r s

υ
υ

∂ ∂ ∂=
∂ ∂ ∂

 (13)

This is an example of a chain rule for Jacobians. These ideas are capable of generalization (see Prob-
lems 6.107 and 6.109, for example).

3. If u = f(x, y) and υ = g(x, y), then a necessary and sufficient condition that a functional relation of the 

form φ(u, υ) = 0 exists between u and υ is that 
( , )

( , )

u

x y

υ∂
∂

 be identically zero Similar results. hold for n

functions of n variables.

Further discussion of Jacobians appears in Chapter 7, where vector interpretations are employed.

Transformations

The set of equations
( , )

( , )

x F u

y F u

υ
υ

=⎧
⎨ =⎩

 (14)

defines, in general, a transformation or mapping which establishes a correspondence between points in the 
uυ and xy planes. If to each point in the uυ plane there corresponds one and only one the xy plane, and con-
versely, we speak of a one-to-one transformation or mapping. This will be so if F and G are continuously 
differentiable, with Jacobian not identically zero in a region. In such case (which we assume unless otherwise 
stated), Equations (14) are said to define a continuously differentiable transformation or mapping.

The words transformation and mapping describe the same mathematical concept in different ways. A 
transformation correlates one coordinate representation of a region of space with another. A mapping views 
this correspondence as a correlation of two distinct regions.

Under the transformation (14) a closed region ℜ of the xy plane is, in general, mapped into a closed region 
ℜ′ of the uυ plane. Then if ΔAxy and ΔAuυ denote, respectively, the areas of these regions, we can show that

( , )
lim

( , )
xy

u

A x y

A uυ υ
Δ ∂=
Δ ∂

 (15)

where lim denotes the limit as ΔAxy (or ΔAuυ) approaches zero. The Jacobian on the right of Equation (15) is 
often called the Jacobian of the transformation (14).

If we solve transformation (14) for u and υ in terms of x and y, we obtain the transformation u = f (x, y), υ = 

g(x, y), often called the inverse transformation corresponding to (14). The Jacobians 
( , ) ( , )

and
( , ) ( , )

u x y

x y u

υ
υ

∂ ∂
∂ ∂

 of 

these transformations are reciprocals of each other (see Problem 6.43). Hence, if one Jacobian is different from 
zero in a region, the inverse exists and is not zero.

These ideas can be extended to transformations in three or higher dimensions. We deal further with these 
topics in Chapter 7, where use is made of the simplicity of vector notation and interpretation.
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Curvilinear Coordinates

Rectangular Cartesian coordinates in the Euclidean plane or in three- dimensional space were mentioned at 
the beginning of this chapter. Other coordinate systems, the coordinate curves of which are generated from 
families that are not necessarily linear, are useful. These are called curvilinear coordinates.

EXAMPLE 1. Polar coordinates ρ, Φ are related to rectangular Cartesian coordinates through the transforma-
tion x = ρ cos Φ and y = ρ sin Φ. The curves Φ = Φ0 are radical lines, while ρ = r0 are concentric circles. 
Among the convenient representations yielded by these coordinates are circles with the center at the origin. A 
weakness is that representations may not be defined at the origin.

EXAMPLE 2. Spherical coordinates r, Θ, Φ0 for Euclidean three- dimensional space are generated from rect-
angular Cartesian coordinates by the transformation equations x = r sin Θ cos Φ, y = r sin Θ sin Φ, and z = r cos 
Φ. Again, certain problems lend themselves to spherical coordinates, and also uniqueness of representation can 
be a problem at the origin. The coordinate surfaces r = r0, Θ = Θ0, and Φ = Φ0 are spheres, planes, and cones, 
respectively. The coordinate curves are the intersections of these surfaces, i.e., circles, circles, and lines.

For curvilinear coordinates in higher dimensional spaces, see Chapter 7.

Mean Value Theorem

If f (x, y) is continuous in a closed region and if the first partial derivatives exist in the open region (i.e., ex-
cluding boundary points). then

 f (x0 + h, y0 + k) – f (x0, y0) = hfx (x0 + θh, y0 + θk) + kfy(x0 + θh, y0 + θk)   0 < θ < 1 (16)

This is sometimes written in a form in which h = Δx = x – x0 and k = Δy = y – y0.

SOLVED PROBLEMS

Functions and graphs

6.1. 3 2 1 2 ( , ) ( , )
If ( , ) 2 3 , find: (a) , ; ( ) , 0.

f x y k f x y
f x y x xy y f c k

x y k

⎛ ⎞ + −= − + ≠⎜ ⎟
⎝ ⎠

(a) f (–2,3) = (–2)3 – 2(–2)(3) + 3(3)2 = –8 + 12 + 27 = 31

(b)

23

3 2

1 2 1 1 2 2 1 4 12
, 2 3f

x y x x y y xyx y

⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞= − + = − +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠

(c) 3 2 3 2

3 2 2 2 2

2

( , ) ( , ) 1
{[ 2 ( ) 3( ) ] [ 2 3 ]}

1
( 2 2 3 6 3 2 3 )

1
( 2 6 3 ) 2 6 3 .

f x y k f x y
x x y k y k x xy y

k k

x xy kx y ky k x xy y
k

kx ky k x y k
k

+ − = − + + + − − +

= − − + + + − + −

= − = + = − + +–

6.2. Give the domain of definition for which each of the following functions is defined and real, and indicate this 
domain graphically.

(a) f (x, y) = ln{(16 – x2 – y2)(x2 + y2 – 4)}

The function is defined and real for all points (x, y) such that

(16 – x2 – y2)(x2 + y2 – 4) > 0,   i.e., 4 < x2 + y2 < 16
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which is the required domain of definition. This point set consists of all points interior to the circle of radius 
4 with center at the origin and exterior to the circle of radius 2 with center at the origin, as in Figure 6.5. 
The corresponding region, shown shaded in 
Figure 6.5, is an open region.

(b) ( , ) 6 (2 3 )f x y x y= − +

The function is defined and real for all 
points (x, y) such that 2x + 3y <  6, which is 
the required domain of definition.

The corresponding (unbounded) region 
of the xy plane is shown shaded in Figure 6.6.

6.3. Sketch and name the surface in three-dimensional space represented 
by each of the following. What are the traces on the coordinate 
planes?

(a) 2x + 4y + 3z = 12.

Trace on xy plane (z = 0) is the straight line x + 2y = 6, z = 0.
Trace on yz plane (x = 0) is the straight line 4y + 3z = 12, x = 0.
Trace on xz plane (y = 0) is the straight line 2x + 3z = 12, y = 0.
These are represented by AB, BC, and AC in Figure 6.7.

The surface is a plane intersecting the x, y, and z axes in the points 

A(6, 0, 0), B(0, 3, 0), and C(0, 0, 4). The lengths 6, 3,OA OB= =  and 

4OC = are called the x, y, and z intercepts, respectively.

(b)
2 2 2

2 2 2
1

x y z

a b c
+ − =

Trace on xy plane (z = 0) is the ellipse 
2 2

2 2
1, 0.

x y
z

a b
+ = =

Trace on yz plane (x = 0) is the hyperbola 
2 2

2 2
1, 0.

y z
x

b c
− = =

Trace on xz plane (y = 0) is the hyperbola 
2 2

2 2
1, 0.

x z
y

a c
− = =

Trace on any plane z = p parallel to the xy plane is the ellipse 
2 2

2 2 2 2 2 2
1

(1 / ) (1 / )

x y

a p c b p c
+ =

+ +
.

As ⏐p⏐ increases from zero, the elliptic cross section increases in size.
The surface is a hyperboloid of one sheet (see Figure 6.8).

Figure 6.8

Figure 6.5

Figure 6.6

Figure 6.7



CHAPTER 6  Partial Derivatives136

Limits and continuity

6.4. Prove that 2

1
2

lim ( 2 ) 5.
x
y

x y
→
→

+ =

Method 1, using definition of limit.
We must show that, given any δ > 0, we can find δ > 0 such that ⏐x2 + 2y – 5⏐ < δ when 0 < ⏐x – 1⏐ < δ,

0 < ⏐y – 2⏐ < δ.
If 0 < ⏐x – 1⏐ < δ and 0 <⏐y – 2⏐ < δ, then 1 – δ x < 1 + < δ and 2 – δ < y < 2 + δ, excluding x = 1, 

y = 2.
Thus, 1 – 2δ + δ 2 < x2 < 1 + 2δ + δ 2 and 4 – 2δ < 2y < 4 + 2δ. Adding

5 – 4δ + δ 2 < x2 + 2y < 5 + 4δ + δ 2 or -48 + δ 2 < x2 + 2y – 5 < 4δ + δ 2

Now, if δ <  1, it certainly follows that –5δ < x2 + 2y – 5 < 5δ; i.e., ⏐x2 + 2y – 5⏐ < 5δ whenever 0 < ⏐x – 1⏐
< δ, 0 < ⏐y – 2⏐ < δ. Then, choosing 5δ = �, i.e., δ = �/5 (or δ = 1, whichever is smaller), it follows that ⏐x2 + 2y – 5⏐
< � when 0 < ⏐x – 1⏐ < δ, 0 < ⏐y – 2⏐ < δ; i.e., 

1
2

lim
x
y

→
→

 (x2 + 2y) = 5.

Method 2, using theorems on limits.

2 2

1 1 1
2 2 2

lim( 2 ) lim lim 2 1 4 5
x x x
x x x

x y x y
→ → →
→ → →

+ = + = + =

6.5. Prove that f (x, y) = x2 + 2y is continuous at (1, 2).

By Problem 6.4, 
1
2

lim
x
y

→
→

f (x, y) = 5. Also, f (1, 2) = 12 + 2(2) = 5.

Then
1
2

lim
x
y

→
→

f (x, y) = f (1, 2) and the function is continuous at (1, 2).

Alternatively, we can show, in much the same manner as in the first method of Problem 6.4, that given 
any δ > 0 we can find δ > 0 such that ⏐f (x, y) – f (1, 2)⏐ < δ when ⏐x – 1⏐ < δ, ⏐y – 2⏐ < δ.

6.6. Determine whether 
2 2 , ( , ) (1, 2)

( , )
0, ( , ) (1, 2)

x y x y
f x y

x y

+ ≠
=

=
(a) has a limit as x → 1 and y → 2, and (b) is 

continuous at (1, 2).

(a) By Problem 6.4, it follows that 
1
2

lim ( , ) 5,
x
x

f x y
→
→

=  since the limit has nothing to do with the value at (1, 2).

(b) Since 
1
2

lim ( , ) 5
x
x

f x y
→
→

=  and f (1, 2) = 0, it follows that 
1
2

lim ( , ) (1, 2).
x
y

f x y f
→
→

≠  Hence, the function is 

discontinuous at (1, 2).

6.7. Investigate the continuity of ( )
2 2

2 2
( , ) (0, 0)

( , ) . at 0,0 .

0 ( , ) (0, 0)

x y
x y

f x y x y

x y

⎧ − ≠⎪= +⎨
⎪ =⎩

Let x → 0 and y → 0 in such a way that y = mx (a line in the xy plane). Then, along this line,

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 20 0 0
0

(1 ) 1
lim lim lim

(1 ) 1x x x
y

x y x m x x m m

x y x m x x m m→ → →
→

− − − −= = =
+ + + +

Since the limit of the function depends on the manner of approach to (0, 0) (i.e., the slope m of the line), 
the function cannot be continuous at (0, 0).

Another method:
2 2 2 2 2

2 2 2 2 20 0 0 0 0 0
0

Since lim lim lim 1 and lim lim 1 are not equal, lim ( , )
x x x x x x

y

x y y x y
f x y

x y x x y→ → → → → →
→

⎧ ⎫ ⎧ ⎫− −= = = −⎨ ⎬ ⎨ ⎬+ +⎩ ⎭ ⎩ ⎭
 cannot exist. 

Hence, f (x, y) cannot be continuous at (0, 0).



CHAPTER 6  Partial Derivatives 137

Partial derivatives

6.8. If f (x, y) = 2x2 – xy + y2, find (a) ∂ f/ ∂ x and (b) ∂ f/ ∂ y at (x0, y0) directly from the definition.

(a)
0 0

0 0 0 0
0 0 0

( , )

2 2 2 2
0 0 0 0 0 0 0 0

0

2
0 0

0 0 0 00 0

( , ) ( , )
( , ) lim

[2( ) ( ) ] [2 ]
lim

4 2
lim lim(4 2 ) 4

x h
x y

h

h h

f x h y f x yf
f x y

x h

x h x h y y x x y y

h

hx h hy
x h y x y

h

→

→

→ →

+ −∂ = =
∂

+ − + + = − +
=

+ −
= = + − = −

(b)

0 0

0 0 0 0
0 0 0

( , )

2 2 2 2
0 0 0 0 0 0 0 0

0

2
0 0

0 0 0 00 0

( , ) ( , )
( , ) lim

[2 ( ) ( ) ] [2 ]
lim

2
lim lim( 2 ) 2

y k
x y

k

k k

f x y k f x yf
f x y

y k

x x y k y k x x y y

k

kx ky k
x y k x y

k

→

→

→ →

+ −∂ = =
∂

− + + + − − +
=

− + +
= = − + + = − +

Since the limits exist for all points (x0, y0), we can write fx(x, y) = fx = 4x – y, fy (x, y) = fy = –x + 2y, which 
are themselves functions of x and y.

Note that formally fx(x0, y0) is obtained from f (x, y) by differentiating with respect to x, keeping y constant 
and then putting x = x0, y = y0. Similarly, fy(x0, y0) is obtained by differentiating f with respect to y, keeping x
constant. This procedure, while often lucrative in practice, need not always yield correct results (see Problem 
6.9). It will work if the partial derivatives are continuous.

6.9.
2 2/( ) ( , ) (0, 0)

Let ( , ) .
0 otherwise

xy x y x y
f x y

⎧ + ≠
= ⎨

⎩
 Prove that (a) both fx(0, 0) and fy(0, 0) exist but that (b) 

f (x, y) is discontinuous at (0, 0).

(a)
0 0

0 0

( , 0) (0, 0) 0
(0, 0) lim lim 0

(0, 0) (0, 0) 0
(0, 0) lim lim 0

x h h

x k k

f h f
f

h h
f f

f
k k

→ →

→ →

−= = =

−= = =

(b) Let (x, y) → (0, 0) along the line y = mx in the xy plane. Then 
2

2 2 2 20 0
0

lim ( , ) lim
1x x

y

mx m
f x y

x m x m→ →
→

= =
+ +

so that the limit depends on m and, hence, on the approach; therefore, it does not exist. Hence, f (x, y) is 
not continuous at (0, 0).

Note that unlike the situation for functions of one variable, the existence of the first partial derivatives at 
a point does not imply continuity at the point.

Note also that if 
2 2 3 2

2 2 2 2 2 2
( , ) (0, 0), ,

( ) ( )x y

y x y x xy
x y f f

x y x y

− −≠ = =
+ +

 and fx(0, 0), fy(0, 0) cannot be com-

puted from them by merely letting x = 0 and y = 0. See the remark at the end of Problem 4.5(b).

6.10. If φ(x, y) = x3y + 
2xye , find (a) φx, (b) φy φxx, (d) φyy, (e) φxy, and (f)φyx.

(a)
2 2 23 2 2 2 2( ) 3 3xy xy xy

x x y e x y e y x y y e
x x

φφ ∂ ∂= = + = + ⋅ = +
∂ ∂

(b)
2 2 23 3 3( ) 2 2xy xy xy

y x y e x e xy x xy e
y y

φφ ∂ ∂= = + = + ⋅ = +
∂ ∂

(c)
2 2 2

2
2 2 2 2 4

2
(3 ) 6 ( ) 6xy xy xy

xx x y y e xy y e y xy y e
x x xx

φ φφ ∂ ∂ ∂ ∂⎛ ⎞= = = + = + ⋅ = +⎜ ⎟∂ ∂ ∂∂ ⎝ ⎠
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(d)
2 2 2

2 2 2 2

2
3

2

2 2

( 2 ) 0 2 ( ) (2 )

2 2 2 2

xy xy xy
yy

xy xy xy xy

x xy e xy e e xy
y y yy

xy e xy e x x y e x e

φφ ∂ ∂ ∂ ∂= = + = + ⋅ +
∂ ∂ ∂∂

= ⋅ ⋅ + ⋅ = +

(e)
2 2 2

2 2

2
2 2 2 2

2 3

(3 ) 3 2 2

3 2 2

xy xy xy
xy

xy xy

x y y e x y e xy e y
y x y x y

x xy e y e

φ φφ ∂ ∂ ∂ ∂⎛ ⎞= = = + = + ⋅ ⋅ + ⋅⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠
= + +

(f)
2 2 2

2 2

2
3 2 2

2 3

( 2 ) 3 2 2

3 2 2

xy xy xy
yx

xy xy

x xy e x y e xy e y
x y x y x

x xy e y e

φ φφ ⎛ ⎞∂ ∂ ∂ ∂= = = + = + ⋅ ⋅ + ⋅⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠
= + +

Note that φxy = φyx in this case. This is because the second partial derivatives exist and are continuous for 
all (x, y) in a region ℜ. When this is not true, we may have φxy � φyx (see Problem 6.41, for example).

6.11. Show that U(x, y, z) = (x2 + y2 + z2)–1/2 satisfies Laplace’s partial differential equation 
2 2 2

2 2 2
0.

U U U

x y z

∂ ∂ ∂+ + =
∂ ∂ ∂

We assume here that (x, y, z) � (0, 0, 0). Then

2 2 2 3 / 2 2 2 2 3 / 2

2
2 2 2 3 / 2 2 2 2 5 / 2 2 2 2 3 / 2

2

2 2 2 2 2 2 2

2 2 2 5 / 2 2 2 2 5 / 2 2 2 2 5 / 2

1
( ) 2 ( )

2

3
[ ( ) ] ( )[ ( ) 2 ] ( ) ( 1)

2

3 ( ) 2

( ) ( ) ( )

U
x y z x x x y z

x

U
x x y z x x y z x x y z

xx

x x y z x y z

x y z x y z x y z

− −

− − −

∂ = − + + ⋅ = − + +
∂

∂ ∂= − + + = − − + + ⋅ + + + ⋅ −
∂∂

+ + − −= − =
+ + + + + +

Similarly,

2 2 2 2 2 2 2 2

2 2 2 2 5 / 2 2 2 2 2 5 / 2

2 2
,

( ) ( )

U y x z U z x y

y x y z x x y z

∂ − − ∂ − −= =
∂ + + ∂ + +

Adding,

2 2 2

2 2 2
0

U U U

x y z

∂ ∂ ∂+ + =
∂ ∂ ∂

6.12.
2

2 1If tan , find at (1, 1).
y z

z x
x x y

− ∂=
∂ ∂

2 3
2 2

2 2 2 2 2

1 1

1 ( / )

z y x x
x x

y y x xy x x y x y

∂ ∂ ⎛ ⎞= ⋅ = ⋅ ⋅ =⎜ ⎟∂ ∂+ + +⎝ ⎠

2 3 2 2 2 3

2 2 2 2 2 2

( )(3 ) ( )(2 ) 2 3 1 2
1 at (1, 1)

( ) 2

z z x x y x x x

x y x y x x y x y

⎛ ⎞⎛ ⎞∂ ∂ ∂ ∂ + − ⋅ − ⋅= = = = =⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ + +⎝ ⎠ ⎝ ⎠
The result can be written zxy (1, 1) = 1.
Note: In this calculation we are using the fact that zxy is continuous at (1, 1) (see the remark at the end of 

Problem 6.9).

6.13. If f (x, y) is defined in a region ℜ and if fxy and fyx exist and are continuous at a point of ℜ, prove that fxy = fyx

at this point.

Let (x0, y0) be the point of ℜ. Consider

G = f (x0 + h, y0 + k) – f (x0, y0 + k) – f (x0 – h, y0) + f (x0, y0)
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Define

 φ (x, y) = f (x + h, y) – f (x, y) (1)

 ψ (x, y) = f (x, y + k) – f (x, y) (2)

Then

 G = φ (x0, y0 + k) – φ (x0, y0) (3)

G = ψ (x0 + h, y0) – ψ(x0, y0) (4)

Applying the mean value theorem for functions of one variable (see Page 78) to Equations (3) and (4), 
we have

 G = kφy (x0, y0 + θ 1 k) = k{fy (x0 + h, y0 + θ1–k) – fy (x0, y0 + θ1k)} 0 < θ1 < 1 (5)

 G = hψx(x0, + θ2h, y0) = h{fx(x0 + θ2h, y0 + k) – fx(x0 + θ2h, y0)} 0 < θ2 < 1 (6)

Applying the mean value theorem again to Equations (5) and (6), we have

G = hk fyx (x0 + θ3h, y0 + θ1k)   0 < θ1 < 1, 0 < θ3 < 1 (7)

G = hk fxy (x0 + θ2h, y0 + θ4k)   0 < θ2 < 1, 0 < θ4 < 1 (8)

From Equations (7) and (8) we have

fyx(x0 + θ3h, y0 + θ1k) = fxy(x0 + θ2h, y0 + θ4k) (9)

Letting h → 0 and k → 0 in (9) we have, since fxy and fyx are assumed continuous at (x0, y0),

fyx(x0, y0) = fxy(d0, y0)

as required. For an example where this fails to hold, see Problem 6.41.

Differentials

6.14. Let f (x, y) have continuous first partial derivatives in a region ℜ of the xy plane. Prove that

Δf = f (x + Δx, y + Δy) – f (x, y) = fxΔx + fy Δy + δ1 Δx + δ2Δy

where �1 and �2 approach zero as Δx and Δy approach zero.
Applying the mean value theorem for functions of one variable (see Page 78), we have

Δf = {f (x + Δx, y + Δy) – f (x, y + Δy)} + {f (x, y + Δy) – f (x, y)} (1)

= Δxfx(x + θ1 Δx, y + Δy) + Δfy(x, y + θ2 Δy)   0 < θ1 < 1, 0 < θ2 < 1

Since, by hypothesis, fx and fy are continuous, it follows that

fx(x + θ1 Δx, y + Δy) = fx (x, y) + δ1,   fy(x, y + θ2Δy) = fy(x, y) + δ2

where δ1 → 0, δ2 → 0 as Δx → 0 and Δy → 0.

Thus, Δf = fxΔx + fyΔy + δ1Δx + δ2Δy as required.
Defining Δx = dx, Δy = dy, we have Δf = fxdx + fy dy + δ1 dx + δ2dy.
We call df = fxdx + fy dy the differential of f (or z) or the principal part of Δf (or Δz).

6.15. If z = f (x, y), = x2y – 3y, find (a) Δz and (b) dz. (c) Determine Δz and dz if x = 4, y = 3, Δx = – 0.01, and Δy = 
0.02. (d) How might you determine f (5.12, 6.85) without direct computation?
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Solution:

(a)
2 2

2 2 2

( ) ( )

( , ) ( , )

[( ) ( ) 3( )] { 3 }

2 ( 3) ( ) 2 ( )
A B

z f x x y f x y

x x y y y y x y y

xy x x y x y x x y x y

Δ = + Δ −
= + Δ + Δ − + Δ − −
= Δ + − Δ + Δ + Δ Δ + Δ Δ14444444442 4444444443 1444444444444442 444444444444443= 2xy Δx + (x2 – 3) Δy + (Δx)2 y + 2x Δx Δy + (Δx)2 Δy144424443 1444442444443

The sum (A) is the principal part of Δz and is the differential of z, i.e., dz. Thus,

(b) dz = 2xy Δx + (x2 – 3) Δy = 2xy dx + (x2 – 3) dy

Another method: 22 ( 3)
z z

dz dx dy xy dx x dy
x y

∂ ∂= + = + −
∂ ∂

(c) Δz = f (x + Δx, y + Δy) – f (x, y) = f (4 – 0.01, 3 + 0.02) – f (4, 3)

  = {(3.99)2 (3.02) – 3(3.02)} – {(4)2(3) – 3(3)} = 0.018702

 dz = 2xy dx + (x2 – 3) dy = 2(4)(3)(–0.01) + (43 – 3)(0.02) = 0.02

Note that in this case Δz and dz are approximately equal: because Δx = dx and Δy = dy are sufficiently 
small.

(d) We must find f (x + Δx, y + Δy) when x + Δx = 5.12 and y = Δy = 6.85. We can accomplish this by choos-
ing x = 5, Δx = 0.12, y = 7, δy = – 0.15. Since Δx and Δy are small, we use the fact that f (x + Δx, y + Δy)
= f (x, y) + Δz is approximately equal to f (x, y) + dz, i.e., z + dz.

Now

 z = f (x, y) = f (5, 7) = (5)2(7) – 3(7) = 154

dz = 2xy dx + (x2 – 3) dy = 2 (5) (7) (0.12) + (52 – 3) (–0.15) = 5.1.

Then the required value is 154 + 5.1 = 159.1 approximately. The value obtained by direct computation is 
159.01864.

6.16. (a) Let U = x2ey/x. Find dU. (b) Show that (3x2y – 2y2) dx + (x3 – 4xy + 6y2) dy can be written as an exact 
differential of a function φ(x, y) and find this function.

(a) Method 1:

2 / / 2 /
2

1
2 ,y x y x y xU y U

x e xe x e
x y xx

∂ ∂⎛ ⎞ ⎛ ⎞= − + =⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
Then

/ / /(2 )y x y x y xU U
dU dx dy xe ye dx xe dy

x y

∂ ∂= + = − +
∂ ∂

Method 2:

2 / / 2 2 / /

2 / / / / /
2

( ) ( ) ( / ) 2

2 (2 )

y x y x y x y x

y x y x y x y x y x

dU x d e e d x x e d y x xe dx

x dy y dx
x e xe dx xe ye dx xe dy

x

= + = +
−⎛ ⎞= + = − +⎜ ⎟⎝ ⎠

(b) Method 1:

2 2 3 2Suppose that (3 2 ) ( 4 6 ) .x y y dx x xy y dy d dx dy
x y

φ φφ ∂ ∂− + − + = = +
∂ ∂

Then

2 23 2x y y
x

φ∂ = −
∂

 (1)

x
y

φ∂ =
∂

x3 24 6xy y− +  (2)
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From Equation (1), integrating with respect to x keeping y constant, we have

φ = x3y = 2xy2 + f (y)

where f (y) is the “constant” of integration. Substituting this into Equation (2) yields

x3 – 4xy + F′(y) = x3 – 4xy + 6y2

from which F′(y) = 6y2, i.e., f (y) = 2y3 + c.
Hence, the required function is φ = x3y – 2xy2 + 2y3 + c, where c is an arbitrary constant.
Note that by Theorem 3, Page 130, the existence of such a function is guaranteed, since if P = 3x2y – 2y2

and Q = x3 – 4xy + 6y2, then ∂ P/ ∂ y = 3x2 – 4y = ∂ Q/ ∂ x identically. If ∂ P/ ∂ y � ∂ Q/ ∂ x, this function 
would not exist and the given expression would not be an exact differential.

Method 2:

2 2 3 2 2 3 2 2

3 2 3 3 2 3

3 2 3

(3 2 ) ( 4 6 ) (3 ) (2 4 ) 6

( ) (2 ) (2 ) ( 2 2 )

( 2 2 )

x y y dx x xy y dy x y dx x dy y dx xy dy y dy

d x y d xy d y d x y xy y

d x y xy y c

− + − + = + − + +
= − + = − +
= − + +

Then the required function is x3y – 2xy2 + 2y3 + c.
This method, called the grouping method, is based on our ability to recognize exact differential combinations 

and is less than Method 1. Naturally, before attempting to apply any method, we should determine whether the given 
expression is an exact differential by using Theorem 3, Page 130. See Theorem 4, Page 130.

Differentiation of composite functions

6.17. Let z = f (x, y) and x = φ(t), y = ψ(t) where f, φ, ψ are assumed differentiable. Prove

dz z dx z y

dt x dt y dt

∂ ∂ ∂= +
∂ ∂

Using the results of Problem 6.14, we have

1 20 0
lim lim

t t

dz z z x z y x y z dx z dy

dt t x t y t t t x dt y dt
ε ε

Δ → Δ →

⎧ ⎫Δ ∂ Δ ∂ Δ Δ Δ ∂ ∂= = + + + = +⎨ ⎬Δ ∂ Δ ∂ Δ Δ Δ ∂ ∂⎩ ⎭

since, as Δt → 0, we have 10, 0, 0, , .
x dx y dy

x y
t dt t dt

ε Δ ΔΔ → Δ → → → →
Δ Δ

6.18. If z = 
2xye , x = t cos t, y = t sin t, compute dz/dt at t = π/2.

2 22( )( sin cos ) (2 )( cos sin )xy xydz z dx z dy
y e t t t xye t t t

dt x dt y dt

∂ ∂= + = − + + +
∂ ∂

2 3

/ 2

At / 2, 0, / 2. Then ( / 4)( / 2) (0)(1) / 8.
t

dz
t x y

dt π

π π π π π
=

= = = = − + = −

Another method: Substitute x and y to obtain z = et3sin2t cost and then differentiate.

6.19. If z = f (x, y) where x = φ(u, υ) and y = ψ(u, υ), prove the following:

( )
z z x z y

a
u x u y u

∂ ∂ ∂ ∂ ∂= +
∂ ∂ ∂ ∂ ∂

( )
z z x z y

b
x yυ υ υ

∂ ∂ ∂ ∂ ∂= +
∂ ∂ ∂ ∂ ∂

(a) From Problem 6.14, assuming the differentiability of f, φ, ψ, we have

1 20 0
lim lim
u u

z z z x z y x y z x z y

u u x u y u u u x u y u
ε ε

Δ → Δ →

⎧ ⎫∂ Δ ∂ Δ ∂ Δ Δ Δ ∂ ∂ ∂ ∂= = + + + = +⎨ ⎬∂ Δ ∂ Δ ∂ Δ Δ Δ ∂ ∂ ∂ ∂⎩ ⎭
(b) The result is proved as in (a) by replacing Δu by Δυ and letting Δυ → 0.
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6.20. Prove that 
z z

dz dx dy
x y

∂ ∂= +
∂ ∂

 even if x and y are dependent variables.

Suppose x and y depend on three variables u, υ, w, for example. Then

dx = xu du + xυ dυ + xwdw (1)

dy = yudu + yυ dυ + yw dw (2)

Thus,

zxdx + zydy = (zxxu + z yyu) du + (zx xυ + zyyυ) dυ + (zx xw + zyyw) dw = zudu + zυdυ + zw = dz

using obvious generalizations from Problem 6.19.

6.21. If T = x3 – xy + y3, x = ρ cos φ, and y = ρ sin φ, find (a) ∂ T/ ∂ ρ, ∂ T/ ∂ ρ and (b) ∂ T/∂φ.

2 2

2 2

(3 )(cos ) (3 )(sin )

(3 )( sin ) (3 )( cos )

T T x T y
x y y x

x y

T T x T y
x y y x

x y

φ φ
ρ ρ ρ

ρ φ ρ φ
φ φ φ

∂ ∂ ∂ ∂ ∂= + = − + −
∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂= + = − − + −
∂ ∂ ∂ ∂ ∂

This may also be worked by direct substitution of x and y in T.

6.22. If U = z sin y/x where x = 3r2 + 2s, y = 4r – 2s3, and z = 2r2 – 3s2, find (a) ∂U/∂r and (b) ∂U/∂s.

(a)

2

2

1
cos (6 ) cos (4) sin (4 )

6 4
cos cos 4 sin

U U x U y U z

r x r y r z r

y y y y
z r z r

x x x xx

ryz y z y y
r

x x x xx

∂ ∂ ∂ ∂ ∂ ∂ ∂= + +
∂ ∂ ∂ ∂ ∂ ∂ ∂

⎧ ⎫ ⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞= − + +⎨ ⎬ ⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎩ ⎭ ⎩ ⎭

= − + +

(b)

2
2

2

2

1
cos (2) cos ( 6 ) sin ( 6 )

2 6
cos cos 6 sin

U U x U y U z

s x s y s z s

y y y y
z z s s

x x x xx

yz y s z y y
s

x x x xx

∂ ∂ ∂ ∂ ∂ ∂ ∂= + +
∂ ∂ ∂ ∂ ∂ ∂ ∂

⎧ ⎫ ⎧ ⎫⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞= − + − + −⎨ ⎬ ⎨ ⎬⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎩ ⎭ ⎩ ⎭

= − − −

6.23.
2 2 22

2

1
If cos , sin , shown that .

V V V V
x y

x y
ρ φ ρ φ

ρ φρ
⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂⎛ ⎞= = + = +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

Using the subscript notation for partial derivatives, we have

 Vρ = Vxxρ + Vyyρ = Vx cosφ + Vy sin φ (1)

 Vφ = Vxxφ + Vyyφ = Vx(– ρ sin φ) + Vy (ρ cos φ) (2)

Dividing both sides of Equation (2) by ρ, we have
1

Vφρ
= – sin cosx yV Vφ φ+  (3)

Then from Equations (1) and (3), we have

2 2 2 2 2 2
2

1
( cos sin ) ( sin cos )x y x y x yV V V V V V V Vρ φ φ φ φ φ

ρ
+ = + + − + = +
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6.24. Show that z = f (x2 y), where f is differentiable, satisfies x(∂z/∂x) = 2y (∂z/∂y).

Let x2y = u. Then z = f (u). Thus,

2( ) 2 , ( )
z z u z z u

f u xy f u x
x u x y u y

∂ ∂ ∂ ∂ ∂ ∂′ ′= = ⋅ = = ⋅
∂ ∂ ∂ ∂ ∂ ∂

Then

2 2( ) 2 , 2 ( ) 2 and so 2
z z z z

x f u x y y f u x y x y
x y x y

∂ ∂ ∂ ∂′ ′= ⋅ = ⋅ =
∂ ∂ ∂ ∂

Another method: We have 2 2 2 2( ) ( ) ( )(2 ).dz f x y d x y f x y xy dx x dy′ ′= = +

Also,
z z

dz dx dy
x y

∂ ∂= +
∂ ∂

Then

2 3 22 ( ). ( )
z z

xy f x y x f x y
x y

∂ ∂′ ′= =
∂ ∂

2Elimination of ( ) yieldsf x y′ 2 .
z z

x y
x y

∂ ∂=
∂ ∂

6.25. If for all values of the parameter λ and for some constant p, F (λx, λy) = λp F (x, y) identically, where F is 
assumed differentiable, prove that x(∂F/∂x) + y (∂ F/∂y) = pF.

Let λx = u, λy = υ. Then

 F(u, υ) = λp F(x, y) (1)

The derivative with respect to λ of the left side of Equation (1) is

F F u F d F F
x y

u u

υ
λ λ υ λ υ

∂ ∂ ∂ ∂ ∂ ∂= + = +
∂ ∂ ∂ ∂ ∂ ∂ ∂

The derivative with respect to λ of the right side of Equation (1) is p λp–1 F. Then

1pF F
x y p F

u
λ

υ
−∂ ∂+ =

∂ ∂
 (2)

Letting λ = 1 in Equation (2), so that u = x, υ = y, we have x(∂F/∂x) + y(∂F/∂y) = pF.

6.26. If F(x, y) = x4y2 sin–1 y/x, show that x(∂F/∂x) + y(∂F/∂y) = 6 F.

Since F(λx, λy) = (λx)4 (λy)2 sin–1 λy/λx = λ6x4y2 sin–1 y/x = λ6 F(x, y), the result follows from Problem 
6.25 with p = 6. It can, of course, also be shown by direct differentiation.

6.27. Prove that Y = f (x + at) + g(x – at) satisfies ∂2 Y/∂t2 = a2 (∂2 Y/∂x2), where f and g are assumed to be at least 
twice differentiable and a is any constant.

Let , so that ( ) ( ). Then if ( ) / , ( ) / ,u x at x at Y f u g f u df du g dg dυ υ υ υ′ ′= + = − = + ≡ ≡

( ) ( ), ( ) ( )
Y Y u Y Y Y u Y

af u ag f u g
t u t t x x x x

υ υυ υ
υ υ

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂′ ′ ′ ′= + = − = + = +
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
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By further differentiation, using the notation f ″(u) ≡ d2 f/du2, g″(υ) ≡ d2g/dυ2, we have

2

2

2 2

{ ( ) ( )}( ) { ( ) ( )}( )

( ) ( )

t t tY Y YY u
af u ag a af u ag a

t u t t ut

a f u a g

υ υ υ
υ υ

υ

∂ ∂ ∂∂ ∂ ∂ ∂ ∂′ ′ ′ ′= = + = − + − −
∂ ∂ ∂ ∂ ∂ ∂ ∂∂

′′ ′′= +
 (1)

2

2
{ ( ) ( )} { ( ) )( )} ( ) ( )x x xY Y YY u

f u g f u g f u g
x u x x ux

υ υ υ υ
υ υ

∂ ∂ ∂∂ ∂ ∂ ∂ ∂′ ′ ′ ′ ′′ ′′= = + = + + + = +
∂ ∂ ∂ ∂ ∂ ∂ ∂∂

 (2)

Then from Equations (1) and (2), ∂2 Y/∂t2 = a2 (∂2Y/∂x2).

6.28. If x = 2r – s and y = r + 2s, find 
2U

y x

∂
∂ ∂

 in terms of derivatives with respect to r and s.

Solving x = 2r – s, y = r + 2s for r and s: r = (2x + y)/5, s = (2y – x)/5.
Then ∂r/∂x = 2/5, ∂s/∂x = – 1/5, ∂r/∂y = 1/5, ∂s/∂y = 2/5. Hence, we have

2 1

5 5

U U r U s U U

x r x s x r s

∂ ∂ ∂ ∂ ∂ ∂ ∂= + = −
∂ ∂ ∂ ∂ ∂ ∂ ∂

2

2 2 2 2

2 2

2 2 2

2 2

2 1 2 1

5 5 5 5

2 1 1 2 1 2

5 5 5 5 5 5

1
2 3 2

25

U U U U r U U s

y x y x r r s y s r s y

U U U U

r s s rr s

U U U

r sr s

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞= = − + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠
⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞= − + −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

⎛ ⎞∂ ∂ ∂= + −⎜ ⎟∂ ∂∂ ∂⎝ ⎠

assuming U has continuous second partial derivatives.

Implicit functions and jacobians

6.29. If U = x3 y, find dU/dt if

x5 + y = t and  (1)

x2 + y3 = t2 (2)

Equations (1) and (2) define x and y as (implicit) functions of t. Then differentiating with respect to t, we 
have

 5x4 (dx/dt) + dy/t = 1 (3)

 2x (dx/dt) + 3y2(dy/dt) = 2t (4)

Solving Equations (3) and (4) simultaneously for dx/dt and dy/dt,

4

2 2 4

4 2 4 24 4

2 2

1 1 5 1

2 3 2 23 2 10 2
,

15 2 15 25 1 5 1

2 3 2 3

x

t y x tdx y t dy x t x

dt dtx y x x y xx x

x y x y

− −= = = =
− −

Then
2 4

2 3
4 2 4 2

3 2 10 2
(3 ) ( ) .

15 2 15 2

dU U dx U dy y t x t x
x y x

dt x dt y dt x y x x y x

⎛ ⎞ ⎛ ⎞∂ ∂ − −= + = +⎜ ⎟ ⎜ ⎟∂ ∂ − −⎝ ⎠ ⎝ ⎠
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6.30. If F(x, y, z) = 0 defines z as an implicit function of x and y in a region ℜ of the xy plane, prove that (a) ∂z/∂x
= –Fx/Fz and (b) ∂z/∂y = –Fy/Fz, where Fz � 0.

Since z is a function of x and y, .
z z

dz dx dy
x y

∂ ∂= +
∂ ∂

Then 0.
F F F F F z F F z

dF dx dy dz dx dy
x y z x z x y z y

⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞= + + = + + + =⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
Since x and y are independent, we have

0
F F z

x z x

∂ ∂ ∂+ =
∂ ∂ ∂

 (1)

0
F F z

y z y

∂ ∂ ∂+ =
∂ ∂ ∂

 (2)

from which the required results are obtained. If desired, equations (1) and (2) can be written directly.

6.31. If F(x, y, u, υ) = 0 and G(x, y, u, υ) = 0, find (a) ∂u/∂x, (b) ∂u/∂y, (c) ∂υ/∂ x, and (d) ∂υ/∂y.

The two equations in general define the dependent variables u and υ as (implicit) functions of the inde-
pendent variables x and y. Using the subscript notation, we have

dF = Fxdx + Fy dy + Fu du + Fυdυ = 0 (1)

dG = Gxdx + Gydy + Gudu + Gυ dυ = 0 (2)

Also, since u and υ are functions of x and y,

 du = uxdx + uy dy (3)

dυ = υxdx + υydy (4)

Substituting Equations (3) and (4) in (1) and (2) yields

dF = (Fx + Fu ux + Fυυx)dx + (Fy + Fu uy + Fυυy)dy = 0 (5)

dG = (Gx + Guux + Gυυx)dx + (Gy + Guuy + Gυυy)dy = 0 (6)

Since x and y are independent, the coefficients of dx and dy in Equations (5) and (6) are zero. Hence, we 
obtain

u x x

u x x

F u F

G u G
υ

υ

υ
υ

+ = −⎧⎪
⎨ + = −⎪⎩

x

x

F

G
 (7)

u y y

u y y

F u F

G u G
υ

υ

υ
υ

+ = −⎧⎪
⎨ + = −⎪⎩

y

y

F

G
 (8)

Solving Equations (7) and (8) gives

(a)

( , )
( , )
( , )
( , )

x

x
x

u

u

F F F G
G Gu x

u
F GF Fx
uG G

υ

υ

υ

υ

υ

υ

− ∂
−∂ ∂= = −

∂∂
∂

–

–
(b)

( )
( )
( )
( )

,

,

,

,

u x

u x
x

u

u

F GF F

u xG G

F F F Gx

G G u
υ

υ

υυ

υ

∂−
∂−∂= = = −
∂∂
∂

–

–

(c)

( , )
( , )
( , )
( , )

y

y

y
u

u

F F F G
G Gu y

u
F GF Fy
uG G

υ

υ

υ

υ

υ

υ

− ∂
−∂ ∂= = = −

∂∂
∂

–

–
(d)

( , )
( , )
( , )
( , )

u y

u y

y
u

u

F F F G
G G u y

F GF Fy
uG G

υ

υ

υυ

υ

− ∂
−∂ ∂= = = −

∂∂
∂

–

–
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The functional determinant 
( , ) ,

, denoted by or ,
( , ) ,

u

u

F F F G F G
J

G G u u
υ

υ υ υ
∂ ⎛ ⎞

⎜ ⎟∂ ⎝ ⎠
 is the Jacobian of F and G

with respect to u and υ and is supposed � 0.
Note that it is possible to devise mnemonic rules for writing at once the required partial derivatives in 

terms of Jacobians (see also Problem 6.33).

6.32. If u2 – υ = 3x + y and u – 2υ2 = x – 2y, find (a) ∂u/∂x, (b) ∂υ/∂x, (c) ∂u/∂y, and (d) ∂υ/∂y.

Method 1: Differentiate the given equations with respect to x, considering u and υ as functions of x and y.
Then

2 3
u

u
x x

υ∂ ∂− =
∂ ∂

 (1)

4 1
x x

υ υυ∂ ∂− =
∂ ∂

 (2)

Solving,
1 12 2 3

, .
1 8 1 8

u u

x u x u

υ υ
υ υ

∂ − ∂ −= =
∂ − ∂ −

Differentiating with respect to y, we have

2 1
u

u
y y

υ∂ ∂− =
∂ ∂

 (3)

4
u

y y

υυ∂ ∂− = −
∂ ∂

2 (4)

Solving,
2 4 4 1

, .
1 8 1 8

u u

y u y u

υ υ
υ υ

∂ − − ∂ − −= =
∂ − ∂ −

We have, of course, assumed that 1 – 8uυ � 0.

Method 2: The given equations are F = u2 – υ – 3x – y = 0, G = u – 2υ2 – x + 2y = 0. Then, by Problem 
6.31,

3 1( , )
1 121 4( , )

( , ) 2 1 1 8
( , ) 1 4

x

x

u

u

F FF G
G Gu x

F G F F ux u
u G G

υ

υ

υ

υ

υυυ
υ

υ υ

− −∂
∂ −− −∂= − = − = − =

∂ −∂ −
∂ −

provided 1 – 8uυ � 0. Similarly, the other partial derivatives are obtained.

6.33. If F(u, υ, w, x, y) = 0, G (u, υ, w, x, y) = 0, and H(u, υ, w, x, y) = 0, find (a) ,
x

y

υ∂
∂

(b) ,
w

x

υ
∂
∂

(c) .
y

w

u

∂
∂

From three equations in five variables, we can (theoretically at least) determine three variables in terms 
of the remaining two. Thus, three variables are dependent and two are independent. If we were asked to deter-
mine ∂υ/∂y, we would know that υ is a dependent variable and y is an independent variable, but would not 

know the remaining independent variable. However, the particular notation 
x

y

υ∂
∂

 serves to indicate that we 

are to obtain ∂υ/∂y, keeping x constant; i.e., x is the other independent variable.

(a) Differentiating the given equations with respect to y, keeping x constant, gives

Fuuy + Fυυy + Fw wy + Fy = 0 (1)

Guuy + Gυυy + Gwwy + Gy = Gy = 0 (2)

Huuy + Hυ υy + Hw wy + Hy = 0 (3)
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Solving simultaneously for υy, we have

( , , )
( , , )

( , , )
( , , )

u y w

u y w

u y w

y
u wx

u w

u w

F F F

G G G F G H
H H H u y w

F G HF F Fy
u wG G G

H H H

υ

υ

υ

υυ

υ

∂
∂ ∂= = − = −

∂∂
∂

Equations (1), (2), and (3) can also be obtained by using differentials as in Problem 6.31.
The Jacobian method is very suggestive for writing results immediately, as seen in this problem and 

Problem 6.31. Thus, observe that in calculating 
x

y

υ∂
∂

 the result is the negative of the quotient of two Jacobi-

ans, the numerator containing the independent variable y and the denominator containing the dependent vari-
able υ in the same relative positions. Using this scheme, we have

( )
( , , ) ( , , )
( , , ) ( , , )

( )
( , , ) ( , , )
( , , ) ( , , )

w y

F G H F G H
x wy u u x

b c
F G H F G Hu
x y u w x

υ υ
υ

υ

∂ ∂
∂ ∂∂ ∂= − = −

∂ ∂∂ ∂
∂ ∂

6.34.
2 2

3
2 3.

3
If 0, prove that

(3 )

z z x
z xz y

x y z x

∂ +− − = = −
∂ ∂ −

Differentiating with respect to x, keeping y constant, and remembering that z is the dependent variable 
depending on the independent variables x and y, we find

23 0
z z

z x z
x x

∂ ∂− − =
∂ ∂

and

23

z z

x z x

∂ =
∂ −

 (1)

Differentiating with respect to y, keeping x constant, we find

23 1 0
z z

z x
y y

∂ ∂− − =
∂ ∂

and

23

z z

x z x

∂ =
∂ −

 (2)

Differentiating Equation (2) with respect to x and using Equation (1), we have

22 2

2 2 2 2 2 3

1 6 /(3 )1 3
6 1

(3 ) (3 ) (3 )

z z z xz z x
z

x y xz x z x z x

⎡ ⎤− −∂ − ∂ −⎛ ⎞ ⎣ ⎦= − = = −⎜ ⎟∂ ∂ ∂− − −⎝ ⎠
–

The result can also be obtained by differentiating Equation (1) with respect to y and using Equation (2).

6.35. Let u = f (x, y) and υ = g(x, y), where f and g are continuously differentiable in some region ℜ. Prove that a 
necessary and sufficient condition that there exists a functional relation between u and υ of the form φ(u, υ)

= 0 is the vanishing of the Jacobian; i.e., 
( , )

0
( , )

u

x y

υ∂ =
∂

identically.
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Necessity. We have to prove that if the functional relation φ(u, υ) = 0 exists, then the Jacobian 
( , )

0
( , )

u

x y

υ∂ =
∂identically. To do this, we note that

 dφ = φudu + φυdυ = φu(uxdx + uy dy) + φυ(υxdx + υydy)

 = (φu ux + φυ υx)dx + (φuuy + φυυy)dy = 0

Then

φuux + φυυx = 0 (1)

φuuy + φυυy = 0 (2)

Now φu and φυ cannot be identically zero, since if they were, there would be no functional relation, con-

trary to hypothesis. Hence, it follows from Equations (1) and (2) that 
( , )

0
( , )

x x

y y

u u
u x y

υ υ
υ

∂= =
∂

 identically.

Sufficiency. We have to prove that if the Jacobian 
( , )

0
( , )

u

x y

υ∂ =
∂

 identically, then there exists a functional 
relation between u and υ; i.e., φ(u, υ) = 0.

Let us first suppose that both ux = 0 and uy = 0. In this case the Jacobian is identically zero and u is a 
constant c1, so that the trival functional relation u = c1 is obtained.

Let us now assume that we do not have both ux = 0 and uy = 0; for definiteness, assume ux � 0. We may 
then, according to Theorem 1, Page 133, solve for x in the equation u = f (x, y) to obtain x = F(u, y), from which 
it follows that

u = f {F(u, y),y} (1)

υ = g {F(u, y), y} (2)

From these we have, respectively,

 du = uxdx + uydy = ux(Fudu + Fydy) + uydy = uxFu du + (ux Fy + uy) dy (3)

dυ = υxdx + υy dy = υx(Fudu + Fy dy) + υy dy = υx Fu du + (υx Fy + υy) dy (4)

From Equation (3), uxFu = 1 and uxFy + uy = 0 or (5) Fy = –uy/ux. Using this, Equation (4) becomes

d F du u u dy F du
u u

x u x y x y x u
x y yυ υ υ υ υ
υ υ

= + −( ){ + } = +
−

/ xx

xu
dy

⎛

⎝
⎜

⎞

⎠
⎟ . (6)

But by hypothesis 
( , )

0
( , )

x y

x y y x
x y

u uu
u u

x y

υ υ υ
υ υ

∂ = = − =
∂

 identically, so that Equation (6) becomes dφ

= υxFudu. This means essentially that, referring to Equation (2), ∂υ/∂y = 0, which means that υ is not depend-
ent on y but depends only on u; i.e., υ is a function of u, which is the same as saying that the functional relation 
φ (u, υ) = 0 exists.

6.36. (a) 1 1 ( , )
If and tan tan , find .

1 ( , )

x y u
u x y

xy x yw

υυ − −+ ∂= = +
− ∂

(b) Are u and υ functionally related? If so, find 

the relationship.

(a)

2 2

2 2

2 2

1 1

(1 ) (1 )( , )
0 if 1

( , ) 1 1

1 1

x y

x y

y x
u u xy xyu

xy
x y

x y

υ
υ υ

+ +
− −∂ = = = ≠

∂
+ +

(b) By Problem 6.35, since the Jacobian is identically zero in a region, there must be a functional relationship 
between u and υ. This is seen to be tan υ = u; i.e., φ(u, υ) = u – tan υ = 0. We can show this directly by 
solving for x (say) in one of the equations and then substituting in the other. Thus, for example, from υ = 
tan–1 x + tan–1 y, we find tan–1 x = υ – tan–1 y and so



CHAPTER 6  Partial Derivatives 149

1
1

1

tan tan(tan ) tan
tan( tan )

1 tan1 tan tan(tan )

y y
x y

yy

υ υυ
υυ

−
−

−

− −= − = =
++

Then substituting this in u = (x + y)/(1 – xy) and simplifying, we find u = tan υ.

6.37. (a) If x = u – υ + w, y = u2 – υ2 – w2 and z = u3 + υ, evaluate the Jacobian 
( , , )

( , , )

x y z

u wυ
∂
∂

, and (b) explain the 
significance of the nonvanishing of this Jacobian.

(a) 2 2

2

1 1 1
( , , )

2 2 2 6 2 6 2
( , , )

3 1 0

u w

u w

u w

x x x
x y z

y y y u w wu u u w
u w

z z z u

υ

υ

υ

υ υ
υ

−
∂ = = − − = + + +
∂

(b) The given equations can be solved simultaneously for u, υ, w in terms of x, y, z in a region ℜ if the Jaco-
bian is not zero in ℜ.

Transformations, curvilinear coordinates

6.38. A region ℜ in the xy plane is bounded by x + y = 6, x – y = 2, and y = 0. (a) Determine the region ℜ′ in the 

uυ plane into which ℜ is mapped under the transformation x = u + υ, y = u – υ. (b) Compute 
( , )

.
( , )

x y

u υ
∂
∂

 (c) 
Compare the result of (b) with the ratio of the areas of ℜ and ℜ′.

(a) The region ℜ shown shaded in Figure 6.9 (a) is a triangle bounded by the lines x + y = 6, x – y = 2, and y
= 0, which for distinguishing purposes are shown dotted, dashed, and heavy, respectively.

Figure 6.9

Under the given transformation, the line x + y = 6 is transformed into (u + υ) + (u – υ) = 6; i.e., 2u = 6 or 
u = 3, which is a line (shown dotted) in the uυ plane of Figure 6.9(b).

Similarly, x – y = 2 becomes (u + υ) – (u – υ) = 2 or υ = 1, which is a line (shown dashed) in the uυ plane. 
In like manner, y = 0 becomes u – υ = 0 or u = υ, which is a line shown heavy in the uυ plane. Then the required 
region is bounded by u = 3, υ = 1, and u = υ, and is shown shaded in Figure 6.9(b).

(b)

( ) ( )
1 1( , )

2
1 1( , )

( ) ( )

x x
u u

x y u u u
y yu

u u
u u

υ υ
υ

υ υ υ
υ υ

∂ ∂ ∂ ∂+ +
∂ ∂ ∂ ∂ ∂= = = =

∂ ∂ ∂ ∂ −∂ − −
∂ ∂ ∂ ∂

(c) The area of triangular region ℜ is 4, whereas the area of triangular region ℜ′ is 2. Hence, the ratio is 4/2 
= 2, agreeing with the value of the Jacobian in (b). Since the Jacobian is constant in this case, the areas of 
any regions ℜ in the xy plane are twice the areas of corresponding mapped regions ℜ′ in the uυ plane.
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6.39. A region ℜ in the xy plane is bounded by x2 + y2 = a2, x2 + y2 = b2, x = 0, and y = 0, where 0 < a < b.
(a) Determine the region ℜ′ into which ℜ is mapped under the transformation x = ρ cos φ, y = ρ sin φ, where 

ρ > 0, 0 < φ < 2π. (b) Discuss what happens when a = 0. (c) compute 
( , )

.
( , )

x y

ρ φ
∂
∂

 (d) compute 
( , )

.
( , )x y

ρ φ∂
∂

(a) The region ℜ [shaded in Figure 6.10(a)] is bounded by x = 0 (dotted), y = 0 (dotted and dashed), x2 + y2

= a2 (dashed), and x2 + y2 = b2 (heavy).

Figure 6.10

Under the given transformation, x2 + y2 = a2 and x2 + y2 = b2 become ρ2 = a2 and ρ2 = b2 or ρ = a and ρ = b,
respectively. Also, x = 0, a < y < b becomes φ = π/2, a < ρ < b; y = 0, a < x < b becomes φ = 0, a < ρ < b.

The required region ℜ′ is shown shaded in Figure 6.10(b).

Another method: Using the fact that ρ is the distance from the origin O of the xy plane and φ is the angle 
measured from the positive x axis, it is clear that the required region is given by a < ρ < b, 0 < φ < π/2, as 
indicated in Figure 6.10(b).

(b) If a = 0, the region ℜ becomes one-fourth of a circular region of radius b (bounded by three sides), while 
ℜ′ remains a rectangle. The reason for this is that the point x = 0, y = 0 is mapped into ρ = 0, φ = an in-
determinate and the transformation is not one to one at this point, which is sometimes called a singular
point.

(c)

2 2

( cos ) ( cos )
cos sin( , )

sin cos( , )
( sin ) ( sin )

(cos sin )

x y
ρ φ ρ φ

φ ρ φρ φ
φ ρ φρ φ ρ φ ρ φ

ρ φ

ρ φ φ ρ

∂ ∂
−∂ ∂∂ = =

∂ ∂∂
∂ ∂

= + =

(d) From Problem 6.43(b) we have, letting u = ρ, υ = φ,
( , ) ( , )

1
( , ) ( , )

x y

x y

ρ φ
ρ φ

∂ ∂ =
∂ ∂

so that, thing (c), 
( , ) 1

( , )x y

ρ φ
ρ

∂ =
∂

This can also be obtained by direct differentiation.
Note that from the Jacobians of these transformations it is clear why ρ = 0 (i.e., x = 0, y = 0) is a singular 

point.

Mean value theorem

6.40. Prove the mean value theorem for functions of two variables.

Let f (t) = f (x0 + ht, y0 + kt). By the mean value theorem for functions of one variable,

 F(1) = F(0) = F′(θ) 0 < θ < 1 (1)
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If x = x0 + ht, y = y0 + kt, then F(t) = f (x, y), so that by Problem 6.17,

F′(t) = fx (dx/dt) + fy(dy/dt) = hfx + kfy and F′(θ) = hfx(x0 + θh, y0 + θk) + kfy(x0 + θh, y0 + θk)

where 0 < θ < 1. Thus, (1) becomes

 f (x0 + h, y0 + k) – f (x0, y0) = hfx(x0 + θh, y0 + θk) + kfy(x0 + θh, y0 + θk) (2)

where 0 < θ < 1 as required.
Note that Equation (2), which is analogous to Equation (1) of Problem 6.14, where h = Δx, has the advan-

tage of being more symmetric (and also more useful), since only a single number θ is involved.

Miscellaneous problems

6.41.

2 2

2 2
( , ) (0,0)

Let ( , ) .

0 ( , ) (0,0)

x y
xy x y

f x y x y

x y

⎧ ⎛ ⎞− ≠⎪ ⎜ ⎟= +⎨ ⎝ ⎠
⎪ =⎩

Compute (a) fx(0, 0), (b) fy(0, 0), (c) fxx(0, 0) (d) fyy(0, 0), (e) fxy(0, 0), and (f) fyx(0, 0).

(a)
0 0

( ,0) (0,0) 0
lim lim 0
h h

f h f

h h→ →

− = =

(b)
0

(0, ) (0,0) 0
lim lim 0
h o k

f k f

k k→ →

− = =

If (x, y) � (0, 0),

2 2 2 2 2

2 2 2 2 2 2 2

2 2 2 2 2

2 2 2 2 2 2 2

4
( , )

( )

4
( , )

( )

x

x

x y xy x y
f x y xy xy y

x x y x y x y

x y xy x y
f x y xy xy x

y x y x y x y

⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ − −⎪ ⎪= = +⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ − + +⎪ ⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭
⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ − − −⎪ ⎪= = +⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ − + +⎪ ⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭

Then

(c)
0 0

( ,0) (0,0) 0
lim lim 0x x

h h

f h f

h h→ →

−
= =

(d)
0 0

(0, ) (0,0) 0
lim lim 0y y

k k

f k f

k k→ →

−
= =

(e)
0 0

(0, ) (0,0)
lim lim 1x x

k k

f k f k

k k→ →

− −= = −

(f)
0 0

( ,0) (0,0)
lim lim 1y y

h h

f h f h

h h→ →

−
= =

  Note that fxy � fyx at (0, 0). See Problem 6.13.

6.42. Show that under the transformation x = ρ cos φ, y = ρ sin φ the equation 
2 2

2 2
0

V V

x y

∂ ∂+ =
∂ ∂

 become 
2 2

2 2 2

1 1
0.

V V V

ρ φρ ρ φ
∂ ∂ ∂+ + =

∂∂ ∂
We have

V V V

x x x

ρ φ
ρ φ

∂ ∂ ∂ ∂ ∂= +
∂ ∂ ∂ ∂ ∂

 (1)

V V V

y y y

ρ φ
ρ φ

∂ ∂ ∂ ∂ ∂= +
∂ ∂ ∂ ∂ ∂

 (2)
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Differentiate x = ρ cos φ, y = ρ sin φ with respect to x, remembering that ρ and φ are functions of x and y

1 = − sin cos . 0 cos sin
x x x x

φ ρ φ ρρ φ φ ρ φ φ∂ ∂ ∂ ∂+ = +
∂ ∂ ∂ ∂

Solving simultaneously,

sin
cos ,

x x

ρ φ φφ
ρ

∂ ∂= = −
∂ ∂

 (3)

Similarly, differentiate with respect to y. Then

0 = − sin cos , 1 cos sin
y y y y

φ ρ φ ρρ φ φ ρ φ φ∂ ∂ ∂ ∂+ = +
∂ ∂ ∂ ∂

Solving simultaneously,

cos
sin ,

y y

ρ φ φφ
ρ

∂ ∂= =
∂ ∂

 (4)

Then, from Equations (1) and (2),

sin
cos

V V V

x

φφ
ρ ρ φ

∂ ∂ ∂= −
∂ ∂ ∂

 (5)

cos
sin

V V V

y

φφ
ρ ρ φ

∂ ∂ ∂= +
∂ ∂ ∂

 (6)

Hence,
2

2

2 2

2 2

sin sin
cos cos

sin sin
cos (cos )

V V V V

x x x x x xx

V V V V

x x

V V V

ρ φ
ρ φ

φ ρ φ φφ φ
ρ ρ ρ φ φ ρ ρ φ

φ φφ φ
φ ρ ρ φρ ρ

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞= = +⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂∂ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂= − + −⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

⎛ ⎞∂ ∂ ∂= + −⎜ ⎟∂ ∂ ∂∂⎝ ⎠
2 cos

sin cos
V V Vφφ φ
ρ ρ φ ρ φ

∂ ∂ ∂+ − + − −
∂ ∂ ∂ ∂

2

2

sin sinVφ φ
ρ ρφ

⎛ ⎞ ⎛ ⎞∂ −⎜ ⎟ ⎜ ⎟∂ ⎝ ⎠⎝ ⎠

which simplifies to

2 2 2 2 2 2
2

2 2 2 2 2

2sin cos 2sin cos sin sin
cos

V V V V V V

x

φ φ φ φ φ φφ
φ ρ ρ φ ρ ρρ ρ ρ φ

∂ ∂ ∂ ∂ ∂ ∂= + − + +
∂ ∂ ∂ ∂∂ ∂ ∂

 (7)

Similarly,

2 2 2 2 2 2
2

2 2 2 2 2

2sin cos 2sin cos cos cos
sin

V V V V V V

y

φ φ φ φ φ φφ
φ ρ ρ φ ρ ρρ ρ ρ φ

∂ ∂ ∂ ∂ ∂ ∂= − + + +
∂ ∂ ∂ ∂∂ ∂ ∂

 (8)

Adding Equations (7) and (8), we find, as required, 
2 2 2 2

2 2 2 2 2

1 1
0.

V V V V V

x y ρ ρρ ρ φ
∂ ∂ ∂ ∂ ∂+ = + + =

∂∂ ∂ ∂ ∂

6.43. (a) If x = f (u, υ) and y = g(u, υ), where u = φ (r, s) and υ = ψ (r, s), prove that 
( , ) ( , ) ( , )

.
( , ) ( , ) ( , )

x y x y u

r s u r s

υ
υ

∂ ∂ ∂=
∂ ∂ ∂

(b) Prove that 
( , ) ( , )

1
( , ) ( , )

x y u

u x y

υ
υ

∂ ∂ =
∂ ∂

,
( , )

provided 0,
( , )

x y

u υ
∂ ≠
∂

and interpret geometrically.
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(a)
( , )

( , )

( , ) ( , )

( , ) ( , )

r s u r r u s s

r s u r r u s s

u r s

u r s

x x x u x x u xx y

y y y u y y u yr s

x x u u x y u
w

y y u r s

υ υ

υ υ

υ

υ

υ υ
υ υ

υ
υ υ υ

+ +∂ = =
+ +∂

∂ ∂= =
∂ ∂

using a theorem on multiplication of determinants (see Problem 6.108). We have assumed here, of course, the 
existence of the partial derivatives involved.

(b) Place r = x, s = y in the result of (a). Then 
( , ) ( , ) ( , )

1.
( , ) ( , ) ( , )

x y u x y

u x y x y

υ
υ

∂ ∂ ∂= =
∂ ∂ ∂

The equations x = f (u, υ), y = g(u, υ) define a transformation between points (x, y) in the xy plane and 
points (u, υ) in the uv plane. The inverse transformation is given by u = φ (x, y), υ = ψ (x, y). The result obtained 
states that the Jacobians of these transformations are reciprocals of each other.

6.44. Show that F(xy, z – 2x) = 0 satisfies, under suitable conditions, the equation x(∂z/∂x) – y(∂z/∂y) = 2x. What 
are these conditions?

Let u = xy, υ = z – 2x. Then F(u, υ) = 0 and

dF = Fudu + Fυdυ = Fu(x dy + y dx) + Fυ(dz – 2 dx) = 0 (1)

Taking z as dependent variable and x and y as independent variables, we have dz = zx dx + zy dy. Then 
substituting in Equation (1), we find

(yFu + Fυzx – 2) dx + (xFu + Fυzy) dy = 0

Hence, since x and y are independent, we have

yFu + Fυzx – 2 = 0 (2)

xFu + Fυzy = 0 (3)

Solve for Fu in Equation (3) and substitute in (2). Then we obtain the required result xzx – yzy = 2x upon divid-
ing by Fυ (supposed not equal to zero).

The result will certainly be valid if we assume that F(u, υ) is continuously differentiable and that Fυ � 0.

SUPPLEMENTARY PROBLEMS

Functions and graphs

6.45. If 
2

( , ) ,
1

x y
f x y

xy

+=
−

find (a) (1 3),f − (b)
(2 , 3) (2, 3)

,
f h f

h

+ −
 and (c) ( , ).f x y xy+

Ans. (a) 
1

4
−  (b) 

11

5(3 5)h +
 (c) 

2 2

2 2

1

x y xy

x y xy

+ +
− −

6.46. If g(x, y, z) = x2 – yz + 3xy, find (a) g(1, –2, 2), (b) g(x + 1, y – 1, z2), and (c) g(xy, xz, x + y).

Ans. (a) –1 (b) x2 – x – 2 – yz2 + z2 + 3xy + 3y (c) x2y2 – x2z – xyz + 3x2yz

6.47. Give the domain of definition for which each of the following functional rules is defined and real, and indicate this 

domain graphically: (a) 
2 2

1
( , ) ,

1
f x y

x y
=

+ −
(b) ( , ) ln( ),f x y x y= +  and (c) 1 2

( , ) sin .
x y

f x y
x y

− ⎛ ⎞−= ⎜ ⎟+⎝ ⎠

Ans. (a) 2 2 1x y+ ≠  (b) 0x y+ >  (c) 
2

1
x y

x y

− <
+
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6.48. (a) What is the domain of definition for which f (x, y, z) = 
2 2 2

1

1

x y z

x y z

+ + −
+ + −

 is defined and real? 
(b) Indicate this domain graphically.

Ans. (a) x + y + z <  1, x2 + y2 + z2 < 1 and x + y + z >  1, x2 + y2 + z2 > 1

6.49. Sketch and name the surface in three-dimensional space represented by each of the following.

(a) 3x + 2z = 12 (d) x2 + z2 = y2 (g) x2 + y2 = 2y

(b) 4z = x2 + y2 (e) x2 + y2 + z2 = 16 (h) z = x + y

(c) z = x2 – 4y2 (f) x2 – 4y2 – 4z2 = 36 (i) y2 = 4z

   (j) x2 + y2 + z2 – 4x + 6y + 2z – 2 = 0

Ans. (a) plane (b) paraboloid of revolution (c) hyperbolic paraboloid (d) right circular cone (e) sphere 
(f) hyperboloid of two sheets (g) right circular cylinder (h) plane (i) arabolic cylinder (j) sphere, center at 
(2, –3, –1) and radius 4.

6.50. Construct a graph of the region bounded by x2 + y2 = a2 and x2 + z2 = a2, where a is a constant.

6.51. Describe graphically the set of points (x, y, z) such that (a) x2 + y2 + z2 = 1, x2 + y2 = z2 and (b) x2 + y2 < z < x + y.

6.52. The level curves for a function z = f (x, y) are curves in the xy plane defined by f (x, y) = c, where c is 
any constant. They provide a way of representing the function graphically. Similarly, the level surfaces
of w = f (x, y, z) are the surfaces in a rectangular (xyz) coordinate system defined by f (x, y, z) = c, where 
c is any constant. Describe and graph the level curves and surfaces for each of the following functions: 
(a) f (x, y) = ln (x2 + y2 – 1), (b) f (x, y) = 4xy, (c) f (x, y) = tan–1 y/(x + 1), (d) f (x, y) = x2/3 + y2/3, (e) f (x, y, z)
= x2 + 4y2 + 16z2 and (f) sin(x + z)/(1 – y).

Limits and continuity

6.53. Prove that 
4

1

( ) lim (3 2 ) 14
x
y

a x y
→
→−

− =  and 
( , ) (2,1)

( ) lim
x y

b
→

 (xy – 3x + 4) = 0 by using the definition.

6.54. If lim f (x, y) = A and lim g(x, y) = B, where lim denotes limit as (x, y) → (x0, y0), prove that (a) lim {f (x, y) + 
g(x, y)} = A + B and (b) lim {f (x, y) g(x, y)} = AB.

6.55. Under what conditions is the limit of the quotient of two functions equal to the quotient of their limits? 
Prove your answer.

6.56. Evaluate each of the following limits where they exist:

(a)
1
2

3
lim

4 2x
y

x y

x y→
→

− +
+ −

(c) 2

4
lim sin
x
y

y
x

xπ
→
→

(e)
( )2121 /

0
1

lim
yx

x
y

e
−−

→
→

(g)
0
1

1
lim

1x
y

x y

x y→ +
→ −

+ −
− −

(b)
0
0

3 2
lim

2 3x
y

x y

x y→
→

−
−

(d)
2 2

2 20
0

sin( )
lim
x
y

x x y

x y+→
→

+
(f)

2 20
0

2
lim
x
y

x y

x y→
→

−
+

(h)
1

12
1

sin ( 2)
lim

tan (3 6)x
y

xy

xy

−

−→
→

−
−

Ans. (a) 4 (b) does not exist (c) 8 2  (d) 0 (e) 0 (f) does not exist (g) 0 (h) 
1
3
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6.57. Formulate a definition of limit for functions of (a) 3 and (b) n variables.

6.58. Does 
4 3

lim
2 5 2

x y z

x y z

+ −
− +

 as (x, y, z) → (0, 0, 0) exist? Justify your answer.

6.59. Investigate the continuity of each of the following functions at the indicated points: (a) x2 + y2, (x0, y0);

(b)
3 5

x

x y+
, (0, 0); and (c) 2 2

2 2

1
( )sinx y

x y
+

+
 if (x, y) � (0, 0), 0 if (x, y) = (0, 0), (0, 0).

Ans. (a) continuous (b) discontinuous (c) continuous

6.60. Using the definition, prove that f (x, y) = xy + 6x is continuous continuous at (a) (1, 2) and (b) (x0, y0).

6.61. Prove that the function in Problem 6.60 is uniformly continuous in the square region defined by 0 < x <  1, 
0 < y <  1.

Partial derivatives

6.62. If f (x, y) = ,
x y

x y

−
+

 find (a) ∂f/∂x and (b) ∂f/∂y at (2, –1) from the definition and verify your answer by 

differentiation rules.

Ans. (a) –2 (b) –4

6.63. If f (x, y) =
2( ) /( )

0

x xy x y⎧ − +
⎨
⎩

.for ( , ) (0,0)x y =

.for ( , ) (0,0)x y ≠
 find (a) (0,0),xf and (b) (0,0)yf .

Ans. (a) 1 (b) 0

6.64. Investigate 
( ) ( ), 0,0

lim ( , )xx y
f x y

→
for the function in the preceding problem and explain why this limit (if it 

exists) is or is not equal to fx(0, 0).

6.65. If f (x, y) = (x – y) sin (3x + 2y), compute (a) fx, (b) fy, (c) fxx, (d) fyy, and (e) fyx at (0, π/3).

Ans. (a) 
1

( )
2

π + 3  (b) 
1

(2 )
6

π − 3 3  (c) 
3

( 2)
2

π 3 −  (d) 
2

(i 3 3)
3

+  (e) 
1

(2 1)
2

π 3 +

6.66. (a) Prove by direct differentiation that z = xy tan(y/x) satisfies the equation x(∂z/∂x) + y(∂z/∂y) = 2z if (x, y)
� (0, 0). (b) Discuss part (a) for all other points (x, y), assuming z = 0 at (0, 0).

6.67. Verify that fxy = fyx for the functions (a) (2x – y)/(x + y), (b) x tan xy, and (c) cosh (y + cos x), indicating 
possible exceptional points, and investigate these points.

6.68. Show that z = ln{(x – a)2 + (y – b)2} satisfies ∂2z/∂x2 + ∂2z/∂y2 = 0 except at (a, b).

6.69. Show that z = x cos (y/x) + tan(y/x) satisfies x2zxx + 2xyzxy + y2zyy = 0 except at points for which x = 0.



CHAPTER 6  Partial Derivatives156

6.70. Show that if w = ,
n

x y z

x y z

⎛ ⎞− +
⎜ ⎟+ −⎝ ⎠

 then:

(a) 0
w w w

x y z
x y z

∂ ∂ ∂+ + =
∂ ∂ ∂

(b)
2 2 2 2 2 2

2 2 2
2 2 2

2 2 2
w w w w w w

x y z xy xz yz
x y x z y zx y z

∂ ∂ ∂ ∂ ∂ ∂+ + + + +
∂ ∂ ∂ ∂ ∂ ∂∂ ∂ ∂

 = 0

Indicate possible exceptional points.

Differentials

6.71. If z = x3 – xy + 3y2, compute (a) Δz and (b) dz, where x = 5, y = 4, Δx = –0.2, Δy = 0.1. Explain why Δz and 
dz are approximately equal. (c) Find Δz and dz if x = 5, y = 4, Δx = –2, Δy = 1.

Ans. (a) –11.658 (b) –12.3 (c) Δz = –66, dz = –123

6.72. Compute 2 35 (3.8) 2(2.1)+  approximately, using differentials.

Ans.  2.01

6.73. Find dF and dG if (a) F(x, y) = x3y – 4xy2 + 8y3, (b) G(x, y, z) = 8xy2z3 – 3x2yz, and (c) F(x, y) = xy2 ln(y/x).

Ans. (a) (3x2y – 4y2) dx + (x3 – 8xy + 24y2) dy

 (b) (8y2z3 – 6xyz) dx + (16xyz3 – 3x2z) dy + (24xy2z2 – 3x2y) dz

 (c) {y2 ln(y/x) – y2} dx + {2xy ln (y/x) + xy} dy

6.74. Prove that (a) d(UV) = U dV + V dU, (b) d(U/V) = (V dU – U dV)/V2, (c) d(ln U) = (dU)/U, and (d) d(tan–1 V)
= (dV)/(1 + υ2), where U and V are differentiable functions of two or more variables.

6.75. Determine whether each of the following is an exact differential of a function and, if so, find the function:

(a) (2xy2 + 3y cos 3x) dx + (2x2y + sin 3x) dy

(b) (6xy – y2) dx + (2xey – x2) dy

(c) (z3 – 3y) dx + (12y2 –3x) dy + 3xz2 dz

Ans. (a) x2y2 + y sin 3x + c (b) not exact (c) xz2 + 4y3 – 3xy + c

Differentiation of composite functions

6.76. (a) If U(x, y, z) = 2x2 – yz + xz2, x = 2 sin t, y = t2 – t + 1, and z = 3e–1, find dU/dt at t = 0. (b) If H(x, y) = 
sin(3x – y), x3 + 2y = 2t3, and x – y2 = t2 + 3t, find dH/dt.

Ans. (a) 24 (b) 
2 2 2 2

2

36 12 9 6 6 18

6 2

t y t x t x t

x y

⎛ ⎞+ + − + +
⎜ ⎟+⎝ ⎠

cos (3x – y)

6.77. If F(x, y) = (2x + y)/(y – 2x), x = 2u – 3υ, and y = u + 2υ, find (a) ∂F/∂u, (b) ∂F/∂υ, (c) ∂2F/∂ u2, (d) ∂2F/∂υ2,
and (e) ∂2F/∂u ∂υ, where u = 2, υ = 1.

Ans. (a) 7 (b) –14 (c) 21 (d) 112 (e) –49
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6.78. If U = x2F(y/x), show that, under suitable restrictions on F, x(∂U/∂x) + y(∂U/∂y) = 2U.

6.79. If x = u cos α – υ sin α and y = u sin α + υ cos α, where α is a constant, show that (∂V/∂x)2 + (∂V/∂y)2 = 
(∂V/∂u)2 + (∂V/∂υ)2.

6.80. Show that if x = ρ cos φ, y = ρ sin φ, the equation ,
u u

x y y x

υ υ∂ ∂ ∂ ∂= = −
∂ ∂ ∂ ∂

 becomes 
1 1

,
u uυ υ
ρ ρ φ ρ ρ φ

∂ ∂ ∂ ∂= = −
∂ ∂ ∂ ∂

.

6.81. Use Problem 6.80 to show that under the transformation x = ρ cos φ, y = ρ sin φ, the equation

2 2

2 2
0

u u

x y

∂ ∂= =
∂ ∂

becomes
2 2

2 2 2

1 1
0

u u u

ρ ρρ ρ φ
∂ ∂ ∂= + − =

∂∂ ∂
.

Implicit functions and jacobians

6.82. If F(x, y) = 0, prove that dy/dx = –Fx/Fy.

6.83. Find (a) dy/dx and  (b) d2y/dx2 if x3 + y3 – 3xy = 0.

Ans. (a) (y – x2)/(y2 – x) (b) –2xy/(y2 – x)3

6.84. If xu2 + υ = y3, 2yu – xv3 = 4x, find (a) 
u

x

∂
∂

 and (b) 
y

υ∂
∂

.

Ans. (a) 
3 2 2

2 2

3 4

6 2

xu

x u y

υ υ
υ

− +
− +

 (b) 
2 3

2 2

2 3

3

xu y

x u yυ
+

+

6.85. If u = f (x, y) and υ = g(x, y) are differentiable, prove that 1.
u x x

x u x

υ
υ

∂ ∂ ∂ ∂+ =
∂ ∂ ∂ ∂

 Explain clearly which 

variables are considered independent in each partial derivative.

6.86. If f (x, y, r, s) = 0, g(x, y, r, s) = 0, prove that 0,
y r y s

r x s x

∂ ∂ ∂ ∂+ =
∂ ∂ ∂ ∂

 explaining which variables are 

independent. What notation could you use to indicate the independent variables considered?

6.87. If F(x, y) = 0, show that 
2 22

2 3

2x x y x y x y y y x

y

F F F F F F Fd y

dx F

− +
= − .

6.88. Evaluate 2( , )
( , ) 3

( , )

F G
if F u u u

u
υ υ

υ
∂ = −
∂

 and 2 3( , ) 2 .G u uυ υ υ= +

Ans. 24u2 υ + 16uv2 – 3υ3

6.89. If F = x + 3y2 – z3, G = 2x2yz, and H = 2z2 – xy, evaluate 
( , , )

( , , )

F G H

x y z

∂
∂

 at (1, –1, 0).

Ans. 10

6.90. If u = sin–1 x + sin–1 y and 2 21 1 ,x y y xυ = − + −  determine whether there is a functional relationship 

between u and υ, and, if so, find it.
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6.91. If F = xy + yz + zx, G = x2 + y2 + z2, and H = x + y + z, determine whether there is a functional relationship 
connecting F, G, and H, and, if so, find it.

Ans. H 2 – G – 2F = 0

6.92. (a) If x = f (u, υ, w), y = g(u, υ, w), and z = h(u, υ, w), prove that 
( , , ) ( , , )

( , , ) ( , , )

x y z u w

x z x y w

υ
υ

∂ ∂ =
∂ ∂

 1 provided 
( , , )

0.
( , , )

x y z

u wυ
∂ ≠
∂

 (b) Give an interpretation of the result of (a) in terms of transformations.

6.93. If f (x, y, z) = 0 and g(x, y, z) = 0, show that 
( , ) ( , ) ( , )
( , ) ( , ) ( , )

dx dy dz
f g f g f g

y z z x x y

= =
∂ ∂ ∂
∂ ∂ ∂

giving conditions under which 
the result is valid.

6.94. If x + y2 = u, y + z2 = υ, z + x2 = w, find (a) ,
x

u

∂
∂

 (b) 
2

2
,

x

u

∂
∂

 (c) 
2 x

u υ
∂

∂ ∂
, assuming that the equations define x,

y, and z as twice differentiable functions of u, υ, and w.

Ans. (a) 
1

1 8xyz+
(b)

2 2 2

3

16 8 32

(1 8 )

x y yz x z

xyz

− −
+

 (c) 
2 2 2

3

16 8 32

(1 8 )

y z xz x y

xyz

− −
+

6.95. State and prove a theorem similar to that in Problem 6.35, for the case where u = f (x, y, z), υ = g(x, y, z),
w = h(x, y, z).

Transformations, curvilinear coordinates

6.96. Given the transformation x = 2u + υ, y = u – 3υ, (a) sketch the region ℜ′ of the uv plane into which the region 
ℜ of the xy plane bounded by x = 0, x = 1, y = 0, y = 1 is mapped under the transformation; (b) compute 

( , )

( , )

x y

u υ
∂
∂

; and (c) compare the result of (b) with the ratios of the areas of ℜ and ℜ′.

Ans. (b) –7

6.97. (a) Prove that under a linear transformation x = a1u + a2υ, y = b1u + b2υ(a1b2 – a2b1 � 0) lines and circles in 
the xy plane are mapped, respectively, into lines and circles in the uv plane. (b) Compute the Jacobian J of 
the transformation and discuss the significance of J = 0.

6.98. Given x = cos u cosh υ, y = sin u sinh υ, (a) show that, in general, the coordinate curves u = a and υ = b in 

the uv plane are mapped into hyperbolas and ellipses, respectively, in the xy plane; (b) compute 
( , )

( , )

x y

u υ
∂
∂

;

(c) compute 
( , )

( , )

u

x y

υ∂
∂

.

Ans. (b) sin2 u cosh2 υ + cos2 u sinh2 υ (c) (sin2 u cosh2 υ + cos2 u sinh2 υ)–1

6.99. Given the transformation x = 2u + 3υ – w, y = 2υ + w, z = 2u – 2υ + w, (a) sketch the region ℜ′ of the uvw
space into which the region ℜ of the xyz space bounded by x = 0, x = 8, y = 0, y = 4, z = 0, z = 6 is mapped; 

(b) compute 
( , , )

( , , )

x y z

u wυ
∂
∂

; (c) compare the result of (b) with the ratios of the volumes of ℜ and ℜ′.

Ans. (b) 1

6.100. Given the spherical coordinate transformation x = r sin θ cos φ, y = r sin θ sin φ, z = r cos θ, where r δ 0. 0 
< θ < π, 0 < φ < 2π, describe the coordinate surfaces (a) r = a, (b) θ = b, and (c) φ = c, where a, b, c are 
any constants.

Ans. (a) spheres (b) cones (c) planes
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6.101. (a) Verify that for the spherical coordinate transformation of Problem 6.100, 2( , , )

( , , )

x y z
J r

r θ φ
∂= =
∂

 sin θ.
(b) Discuss the case where J = 0.

Miscellaneous problems

6.102. If F(P, V, T) = 0, prove that (a) 
v p T

P T P

T V V

∂ ∂ ∂= −
∂ ∂ ∂

 (b) 
v p T

P T V

T V P

∂ ∂ ∂ = −
∂ ∂ ∂

1.

These results are useful in thermodynamics, where P, V, and T correspond to pressure, volume, and tem-
perature of a physical system.

6.103. Show that F(x/y, z/y) = 0 satisfies x(∂z/∂x) + y(∂z/∂y) = z.

6.104. Show that F(x + y – z, x2 + y2) = 0 satisfies x(∂z/∂y) – y(∂z/∂x) = x – y.

6.105. If x = f (u, υ) and y = g(u, υ), prove that 
1 (x,y)

where = .
(u, )

y
J

x J u

υ
υ

∂ ∂ ∂= −
∂ ∂ ∂

6.106. If x = f (u, υ), y = g(u, υ), z = h(u, υ) and F(x, y, z) = 0, prove that 
( , ) ( , ) ( , )

0
( , ) ( , ) ( , )

y z z x x y
dx dy dz

u u uυ υ υ
∂ ∂ ∂+ + =
∂ ∂ ∂

6.107. If x = φ(u, υ, w), y = ψ(u, υ, w), u = f (r, s), υ = g(r, s), and w = h(r, s), prove that 

( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , )

x y x y u x y w x y w u

r s u r s w r s w u r s

υ υ
υ υ

∂ ∂ ∂ ∂ ∂ ∂ ∂= + = + +
∂ ∂ ∂ ∂ ∂ ∂ ∂

6.108. (a) Prove that . ,
a b e f ae bg af bh

c d g h ce dg cf dh

+ +
=

+ +
 thus establishing the rule for the product of two second-

order determinants referred to in Problem 6.43. (b) Generalize the result of (a) to determinants of 3, 4 . . . 

6.109. If x, y, and z are functions of u, υ, and w, while u, υ, and w are functions of r, s, and t, prove that 
( , , ) ( , , ) ( , , )

( , , ) ( , , ) ( , , )

x y z x y z u w

r s t u w r s t

υ
υ

∂ ∂ ∂= ⋅
∂ ∂ ∂

.

6.110. Given the equation Fj(x1, . . . , xm, y1, . . ., yn) = 0 where j = 1, 2, . . . , n, prove that, under suitable conditions 

on Fj,
1 2 1 2

1 2 1 2

( , , , , , ( , , ,

( , , , , , ( , , ,
r n nr

s s n n

F F F F F F Fy

x y y x y y y y

∂ ∂∂
=

∂ ∂ ∂
K K K
K K K
K

K

K

K

K

K

6.111. (a) If F(x, y) is homogeneous of degree 2, prove that 
2 2 2

2 2
2 2

2 2 .
F F F

x xy y F
x yx y

∂ ∂ ∂+ + =
∂ ∂∂ ∂

(b) Illustrate by using the special case F(x, y) = x2 ln (y/x).

Note that the result can be written in operator form, using Dx ≡ ∂/∂x and Dy ≡ ∂/∂y, as (x Dx + y Dy)
2

F = 2F. [Hint: Different Differentiate both sides of Problem 6.25, Equation (1), twice with respect to λ.]

6.112. Generalize the result of Problem 6.11 as follows. If F(x1, x2, . . . , xn) is homogeneous of degree p, then for 
any positive integer r, if Dxj ≡ ∂/∂xj, (x1Dx1 + x2Dx 2 + . . . + xnDxn)

r F = p(p – 1) . . . (p – r + 1)F.

6.113. (a) Let x and y be determined from u and υ according to x + iy = (u + iv)3. Prove that under this 

transformation the equation 
2 2 2 2

2 2 2 2
0 is transformed into 0

x y u

φ φ φ φ
υ

∂ ∂ ∂ ∂+ = + =
∂ ∂ ∂ ∂

.

(b) Is the result in (a) true if x + iy = F(u + iv)? Prove your statements.
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Vectors

Vectors

The foundational ideas for vector analysis were formed independently in the nineteenth century by William 
Rowan Hamilton and Herman Grassmann. We are indebted to the physicist John Willard Gibbs, who formu-
lated the classical presentation of the Hamilton viewpoint in his Yale lectures, and his student E. B. Wilson, 
who considered the mathematical material presented in class worthy of organizing as a book (published in 
1901). Hamilton was searching for a mathematical language appropriate to a comprehensive exposition of 
the physical knowledge of the day. His geometric presentation emphasizing magnitude and direction and 
compact notation for the entities of the calculus was refined in the following years to the benefit of express-
ing Newtonian mechanics, electromagnetic theory, and so on. Grassmann developed an algebraic and more 
philosophic mathematical structure which was not appreciated until it was needed for Riemanian (non-
Euclidean) geometry and the special and general theories of relativity.

Our introduction to vectors is geometric. We conceive of a vector as a 

directed line segment PQ
→

 from one point P, called the initial point, to 
another point Q, called the terminal point. We denote vectors by boldfaced 

letters or letters with an arrow over them. Thus, PQ
→

 is denoted by A or A
r

,
as in Figure 7.1. The magnitude or length of the vector is then denoted by 

⏐ PQ
→

⏐, PQ , ⏐A ⏐ or ⏐A
r

⏐.
Vectors are defined to satisfy the geometric properties discussed in the 

next section.

Geometric Properties of Vectors

1. Two vectors A and B are equal if they have the same magnitude and direction regardless of their initial 
points. Thus, A = B in Figure 7.1.

In other words, a vector is geometrically represented by any one of a class of commonly directed 
line segments of equal magnitude. Since any one of the class of line segments may be chosen to rep-
resent it, the vector is said to be free. In certain circumstances (tangent 
vectors, forces bound to a point), the initial point is fixed; then the 
vector is bound. Unless specifically stated, the vectors in this discus-
sion are free vectors.

2. A vector having direction opposite to that of vector A but with the 
same magnitude is denoted by –A (see Figure 7.2).

3. The sum or resultant of vectors A and B of Figure 7.3(a) is a vector 

CHAPTER 7

Figure 7.1

Figure 7.2



CHAPTER 7  Vectors162

C formed by placing the initial point of B on the terminal point of A and joining the initial point of A
to the terminal point of B [see Figure 7.3(b)]. The sum C is written C = A + B. The definition here is 
equivalent to the parallelogram law for vector addition, as indicated in Figure 7.3(c).

Figure 7.3

Extensions to sums of more than two vectors are immediate. For example, Figure 7.4 shows how to 
obtain the sum or resultant E of the vectors A, B, C, and D.

Figure 7.4

4. The difference of vectors A and B, represented by A – B, is that vector C which added to B gives A.
Equivalently, A – B may be defined as A + (–B). If A = B, then A – B is defined as the null or zero 
vector and is represented by the symbol 0. This has a magnitude of zero, but its direction is not de-
fined.

The expression of vector equations and related concepts is facilitated by the use of real numbers and 
functions. In this context, these are called scalars. This special designation arises from application 
where the scalars represent objects that do not have direction, such as mass, length, and temperature.

5. Multiplication of a vector A by a scalar m produces a vector mA with magnitude ⏐m⏐ times the mag-
nitude of A and direction the same as or opposite to that of A according as m is positive or negative. If 
m = 0, mA = 0, the null vector.

Algebraic Properties of Vectors

The following algebraic properties are consequences of the geometric definition of a vector. (See Problems 
7.1 and 7.2.)

If A, B, and C are vectors, and m and n are scalars, then

1. A + B = B + A Commutative law for addition

2. A + (B + C) = (A + B) + C Associative law for addition

3. m(nA) = (mn)A = n(mA) Associative law for multiplication

4. (m + n)A = mA + nA Distributive law

5. m(A + B) = mA + mB Distributive law
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Note that in these laws only multiplication of a vector by one or more scalars is defined. On Pages 164 
and 165 we define products of vectors.

Linear Independence and Linear Dependence of a Set of Vectors

That a set of vectors A1, A2, . . . ,Ap is linearly independent means that a1A1 + a2A2 + . . . apAp = 0 if and only 
if a1 = a2 = . . . = ap = 0 (i.e., the algebraic sum is zero if and only if all the coefficients are zero). The set of 
vectors is linearly dependent when it is not linearly independent.

Unit Vectors

Unit vectors are vectors having unit length. If A is any vector with magnitude A = ⏐A⏐ > 0, then A/⏐A⏐ is 
a unit vector. If a is a unit vector with the same direction and sense as A, then a = A/⏐A⏐.

Rectangular (Orthogonal) Unit Vectors

The rectangular unit vectors i, j, and k are unit vectors having the direction of the positive x, y, and z axes of 
a rectangular coordinate system (see Figure 7.5). The triple i, j, k is said to be a basis of the collection of 
vectors. We use right-handed rectangular coordinate systems unless otherwise specified. Such systems derive 
their name from the fact that a right-threaded screw rotated through 90º from Ox to Oy will advance in the 
positive z direction. In general, three vectors A, B, and C which have coincident initial points and are not 
coplanar are said to form a right-handed system or dextral system if a right-threaded screw rotated through 
an angle less than 180º from A to B will advance in the direction C (see Figure 7.6).

Components of a Vector

Any vector A in three dimensions can be represented with initial point at the origin O of a rectangular coor-
dinate system (see Figure 7.7). Let (A1, A2, A3) be the rectangular coordinates of the terminal point of vector 
A with initial point at O. The vectors A1i, A2 j, and A3k are called the rectangular component vectors, or 
simply component vectors, of A in the x, y, and z directions, respectively. A1, A2, and A3 are called the rect-
angular components, or simply components, of A in the x, y, and z directions, respectively.

The vectors of the set {i, j, k} are perpendicular to one another, and they are unit vectors. The words orthogo-
nal and normal, respectively, are used to describe these characteristics; hence, the set is what is called an ortho-
normal basis.

Figure 7.5 Figure 7.6
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Figure 7.7

It is easily shown to be linearly independent. In an n-dimensional space, any set of n linearly independent 
vectors is a basis. The further characteristic of a basis is that any vector of the space can be expressed through 
it. It is the basis representation that provides the link between the geometric and the algebraic expressions of 
vectors and vector concepts.

The sum or resultant of A1i, A2 j, and A3k is the vector A, so that we can write

 A = A1i + A2 j + A3k (1)

The magnitude of A is

A = A 2 2 2
1 2 3A A A= + +  (2)

In particular, the position vector or radius vector r from O to the point (x, y, z is written

 r = xi + yj + zk (3)

and has magnitude r = r 2 2 2 .x y z= + +
A theory of vectors would be of limited use without a process of multiplication. In fact, two binary pro-

cesses, designated as dot product and cross product, were created to meet the geometric and physical needs 
to which vectors were applied.

The first of them, the dot product, was generated from consideration of the angle between two vectors.

Dot, Scalar, or Inner Product

The dot or scalar product of two vectors A and B, denoted by A · B (read: A dot B) is defined as the product 
of the magnitudes of A and B and the cosine of the angle between them. In symbols,

 A · B = AB cos θ,   0 < θ < π (4)

Assuming that neither A nor B is the zero vector, an immediate consequence of the definition is that A · 
B = 0 if and only if A and B are perpendicular. Note that A · B is a scalar and not a vector.

The following laws are valid:

1. A · B = B · A Commutative law for dot products

2. A · (B + C) = A · B + A · C Distributive Law

3. m(A · B) = (mA) · B = A · (mB) = (A · B)m, where m is a scalar

4. i · i = j · j = k · k = 1, i · j = j · k = k · i = 0

5. If A = A1i + A2 j + A3k and B = B1i + B2 j + B3k, then A · B = A1B1 + A2B2 + A3B3
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The equivalence of this component form the dot product with the geometric definition 4 following from 
the law of cosines. (See Figure 7.8).

Figure 7.8

In particular,

⏐C⏐2 = ⏐A⏐2 + ⏐B⏐2 – 2⏐A⏐⏐B⏐ cos θ

Since C = B – A, its components are B1 – A1, B2 – A2, B3 – A3 and the square of its magnitude is

⏐B⏐2 + ⏐A⏐2 – 2(A1B1 + A2B2 + A3B3

When this representation for ⏐C2⏐ is placed in the original equation and cancellations are made, we obtain

A1B1 + A2B2 + A3B3 = ⏐A⏐⏐B⏐ cos θ.

The second form of vector multiplication—that is, the cross product—emerged from Hamilton’s theory 
of quaternions (1844). Algebraically, the cross product is an example of a noncommutative operation. Geo-
metrically, it generates a vector perpendicular to the initial pair of vectors, and its physical value is illustrated 
in electromagnetic theory, where it aids in the representation of a magnetic field perpendicular to the direc-
tion of an electric current.

Cross or Vector Product

The cross or vector product of A and B is a vector C = A × B (read: A cross B). The magnitude of A × B is 
defined as the product of the magnitudes of A and B and the sine of the angle between them. The direction 
of the vector C = A × B is perpendicular to the plane of A and B, and such that A, B, and C form a right-
handed system. In symbols,

 A × B = AB sin θu, 0 < θ < π (5)

where u is a unit vector indicating the direction of A × B. If A = B or if A is parallel to B, then sin θ = 0 and 
A × B = 0.

The following laws are valid:

1. A × B = –B × A (Commutative law for cross products fails)

2. A × (B + C) = A × B + A × C Distributive Law

3. m(A × B) = (mA) × B = A × (mB) = (A × B)m, where m is a scalar

Also, the following consequences of the definition are important:

4. i × i = j × j = k × k = 0, i × j = k, j × k = i, k × i = j

5. If A = A1i + A2 j + A3k and B = B1i + B1i + B2j + B3k, then

1 2 3

1 2 3

i j k

A B = A A A

B B B

×
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The equivalence of this component representation (5) and the 
geometric definition may be seen as follows. Choose a coodinate 
system such that the direction of the x-axis is that of A and the xy
plane is the plane of the vectors A and B. (See Figure 7.9.) Then

A × B 1 1 2

1 2

i j k

= 0 0 k

0

A A B

B B

= = A B sine θ k

Since this choice of coordinate system places no restrictions on 
the vectors A and B, the result is general and thus establishes the 
equivalence.

6. ⏐A × B⏐ = the area of a parallelogram with sides A and B.

7. If A × B = 0 and neither A nor B is a null vector, then A and B
are parallel.

Triple Products

Dot and cross multiplication of three vectors, A, B, and C may produce meaningful products of the form 
(A · B)C, A · (B × C), and A × (B × C). The following laws are valid:

1. (A · B)C � A(B · C) in general

2. A · (B × C) = B · (C × A) = C · (A × B) = volume of a parallelepiped having A, B, and C as edges, or 
the negative of this volume according as A, B, and C do or do not form a right-handed handed system. 
If A = A1i + A2 j + A3k, B = B1i + B2 j + B3k and C = C1i + C2 j + C3k, then

A · (B × C)
1 2 3

1 2 3

1 2 3

=

A A A

B B B

C C C

 (6)

3. A × (B × C) � (A × B) × C (Associative law for cross products fails)

4. A × (B × C) = (A · C)B – (A · B)C

 (A × B) × C = (A · C)B – (B · C)A

The product A · (B × C) is called the scalar triple product or box product and may be denoted by [ABC].
The product A × (B × C) is called the vector triple product.

In A · (B × C) parentheses are sometimes omitted and we write A · B × C. However, parentheses must be 
used in A × (B × C) (see Problem 7.29). Note that A · (B × C) = (A × B) · C. This is often expressed by stat-
ing that in a scalar triple product the dot and the cross can be interchanged without affecting the result (see 
Problem 7.26).

Axiomatic Approach to Vector Analysis

From the preceding remarks it is seen that a vector r = xi + yj + zk is determined when its three components 
(x, y, z) relative to some coordinate system are known. In adopting an axiomatic approach, it is thus quite 
natural for us to make the following assumptions.

Definition A three-dimensional vector is an ordered triplet of real numbers with the following properties. 
If A = (A1, A2, A3) and B = (B1, B2, B3), then

Figure 7.9
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1. A = B if and only if A1 = B1, A2 = B2, A3 = B3

2. A + B = (A1 + B1, A2 + B2, A3 + B3)

3. A – B = (A1 – B1, A2 – B2, A3 – B3)

4. 0 = (0, 0, 0)

5. mA = m(A1, A2, A3) = (mA1, mA2, mA3)

In addition, two forms of multiplication are established.

6. A · B = A1B1 + A2B2 + A3B3

7. Length or magnitude of 2 2 2
1 2 3A = A A A A A A= ⋅ = + +

8. A × B = (A2B3 – A3 B2, A3B1 – A1B3, A1B3, A1B2 – A2B1)

Unit vectors are defined to be (1, 0, 0), (0, 1, 0), (0, 0, 1) and then designated by i, j, k, respectively, thereby 
identifying the components axiomatically introduced with the geometric orthonormal basis elements.

If one wishes, this axiomatic formulation (which provides a component representation for vectors) can be 
used to reestablish the fundamental laws previously introduced geometrically; however, the primary reason 
for introducing this approach was to formalize a component representation of the vectors. It is that concept 
that will be used in the remainder of this chapter.

Note 1 One of the advantages of component representation of vectors is the easy extension of the ideas 
to all dimensions. In an n-dimensional space, the component representation is

A(A1, A2, . . . , An)

An exception is the cross product which is specifically 
restricted to three-dimensional space. There are generaliza-
tions of the cross product to higher dimensional spaces, but 
there is no direct extension.)

Note 2 The geometric interpretation of a vector en-
dows it with an absolute meaning at any point of space. 
The component representation (as an ordered triple of 
numbers) in Euclidean three space is not unique; rather, 
it is attached to the coordinate system employed. This 
follows because the components are geometrically inter-
preted as the projections of the arrow representation on 
the coordinate directions. Therefore, the projections on 
the axes of a second coordinate system (rotated, for ex-
ample) from the first one will be different. (See Figure 
7.10.) Therefore, for theories where groups of coordinate 
systems play a role, a more adequate component defini-
tion of a vector is as a collection of ordered triples of 
numbers, each one identified with a coordinate system of 
the group, and any two related by a coordinate transfor-
mation. This viewpoint is indispensable in Newtonian 
mechanics, electromagnetic theory, special relativity, and 
so on.

Vector Functions

If corresponding to each value of a scalar u we associate a vector A, then A is called a function of u denoted 
by A(u). In three dimensions we can write A(u) = A1(u)i + A2(u)j + A3(u)k.

Figure 7.10
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The function concept is easily extended. Thus, if to each point (x, y, z) there corresponds a vector A, then 
A is a function of (x, y, z), indicated by A(x, y, z) = A1(x, y, z)i + A2(x, y, z)j, + A3(x, y, z)k.

We sometimes say that a vector function A defines a vector field since it associates a vector with each 
point of a region. Similarly, φ(x, y, z) defines a scalar field since it associates a scalar with each point of a 
region.

Limits, Continuity, and Derivatives of Vector Functions

Limits, continuity, and derivatives of vector functions follow rules similar to those for scalar functions al-
ready considered. The following statements show the analogy which exists.

1. The vector function represented by A(u) is said to be continuous at u0 if, given any positive number δ,
we can find some positive number δ such that ⏐A(u) – A(u0)⏐ < δ whenever ⏐u – u0⏐ < δ. This is 
equivalent to the statement 

0

lim
u u→

A(u) = A(u0).

2. The derivative of A(u) is defined as

0

A A( + ) – A( )
lim
u

d u u u

du uΔ →

Δ=
Δ

provided this limit exists. In case A(u) = A1(u)i + A2 A2(u)j + A3(u)k; then

1A dAd

du du
= i 2+

dA

du
j 3+

dA

du
k

Higher derivatives such as d2A/du2, etc., can be similarly defined.

3. If A(x, y, z) = A1(x, y, z)i + A2(x, y, z)j + A3(x, y, z)k; then

dA
A A A

= + +dx dy dz
x y z

∂ ∂ ∂
∂ ∂ ∂
A A A

is the differential of A.

4. Derivatives of products obey rules similar to those for scalar functions. However, when cross products 
are involved, the order is important. Some examples are

(a)
A

( A) = A.
d d d

du du du

φφ φ +A AA
A

(b)
B A

(A B) = A B
y y y

∂ ∂ ∂⋅ ⋅ + ⋅
∂ ∂ ∂

A A
AB

BB

(c)
B A

(A B) = A B
z z z

∂ ∂ ∂× × + ×
∂ ∂ ⋅ ∂

A A
A

BB
B

 (maintain the order of A and B)

Geometric Interpretation of a Vector Derivative

If r is the vector joining the origin O of a coordinate system and the point (x, y, z), then specification of the 
vector function r(u) defines x, y, and z as functions of u (r is called a position vector). As u changes, the 
terminal point of r describes a space curve (see Figure 7.11) having parametric equations x = x(u), y = y(u),
z = z(u). If the parameter u is the are length s measured from some fixed point on the curve, then recall from 
the discussion of arc length that ds2 = dr · dr. Thus,

rd

ds
=dr

T (7)
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Figure 7.11

is a unit vector in the direction of the tangent to the curve and is called the unit tangent vector. If u is the time 
t, then

rd

dt
= v

dr
 (8)

is the velocity with which the terminal point of r describes the curve. We have

r r
v =

d d ds ds

dt ds dt dt
υ= = T Tv = dr dr

 (9)

from which we see that the magnitude of v is υ = ds/dt. Similarly,
2

2

rd

dt
= a

r
 (10)

is the acceleration with which the terminal point of r describes the curve. These concepts have important 
applications in mechanics and differential geometry.

A primary objective of vector calculus is to express concepts in an intuitive and compact form. Success 
is nowhere more apparent than in applications involving the partial differentiation of scalar and vector fields. 
[Illustrations of such fields include implicit surface representation Φ{x, y, z(x, y) = 0, the electromagnetic 
potential function Φ(x, y, z), and the electromagnetic vector field F(x, y, z).] To give mathematics the capabil-
ity of addressing theories involving such functions, William Rowan Hamilton and others of the nineteenth 
century introduced derivative concepts called gradient, divergence, and curl, and then developed an analytic 
structure around them.

An intuitive understanding of these entities begins with examination of the differential of a scalar field, i.e.,

d dx dy dz
x dy z

∂Φ ∂Φ ∂ΦΦ = + +
∂ ∂

Now suppose the function Φ is constant on a surface S and that C; x = f1(t), y = f2(t), z = f3(t) is a curve on 

S. At any point of this curve, 
r

+ +
d dx dx dz

dt dt dt dt
= i j k  lies in the tangent plane to the surface. Since this state-

ment is true for every surface curve through a given point, the differential dr spans the tangent plane. Thus, 

the triple , ,
x y z

∂Φ ∂Φ ∂Φ
∂ ∂ ∂

 represents a vector perpendicular to S. With this special geometric characteristic in 

mind we define

x

∂Φ∇Φ =
∂

i
y

∂Φ+
∂

j
z

∂Φ+
∂

k

to be the gradient of the scalar field Φ.
Furthermore, we give the symbol ∇ a special significance by naming it del.

EXAMPLE 1. f Φ(x, y, z) = 0 is an implicitly defined surface, then, because the function always has the value 
zero for points on it, the condition of constancy is satisfied and ∇φ is normal to the surface at any of its points. 
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This allows us to form an equation for the tangent plane to the surface at any one of its points. See Problem 
7.36.

EXAMPLE 2. For certain purposes, surfaces on which Φ is constant are called level surfaces. In meteorology, 
surfaces of equal temperature or of equal atmospheric pressure fall into this category. From the previous devel-
opment, opment, we see that ∇Φ is perpendicular to the level surface at any one of its points and, hence, has the 
direction of maximum change at that point.

The introduction of the vector operator ∇ and the interaction of it with the multiplicative properties of dot 
and cross come to mind. Indeed, this line of thought does lead to new concepts called divergence and curl.
A summary follows.

Gradient, Divergence, and Curl

Consider the vector operator ∇ (del) defined by

x y z

∂ ∂ ∂∇ ≡ + +
∂ ∂ ∂

i j k  (11)

Then if φ(x, y, z) and A(x, y, z) have continuous first partial derivatives in a region (a condition which is in 
many cases stronger than necessary), we can define the following.

1. Gradient. The gradient of φ is defined by

grad

+ +

x y z x y z

x y z

φ φ φφ φ φ

φ φ φ

⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂= ∇ = + + = + +⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠
∂ ∂ ∂=
∂ ∂ ∂

i j k i j k

i j k

 (12)

2. Divergence. The divergence of A is defined by

1 2 3

31 2

div ( + + )

+ +

A A A
x y z

AA A

x y z

⎛ ⎞∂ ∂ ∂= ∇ ⋅ = + + ⋅⎜ ⎟∂ ∂ ∂⎝ ⎠
∂∂ ∂

=
∂ ∂ ∂

A A i j k i j k

 (13)

3. Curl. The curl of A is defined by

1 2 3curl ( + + )A A A
x y z

⎛ ⎞∂ ∂ ∂= ∇ × = + + ×⎜ ⎟∂ ∂ ∂⎝ ⎠
A A i j k i j k

1 2 3

x y z

A A A

∂ ∂ ∂=
∂ ∂ ∂

i j k

1 22 3 1 2

–y z x yx z
A AA A A A

∂ ∂ ∂ ∂∂ ∂
∂ ∂ ∂ ∂= +∂ ∂i j k

3 32 1 2 1– + – + –
A AA A A A

y z z x x y

∂ ∂∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞⎛ ⎞= ⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠ ⎝ ⎠
i j k

Note that in the expansion of the determinant, the operators ∂/∂x, ∂/∂y, ∂/∂z must precede A1, A2, A3. In 
other words, ∇ is a vector operator, not a vector. When employing it, the laws of vector algebra either do not 
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apply or at the very least must be validated. In particular, ∇ × A is a new vector obtained by the specified 
partial differentiation on A, while A × ∇ is an operator waiting to act upon a vector or a scalar.

Formulas Involving ∇

If the partial derivatives of A, B, U, and V are assumed to exist, then

1. ∇(U + V) = ∇U + ∇V or grad (U + V) = grad u + grad V

2. ∇ · (A + B) = ∇ · A + ∇ · B or div (A + B) + div A + div B

3. ∇ × (A + B) = ∇ × A + ∇ × B or curl (A + B) = curl A + curl B

4. ∇ · (UA) = (∇U) · A + U(∇ · A)

5. ∇ × (UA) = (∇U) × A + U(∇ × A)

6. ∇ · (A × B) = B · (∇ × A) – A · (∇ × B)

7. ∇ × (A × B) = (B · ∇)A – B(∇ · A) – (A · ∇)B + A(∇ · B)

8. ∇(A · B) = (B · ∇)A + (A · ∇)B + B × (∇ × A) + A × (∇ × B)

9.
2 2 2

2
2 2 2

2 2 2
2

2 2 2

.( ) is called the of U.

and is called the .

U U U
U U Laplacian

x y z

Lapacian operator
x y z

∂ ∂ ∂∇ ∇ ≡ ∇ ≡ + +
∂ ∂ ∂

∂ ∂ ∂∇ ≡ + +
∂ ∂ ∂

10. ∇ × (∇U) = 0. The curl of the gradient of U is zero.

11. ∇ · (∇ × A) = 0. The divergence of the curl of A is zero.

12. ∇ × (∇ × A) = ∇(∇ · A) – ∇ 2A

Vector Interpretation of Jacobians and Orthogonal Curvilinear Coordinates

The transformation equations

 x = f (u1, u2, u3),   y = g(u1, u2, u3),   z = h(u1, u2, u3) (15)

(where we assume that f, g, h are continuous, have continuous partial derivatives, and have a single-valued 
inverse) establish a one-to-one correspondence between points in an xyz and u1 u2u3 rectangular coordinate 
system. In vector notation, the transformation (15) can be written

 r = xi + yj + zk = f (u1, u2, u3)i + g(u1, u2, u3)j + h(u1, u2, u3)k (16)

A point P in Figure 7.12 can then be defined not only by rec-
tangular coordinates (x, y, z) but by coordinates (u1, u2, u3) as 
well. We call (u1, u2, u3) the curvilinear coordinates of the point.

If u2 and u3 are constant, then as u1 varies, r describes a 
curve which we call the u1 coordinate curve. Similarly, we de-
fine the u2 and u3 coordinate curves through P.

From Equation (16), we have

1 2 3
1 2 3

=d du du du
u u u

∂ ∂ ∂+ +
∂ ∂ ∂

r r r
r  (17)

The collection of vectors 
∂r
∂u1

,
∂r
∂u2

,
∂r
∂u3

 is a basis for the vec-

tor structure associated with the curvilinear system. If the cur- Figure 7.12
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vilinear system is orthogonal, then so is this set; however, in general, the vectors are not unit vectors. he 
differential form for are length may be written

ds2 = g11(du1)
2 + g22(du2)

2 + g33(du3)
2

where

g11 = 
∂r
∂u1

.
∂r
∂u1

, g22 = 
∂r
∂u2

.
∂r
∂u2

, g33 = 
∂r
∂u3

.
∂r
∂u3

The vector ∂r/∂u1 is tangent to the u1 coordinate curve at P. If e1 is a unit vector at P in this direction, we 
can write ∂r/∂u1 = h1e1 where h1 = ⏐∂r/∂u1⏐. Similarly, we can write ∂r/∂u2 = h2e2 and ∂r/∂u3 = h3e3, where 
h2 = ⏐∂r/∂u2⏐ and h3 = ⏐∂r/∂u3⏐, respectively. Then Equation (17) can be written

 dr = h1 du1e1 + h2 du2 e2 + h3 du3 e3 (18)

The quantities h1, h2, h3 are sometimes called scale factors.
If e1, e2, e3 are mutually perpendicular at any point P, the curvilinear coordinates are called orthogonal.

Since the basis elements are unit vectors as well as orthogonal, this is an orthonormal basis. In such case the 
element of arc length ds is given by

 ds2 = dr · dr = h2
1 du2

1 + h2
2 du2

2 + h2
3 du2

3 (19)

and corresponds to the square of the length of the diagonal in the preceding parallelepiped.
Also, in the case of othogonal coordinates referred to the orthonormal basis e1, e2, e3, the volume of the 

parallelepiped is given by

 dV = ⏐gjk⏐ du1 du2 du3 = ⏐(h1 du1 e1) · (h2 du2 e2) × (h3 du3 e3)⏐ = h1h2h3 du1 du2 du3 (20)

which can be written as

1 2 3 1 2 3
1 2 3 1 2 3

( , , )
.

( , , )

x y z
dV du du du du du du

u u u u u u

∂ ∂ ∂ ∂= × =
∂ ∂ ∂ ∂

r r r
 (21)

where ∂(x, y, z)/∂(u1, u2, u3) is the Jacobian of the transformation.
It is clear that when the Jacobian vanishes there is no parallelepiped and this explains geometrically the 

significance of the vanishing of a Jacobian as treated in Chapter 6.
Note: The further significance of the Jacobian vanishing is that the transformation degenerates at the 

point.

Gradient Divergence, Curl, and Laplacian in Orthogonal Curvilinear Coordinates

If Φ is a scalar function and A = A1 e1 + A2 e2 + A3e3 a vector function of orthogonal curvilinear coordinates 
u1, u2, u3, we have the following results.

1. 1 2 3
1 1 2 2 3 3

1 1 1
grad

h u h u h u

∂Φ ∂Φ ∂Φ∇Φ = Φ = + +
∂ ∂ ∂

e e e

2. ∇ ⋅ A div= A 2 3 1 3 1 2 1 2 3
1 2 3 1 2 3

1
( , ) ( ) ( )h h A h h A h h A

h h h u u u

⎡ ⎤∂ ∂ ∂= + +⎢ ⎥∂ ∂ ∂⎣ ⎦

3. ∇× A curl= A

1 1 2 2 3 3

1 2 3 1 2 3

1 1 2 2 3 3

e e e

1

h h h

h h h u u u

h A h A h A

∂ ∂ ∂=
∂ ∂ ∂

e e e

4. 2 2 3 3 1 1 2

1 2 3 1 1 1 2 2 2 3 3 3

1
Laplacian of

h h h h h h

h h h u h u u h u u h u

⎡ ⎤⎛ ⎞⎛ ⎞ ⎛ ⎞∂ ∂Φ ∂ ∂Φ ∂ ∂Φ∇ Φ = Φ = + +⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦
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These reduce to the usual expressions in rectangular coordinates if we replace (u1, u2, u3) by (x, y, z), in 
which case e1, e2, and e3 are replaced by i, j, and k and h1 = h2 = h3 = 1.

Special Curvilinear Coordinates

Cylindrical Coordinates (r, f, z) See Figure 7.13.
Transformation equations:

x = ρ cos φ, y = ρ sin φ, z = z

where ρ >  0, 0 < φ < 2π, –� < z < �.

Scale factors: h1 = 1, h2 = ρ, h3 = 1

Element of arc length: ds2 = dρ2 + ρ2 ρ2 dφ2 + dz2

Jacobian:
( , , )

( , , )

x y z

z
ρ

ρ φ
∂ =
∂

Element of volume: dV = ρ d ρ d φ dz

Laplacian:    
2 2

2
2 2 2

1 1U U U
U

z
ρ

ρ ρ ρ ρ φ
⎛ ⎞∂ ∂ ∂ ∂∇ = + + +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

2 2 2

2 2 2 2

1 1U U U U

zρ ρρ ρ φ
∂ ∂ ∂ ∂= + + + +

∂∂ ∂ ∂
Note that corresponding results can be obtained for polar coordinates in the plane by omitting z depend-

ence. In such case, for example, ds2 = d ρ2 + ρ2 dφ2, while the element of volume is replaced by the element 
of area, dA = ρ d ρ d φ.

Spherical Coordinates (r, q, f) See Figure 7.14.
Transformation equations:

x = r sin θ cos φ, y = r sin θ sin φ, z = r cos θ

where r >  0, 0 < θ < π, 0 < φ < 2π.

Scale factors: h1 = 1, h2 = r, h3 = r sin θ

Element of arc length: ds2 = dr2 + r2 d θ 2 + r2 sin2 θ dφ2

Jacobian: 2( , , )
sin

( , , )

x y z
r

r
θ

θ φ
∂ =
∂

Element of volume: dV = r2 sin θ dr dθ d φ

Laplacian: 2 2
2

1 U
U r

r rr

∂ ∂⎛ ⎞∇ = ⎜ ⎟∂ ∂⎝ ⎠
2

2 2 2 2

1 1
sin

sin sin

U U

r r
θ

θ θθ θ φ
∂ ∂ ∂⎛ ⎞+ +⎜ ⎟∂ ∂ ∂⎝ ⎠

Other types of coordinate systems are possible.

Figure 7.13

Figure 7.14
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SOLVED PROBLEMS

Vector algebra

7.1. Show that addition of vectors is commutative, i.e., A + B = B + A.
See Figure 7.15.

OP + PQ = OQ or A + B = C

and

OR + RQ = OQ or B + A = C

Then A + B = B + A.

7.2. Show that the addition of vectors is associative, i.e., A + (B + C) = 
(A + B) + C. See Figure 7.16.

OP + PQ = OQ = (A + B) and PQ + QR = PR = (B + C)

Since

OP + PR = OR = D, i.e., A + (B + C) = D

OQ + QR = OR = D, i.e., (A + B) + C = D

we have A + (B + C) = (A + B) + C.
Extensions of the results of Problems 7.1 and 7.2 show that the 

order of addition of any number of vectors is immaterial.

7.3. An automobile travels 3 miles due north, then 5 miles northeast as 
shown in Figure 7.17. Represent these displacements graphically 
and determine the resultant displacement (a) graphically and (b) 
analytically.

Vector OP or A represents displacement of 3 miles due north.
Vector PQ or B represents displacement of 5 miles northeast.
Vector OQ or C represents the resultant displacement or sum of 

vectors A and B, i.e., C = A + B. This is the triangle law of vector 
addition.

The resultant vector OQ can also be obtained by constructing 
the diagonal of the parallelogram O P Q R having vectors OP = A
and OR (equal to vector PQ or B) as sides. This is the parallelogram 
law of vector addition.

(a) Graphical Determination of Resultant. Lay off the 1-mile unit 
on vector OQ to find the magnitude 7.4 miles (approximately).

Angle EOQ = 61.5º, using a protractor. Then vector OQ has magnitude 7.4 miles and direction 61.5º north 
of east.

(b) Analytical Determination of Resultant. From triangle OPQ, denoting the magnitudes of A, B, C by A, B, 
C, we have by the law of cosines 

C2 = A2 + B2 – 2 AB cos OPQ = 32 + 52 – 2(3)(5) cos 135º = 34 + 15 2  = 55.21 

Figure 7.15

Figure 7.16

Figure 7.17
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and C = 7.43 (approximately).

By the law of sines, .
sin sin

A C

OQP OPQ
=

∠ ∠
 Then

sin 3(0.707)
sin 0.2855 and 16 35

7.43

A OPQ
OPQ OQP

C

∠ ′∠ = = = ∠ = o

Thus, vector OQ has magnitude 7.43 miles and direction (45º + 16º35´) = 61º35′ north of east.

7.4. Prove that if a and b are noncollinear, then xa + yb = 0 implies x = y = 0. Is the set {a, b} linearly 
independent or linearly dependent?

Suppose x � 0. Then xa + yb = 0 implies xa = – yb or a = – (y/x) b; i.e., a and b must be parallel to the 
same line (collinear), contrary to hypothesis. Thus, x = 0; then yb = 0, from which y = 0. The set is linearly 
independent.

7.5. Prove that x1a + y1b = x2a + y2b, where a and b are noncollinear, then x1 = x2 and y1 = y2.

x1a + y1b = x2a + y2b can be written

x1a + y1b – (x2a + y2b) = 0 or (x1 – x2)a + (y1 – y2)b = 0

Hence, by Problem 7.4, x1 – x2 = 0, y1 – y2 = 0, or x1 = x2, y1 = y2.
Extensions are possible (see Problem 7.49).

7.6. Prove that the diagonals of a parallelogram bisect each other.

Let ABCD be the given parallelogram with diagonals intersecting 
at P, as shown in Figure 7.18.

Since BD + a = b, BD = b – a. Then BP = x(b – a).
Since AC = a + b, AP = y(a + b).
But AB = AP + PB = AP – BP; i.e., a = y(a + b) – x(b – a)

= (x + y)a + (y – x)b.
Since a and b are noncollinear, we have, by Problem 7.5, x + y = 1 

and y – x = 0; i.e., x = y = 1/2 and P is the midpoint of both diagonals.

7.7. Prove that the line joining the midpoints of two sides of a triangle is 
parallel to the third side and has half 
its length.

From Figure 7.19, AC + CB = AB or b + a = c.
Let DE = d be the line joining the midpoints of sides AC and CB.

Then d = DC + CE = 
1 1

b + a
2 2

1 1
= (b + a) = c

2 2
.

Thus, d is parallel to c and has half its length.

7.8. Prove that the magnitude A of the vector A = A1i + A2 j + A3k is A
2 2 2
1 2 3 .A A A= + +  See Figure 7.20.

By the Pythagorean theorem,
2 2 2

( ) ( ) ( )OP OQ QP= +
4 4 4

where ( )OP
4

 denotes the magnitude of vector OP, etc. Similarly, 
2 2 2

( ) ( ) ( ) .OQ OR RQ= +
4 4 4

Figure 7.18

Figure 7.19

Figure 7.20
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Then

2 2 2 2 2 2 2 2 2 2 2
1 2 3 1 2 3( ) ( ) ( ) ( ) or , i.e.. .OP OR RQ QP A A A A A A A A= + + = + + = + +

4 4 4 4

7.9. Determine the vector having initial point P(x1, y1, z1) and 
terminal point Q(x2, y2, z2) and find its magnitude. See Figure 
7.21.

The position vector of P is r1 = x1i + y1j + z1k.
The position vector of Q is r2 = x2i + y2 j + z2k.
r1 = PQ = r2 or

PQ = r2 – r1 = (x2i + y2 j + z2k) – (x1i + y1j + z1k)

 = (x2 – x1)i + (y2 – y1)j + (z2 – z1)k

Magnitude of PQ = PQ
2 2 2

2 1 2 1 2 1( ) ( ) ( ) .x x y y z z= − + − + −

Note that this is the distance between points P and Q.

The dot or scalar product

7.10. Prove that the projection of A on B is equal to A · b, where b, where b is 
a unit vector in the direction of B.

Through the initial and terminal points of A pass planes perpendicu-
lar to B at G and H, respectively, as in Figure 7.22; then

Projection of A on B = GH EF=  = A cos θ = A · b

7.11. Prove A · (B + C) = A · B + A · C. See Figure 7.23.

Let a be a unit vector in the direction of A; then

Projection of (B + C) on A = projection of B on A + projection of C on A

(B + C) · a = B · a + C · a

Multiplying by A.

(B + C) · Aa = B · Aa + C · Aa

and

(B + C) · A = B · A + C · A

Then by the commutative law for dot products.

A · (B + C) = A · B + A · C

and the distributive law is valid.

7.12. Prove that (A + B) · (C + D) = A · C + A · D + B · C + B · D.

By Problem 7.11, (A + B) · (C + D) = A · (C + (C + D) + B · (C + D) = A · C + A · D + B · C + B · D.
The ordinary laws of algebra are valid for dot products where the operations are defined.

Figure 7.21

Figure 7.22

Figure 7.23
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7.13. Evaluate each of the following.
(a) i · i = ⏐i⏐ ⏐i⏐ cos 0º = (1)(1)(1) = 1

(b) i · k = ⏐i⏐ ⏐k⏐ cos 90º = (1)(1)(0) = 0

(c) k · j = ⏐k⏐ ⏐j⏐ cos 90º = (1)(1)(0) = 0

(d) j · (2i – 3j + k) = 2j · i – 3j · j + j · k = 0 – 3 + 0 = –3

(e) (2i – j) · (3i + k) = 2i · (3i + k) – j · (3i + k) = 6i · i + 2i · k – 3j · i – j · k = 6 + 0 – 0 – 0 = 6

7.14. If A = A1i + A2 j + A3k and B = B1 i + B2 j + B3k, prove that A · B = A1B1 + A2B2 + A3B3.

 A · B = (A1i + A2 j + A3k) · (B1i + B2 j + B3k)

 = A1i · (B1i + B2 j + B3k) + A2 j · (B1i + B2 j + B3k) + A3k · (B1i + B2 j + B3k)

 = A1B1i · i + A1B2i · j + A1B3i · k + A2B1 j · i + A2B2 j · j + A2B3 j · k

 + A3B1k · i + A3B2k · j + A3B3k · k

 = A1B1 + A2B2 + A3B3

since i · j = k · k = 1 and all other dot products are zero.

7.15. If A = A1i + A2 j + A3k. show that 2 2 2
1 2 3A A .A A A A= ⋅ = + +

A · A = (A)(A) cos 0 = A2. Then A = ⋅A A .

Also, A · A = (A1i + A2 j + A3k) · (A1i + A2 j + A3k)

 = (A1)(A1) + (A2)(A2) + (A3)(A3) = A2
1 + A2

2 + A2
3

By Problem 7.14, taking B = A.

Then 2 2 2
1 2 3 .A A A A= ⋅ = + +A A A2
1 + A2

2 + A2
3  is the magnitude of A. Sometimes A · A is written A2.

The cross or vector product

7.16. Prove A × B = –B × A.

A × B = C has magnitude AB sin θ and direction such that A, B, and C form a right-handed system. See 
Figure 7.24(a).

B × A = D has magnitude BA sin θ and direction such that B, A, and D form a right-handed system. See 
Figure 7.24(b).

Then D has the same magnitude as C but is opposite in direction; i.e., C = –D or A × B = –B × A.
The commutative law for cross products is not valid.

Figure 7.24
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7.17. Prove that A × (B + C) = A × B + A × C for the case where A is perpendicular to B and also to C.

Since A is perpendicular to B, A × B is a vector 
perpendicular to the plane of A and B and having 
magnitude AB sin 90º = AB or magnitude of AB.
This is equivalent to multiplying vector B by A and 
rotating the resultant vector through 90º to the posi-
tion shown in Figure 7.25.

Similarly, A × C is the vector obtained by mul-
tiplying C by A and rotating the resultant vector 
through 90º to the position shown.

In like manner, A × (B + C) is the vector ob-
tained by multiplying B + C by A and rotating the 
resultant vector through 90º to the position shown.

Since A × (B + C) is the diagonal of the paral-
lelogram with A × B and A × C as sides, we have 
A × (B + C) = A × B + A × C.

7.18. Prove that A × (B + C) = A × B + A × C in the general case where A, B, and C are noncoplanar. See Figure 7.26.

Resolve B into two component vectors, one perpendicular to A and 
the other parallel to A, and denote them by B⊥ and B|| respectively. Then 
B = B⊥ + B||.

If θ is the angle between A and B, then B⊥ = B sin θ. Thus, the mag-
nitude of A × B⊥ is AB sin θ, the same as the magnitude of A × B. Also, 
the direction of A × B⊥ is the same as the direction of A × B. Hence, A
× B⊥ = A × B.

Similarly, if C is resolved into two component vectors C|| and C⊥,
parallel and perpendicular, respectively, to A, then A × C⊥ = A × C.

Also, since B + C = B⊥ + B|| + C⊥ + C|| = (B⊥ + C⊥) + (B|| + C||), it 
follows that

A × (B⊥ + C⊥) = A × (B + C)

Now B⊥ and C⊥ are vectors perpendicular to A, and so by Problem 7.17,

A × (B⊥ + C⊥) = A × B⊥ + A × C⊥

Then

A × (B + C) = A × B + A × C

and the distributive law holds. Multiplying by –1, using Problem 7.16, this becomes (B + C) × A = B × A + C
× A. Note that the order of factors in cross products is important. The usual laws of algebra apply only if proper 
order is maintained.

7.19. (a) If A = A1i + A2 j + A3k and B = B1i + B2 j + B3k, prove that A × B = 1 2 3

1 2 3

A A A

B B B

× =
i j k

A B .

Figure 7.25

Figure 7.26
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A B i j k i j k

i i

× = + + × + +
= × +

( ) ( )

(

A A A B B B

A B B
1 2 3 1 2 3

1 1 2 jj k j i j k k i j k1+ + × + + + × + +B A B B B A B B B3 2 1 2 3 3 2 3) ( ) ( )

== × + × × + × + × +A B A B A B A B A B A1 1 1 2 21 2 3 1 2i i i j + i k j i j j 22

3 3 3

2 3 3 2

B

A B A B A B

A B A B

3

1 2 3

j k

+ k i k j k k

×
× + × + ×

= −( )ii j k

i j k

+ − + − =( ) ( )A B A B A B A B A A A

B B B
3 1 1 3 1 2 2 1 1 2 3

1 2 33

(b) Use the determinant representation to prove the result of Problem 7.18.

7.20. If A = 3i – j + 2k and B = 2i + 3j – k, find A × B.

A B

i j k

3

2

i j k× = −
−

=
−

−
−

−
+

−
1 2

3 1

1 2

3 1

3 2

2 1

3 1

2 3

i= − +5 7 jj k+ 11

7.21. Prove that the area of a parallelogram with sides A and B is 
⏐A × B⏐. See Figure 7.27.

Area of parallelogram = h⏐B⏐

A B

A B

=
= ×

sinθ

Note that the area of the triangle with sides A and B = 
1/2 ⏐A × B⏐.

7.22. Find the area of the triangle with vertices at P(2, 3, 5), Q(4, 2, –1), and R(3, 6, 4).

PQ = (4 – 2)i + (2 – 3)j + (–1 – 5)k = 2i – j – 6k

PR = (3 – 2)i + (6 – 3)j + (4 – 5)k = i + 3j – k

Area of triangle PQ PR i= × = −1

2

1

2
2( j − k (i j k× + −6 3) )

= 11

2
2 1 6

1 3 1

1

2
19 4 7

1

2
19 42 2

i j k

i j k− −
−

= − +

= + − +( ) ( ) (77
1

2
4262) =

Triple products

7.23. Show that A · (B × C) is in absolute value equal to the volume of a parallelepiped with sides A, B, and C.
See Figure 7.28.

Figure 7.27
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Figure 7.28

Let n be a unit normal to parallelogram I, having the direction of B × C, and let h be the height of the 
terminal point of A above the parallelogram I.

Volume of a parallelepiped = (height h)(area of parallelogram I)

= (A · n)(⏐B × C⏐)

= A · {⏐B × C⏐n} = A · (B × C)

If A, B and C do not form a right-handed system, A · n < 0 and the volume = ⏐A · (B × C)⏐.

7.24. If A = A1i + A2 j + A3k, B = B1i + B2 j + B3k, C = C1i + C2 j + C3k show that

A · (B × C)
1 2 3

1 2 3

1 2 3

A A A

B B B

C C C

=

A · (B × C)

[ ]

1 2 3

1 2 3

1 2 3 2 3 3 2 3 1 1 3 1 2 2 1

i j k

A

( i j k) ( )i ( ) j ( )k

B B B

C C C

A A A B C B C B C B C B C B C

= ⋅

= + + ⋅ − + − + −

i
A

j k

1 2 3

1 2 3 3 2 2 3 1 1 3 3 1 2 2 1 1 2 3

1 2 3

( ) ( ) ( )

A A A

A B C B C A B C B C A B C B C B B B

C C C

= − + − + − = ⋅

7.25. Find the volume of a parallelepiped with sides A = 3i – j, B = j + 2k, C = i + 5j + 4k.

By Problems 7.23 and 7.24, volume of parallelepiped |= A · (B × C)
3 1 0

|  | 0 1 2 |

1 5 4

−
= | 20 | 20.= − =

7.26. Prove that A · (B × C) = (A × B) · C, i.e., the dot and cross can be interchanged.

By Problem 7.24: A · (B × C)
1 2 3

1 2 3

1 2 3

,

A A A

B B B

C C C

=  (A × B) · C = C · (A × B)
1 2 3

1 2 3

1 2 3

C C C

A A A

B B B

=

Since the two determinants are equal, the required result follows.

7.27. Let r1 = x1 i + y1j + z1k, r2 = x2i + y2 j + z2k and r3 = x3i + y3 j + z3k be the position vectors of points P1(x1, y1,
z1), P2(x2, yx, z2), and P3(x3, y3, z3). Find an equation for the plane passing through P1, P2, and P3. See Figure 
7.29.

We assume that P1, P2, and P3 do not lie in the same straight line; hence, they determine a plane.
Let r = xi + yj + zk denote the position vectors of any point P(x, y, z) in the plane. Consider vectors P1P2

= r2 – r1, P1P3 = r3 – r1 and P1P = r – r1 which all lie in the plane. Then

P1P · P1P2 × P1P3 = 0

uur
uuruur
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Figure 7.29

or
(r – r1) · (r2 – r1) × (r3 – r1) = 0

In terms of rectangular coordinates this becomes

[(x – x1)i + (y – y1)j + (z – z1)k] · [(x2 – x1)i + (y2 – y1)j + (z2 – z1) k]

× [(x3 – x1)i + (y3 – y1)j + (z3 – z1)k] = 0

or, using Problem 7.24,
1 1 1

2 1 2 1 2 1

3 1 3 1 3 1

0

x x y y z z

x x y y z z

x x y y z z

− − −
− − − =
− − −

7.28. Find an equation for the plane passing through the points P1(3, 1, –2), P2(–1, 2, 4), P3(2, –1, 1).

The positions vectors of P1, P2, P3 and any point P(x, y, z) on the plane are respectively

r1 = 3i + j – 2k, r2 = –i + 2j + 4k, r3 = 2i – j + k, r = xi + jj + zk

Then PP1 = r – r1, P2P1 = r2 – r1, P3P1 = r3 – r1, all lie in the required plane and so the required equation 
is (r – r1) · (r2 – r1) × (r3 – r1) = 0, i.e.,

{(x – 3)i + (y – 1)j + (z + 2)k} · {– 4i + j + 6k} × {–i – 2j + 3k} = 0

{(x – 3)i + (y – 1)j + (z + 2)k} · {15 i + 6j + 9k} = 0

15(x – 3) + 6(y – 1) + 9(z + 2) = 0   or   5x – 2y + 3z = 11

Another method: By Problem 7.27, the required equation is

3 1 2

1 3 2 1 4 2 0 or 5 2 3 11

2 3 1 1 1 2

x y z

x y z

− − +
− − − + = + + =

− − − +

7.29 (1) If A = i + j, B = 2i – 3j + k, and C = 4j – 3k, find (a) (A × B) × C, (b) A × (B × C).

(a) A × B

i j k

1 1 0

2 3 1

= =
−

i – j – 5k. Then (A × B) × C

i j k

1 1 5

0 4 3

= − − =
−

i j k

23i + 3j + 4k.

(b) B × C

i j k

2 3 1

0 4 3

= − =
−

5i + 6j + 8k. Then A × (B × C)

i j k

1 1 0

5 6 8

= =
i j k

8i – 8j + k.

It can be proved that, in general, (A × B) × C � A × (B × C).
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7.29 (2) A × (B × C) = B (A, C) – C (A, B). Use the same vectors as in Problem 7.29 (1). (Note: sometimes 
remembered with the phrase “back to cab.”)

Derivatives

7.30. If r = (t3 + 2t)i – 3e–2tj + 2 sin 5tk, find (a) 
r

,
d

dt

dr
 (b) 

r
,

d

dt
dr

 (c) 
2

2

r
,

d

dt

r
 and (d) 

2

2

rd

dt

r
 at t = 0, and give a possible 

physical significance.

(a) 3 2 2 2r
( 2 )i ( 3 ) j (2sin 5 )k (3 2)i 6 j 10 cos5 k

At = 0, r / 2i 6 j 10k

t td d d d
t t e t t e t

dt dt dt dt
t d dt

− −= + + − + = + + +

= + +i

i i

j

j j

k

k k

dr

(b) From ( ), |a dr 2 2 2/ | (2) (6) (10) 140 2 35 at 0.dt t= + + = = =

(c)
2

2 2 2
2

2 2

r
{(3 2)i 6 j 10 cos5 k} 6 i 12 j 50 sin 5 k

At = 0, r / 12j.

t td r d d d
t e t t e t

dt dt dtdt

t d dt

− −⎛ ⎞= = + + + = − −⎜ ⎟⎝ ⎠
= −

r

r

i j k i j k

j.

dr

(d) From (c), ⏐d2r/dt2⏐ = 12 at t = 0.

If t represents time, these represent, respectively, the velocity, magnitude of the velocity, acceleration, and 
magnitude of the acceleration at t = 0 of a particle moving along the space curve x = t3 + 2t, y = –3e–2t, z = 2 
sin 5t.

7.31. Prove that ( )
d

du
⋅ =A B A

d d

du du
⋅ + ⋅B A

B where A and B are differentiable functions of u.

Method 1:

0

( ) ( )
( ) lim

u

d

du uΔ →

+ Δ ⋅ + Δ − ⋅⋅ =
Δ

A A B B A B
A B

0

0

lim

lim A A

u

u

u

d d

u u u du du

Δ →

Δ →

⋅ Δ + Δ ⋅ + Δ ⋅ Δ=
Δ

Δ Δ Δ⎛ ⎞= ⋅ + ⋅ + ⋅ Δ = ⋅ + ⋅⎜ ⎟Δ Δ Δ⎝ ⎠

A B A B A B

B A A B A
B B B

Method 2:

Let A = A1i + A2j + A3k, B + B1i + B2 j + B3k. Then

1 1 2 2 3 3

3 31 2 1 2
1 2 3 1 2 3

( ) ( )
d d

A B A B A B
du du

dB dAdB dB dA dA
A A A B B B

du du du du du du

d d

du du

Α ⋅Β = + +

⎛ ⎞ ⎛ ⎞= + + + + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

Β Α= Α ⋅ + ⋅Β

A

A
A

B

B
B

7.32. If φ(x, y, z) = x2yz and A = 3x2yi + yz2j – xzk, find A
2

2 23 i j k, find ( Ax y yz xz
y z

φ∂= + −
∂ ∂

A) at the point 
(1, –2, –1).

2 2 2 4 2 2 2 3 3 2

4 2 2 2 3 3 2 3 4 2 2 2 2 3

2
4 2 2 2 2 3 4 2 2 3

( )(3 i ) = 3

( ) = (3 ) 3 3 2

( ) = (3 i 3 2 ) 6 6 2

If 1, 2, 1, this becomes 12 12

x yz x y yz xz y z x y z x yz

y z x y z x y z y x y z x yz
z z

y x y z x yz y x yz x z
y z z

x y z

φ

φ

φ

= + − + −
∂ ∂ + − = + −
∂ ∂

∂ ∂ + − = + −
∂ ∂ ∂

= = − = − − −

A j k x i j k

A x i j k x i j k

A x j k x i j k

i j 2 .+ k
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7.33. If A = x2 sin yi + z2 cos yj – xy2k, find dA.

Method 1:

∂
∂

= − ∂
∂

− − ∂
x

x y y
y

x y z y xy2 22 2 2sin , cos sin ,i k i j k
∂

=

= ∂
∂

+ ∂
∂

+ ∂
∂

=

z
z y

d
x

dx
y

dy
z

dz

x y

2

2

cos

( sin

j

ii k i j k j− + − − +y dx x y z y xy dy z y2 2 2 2 2) ( cos sin ) ( cos ))

( sin cos ) ( cos sin

dz

x y dx x y dy z y dz z y d= + + −2 22 2i yy y dx xy dy) ( )j k− +2 2

A A A

A
A AA

Method 2:

 dA = d(x2 sin y)i + d(z2 cos y)j – d(xy2)k

 = (2x sin y dx + x2 cos y dy)i + (2z cos y dz – z2 sin y dy)j – (y2 dx + 2xy dy)k

Gradient, divergence, and curl

7.34. If φ = x2yz3 and A = xzi – y2j + 2x2yk, find (a) ∇φ, (b) ∇ · A, (c) ∇ × A, (d) div (φA), (e) curl (φA).

(a) ∇ = ∂
∂

+ ∂
∂

+ ∂
∂

⎛
⎝⎜

⎞
⎠⎟

= ∂
∂

+ ∂
∂

+ ∂
∂

=φ φ φ φ φ
i j k i j k

x y z x y z

∂∂
∂

+ ∂
∂

+ ∂
∂

=

x
x yz

x
x yz

z
x yz

xyz

( ) ( ) ( )2 3 2 3 2 3

32

i j k

i ++ +x z x yz2 3 2 23j k

(b) ∇ ⋅ = ∂
∂

+ ∂
∂

+ ∂
∂

⎛
⎝⎜

⎞
⎠⎟

⋅ − +

= ∂
∂

A i j k i j k
x y z

xz y x y( )2 22

xx
xz

y
y

z
x y z y( ) ( ) ( )+ ∂

∂
− + ∂

∂
= −2 22 2

(c) ∇ × = ∂
∂

+ ∂
∂

+ ∂
∂

⎛
⎝⎜

⎞
⎠⎟

× − +

=

A i j k i j k

i j

x y z
xz y x y( )2 22

kk

∂ ∂ ∂ ∂ ∂ ∂
−

= ∂
∂

− ∂
∂

−⎛

/ / /

( ) ( )

x y z

xz y x y

x
x y

z
y

2 2

2 2

2

2⎝⎝⎜
⎞
⎠⎟ + ∂

∂
− ∂

∂
⎛
⎝⎜

⎞
⎠⎟ + ∂

∂
− − ∂

i j
z

xz
x

x y
x

y( ) ( ) ( )2 2 2

∂∂
⎛
⎝⎜

⎞
⎠⎟

= + −

y
xz

x x xy

( )

( )

k

i j2 42

(d) div A A) i j k( ) ( ( )φ φ= ∇ ⋅ = ∇ ⋅ − +

=

x yz x y z x y z3 4 2 3 3 4 2 32

∂∂
∂

+ ∂
∂

− + ∂
∂

=
x

x yz
y

x y z
z

x y z

x yz

( ) ( ) ( )3 4 2 3 3 4 2 3

2

2

3 44 2 2 3 4 2 23 6− +x y z x y z

(e) 3 4 2 3 3 4 2 3

3 4 2 3 3 4 2 3

4 3 2 3 2 3 3 3 2 3 3 3 3 4

curl ( ) ( ) ( 2 )

/ / /

2

(4 3 ) (4 8 ) (2 )

x yz x y z x y z

x y z

x yz x y z x y z

x yz x y z x yz x y z xy z x z

φ φ= ∇× = ∇× − +

= ∂ ∂ ∂ ∂ ∂ ∂
−

= − + − − +

A A i j k

i j k

i j k
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7.35. Prove ∇ · (φA) = (∇φ) · A + φ (∇ · A).

1 2 3

1 2 3

31 2
1 2 3

1 2 3

1 2 3

( ) ( )

= ( ) ( ) ( )

( + )

( + )

= ( ) ( )

A A A

A A A
x y z

AA A
A A A

x y z x y z

A A A
x y z

A A A
x y z

φ φ φ φ

φ φ φ

φ φ φ φ

φ φ φ

φ

φ φ

∇ ⋅ = ∇ ⋅ + +
∂ ∂ ∂+ +
∂ ∂ ∂

∂∂ ∂⎛ ⎞∂ ∂ ∂= + + + + +⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠
⎛ ⎞∂ ∂ ∂= + + ⋅ +⎜ ⎟∂ ∂ ∂⎝ ⎠

⎛ ⎞∂ ∂ ∂+ + + ⋅ +⎜ ⎟∂ ∂ ∂⎝ ⎠
∇ ⋅ + ∇ ⋅

A i j k

i j k i j k

i j k i j k

A A

7.36. Express a formula for the tangent plane to the surface φ(x, y, z) = 0 at one of its points P0(x0, y0, z0).

(∇φ)0 · (r – r0) = 0

7.37. Find a unit normal to the surface 2x2 + 4yz – 5z2 = –10 at the point P(3, –1, 2).

By Problem 7.36, a vector normal to the surface is

∇(2x2 + 4yz – 5z2) = 4xi + 4zj + (4y – 10z)k = 12i + 8j – 24k at (3, –1, 2)

Them a unit normal to the surface at P is

2 2 2

12 8 24 3 2 6

7(12) (8) ( 24)

+ − + −=
+ + −

i j k i j k

Another unit normal to the surface at P is

3 2 6
.

7

+ −− i j k

7.38. If φ = 2x2y – xz3, find (a) ∇φ and (b) ∇2 φ.

(a) ( )
x y z

xy z x xz∇ = ∂
∂

+ ∂
∂

+ ∂
∂

= − + −φ φ φ φ
i j k i j4 2 33 2 2kk

(b) 2 3 2 2Laplacian of (4 ) (2 ) ( 3 ) 4 6xy z x xz y xz
x y z

φ φ φ ∂ ∂ ∂∇ = = ∇ ⋅∇ = − + + − = −
∂ ∂ ∂

Another method:
2 2 2 2 2 2

2 2 3 2 3 2 3
2 2 2 2 2 2

(2 ) (2 ) (2 )

4 6

x y xz x y xz x y xz
x y z x y z

y xz

φ φ φφ ∂ ∂ ∂ ∂ ∂ ∂∇ = + + = − + − + −
∂ ∂ ∂ ∂ ∂ ∂

= −
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7.39. Prove div curl A = 0.

div curl A A

i j k

= ∇ ⋅ ∇ × = ∇ ⋅ ∂ ∂ ∂ ∂ ∂ ∂

= ∇ ⋅

( ) / / /x y z

A A A1 2 3

∂∂
∂

−
∂
∂

⎛
⎝⎜

⎞
⎠⎟

+
∂
∂

−
∂
∂

⎛
⎝⎜

⎞
⎠⎟

+
∂
∂

A

y

A

z

A

z

A

x

A3 2 1 3 2i j
xx

A

y

x

A

y

A

z

−
∂
∂

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

=
∂
∂

∂
∂

−
∂
∂

⎛
⎝⎜

⎞
⎠⎟

+

1

3 2

k

∂∂
∂

∂
∂

−
∂
∂

⎛
⎝⎜

⎞
⎠⎟

+
∂
∂

∂
∂

−
∂
∂

⎛
⎝⎜

=

y

A

z

A

x z

A

x

A

y
1 3 2 1

∂∂
∂ ∂

−
∂
∂ ∂

+
∂
∂ ∂

−
∂
∂ ∂

+
∂
∂

2
3

2
2

2
1

2
3

2
2A

x y

A

x z

A

y z

A

y x

A

z ∂∂
−

∂
∂ ∂

=
x

A

z y

2
1

0

assuming that A has continuous second partial derivatives so that the order of differentiation is immaterial.

Jacobians and curvilinear coordinates

7.40. Find ds2 in (a) cylindrical and (b) spherical coordinates and determine the scale factors.

(a) Method 1:

x = ρ cos φ, y = ρ sin φ, = z

dx = – ρ sin φdφ + cos φdφρ,   dy = ρ cos φdφ + sin φdρ,   dz = dz

Then
2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2
1 2 3

( sin cos ) ( cos sin ) ( )

( ) ( ) ( ) ( ) ( ) ( )

ds dx dy dz d d d d dz

d d dz h d h d d dz

ρ φ φ φ ρ ρ φ φ φ ρ
ρ ρ φ ρ φ

= + + = − + + + +
= + + = + +

and h1 = hρ = 1, h2 = hφ = ρ, h3 = hz = 1 are the scale factors.
Method 2: The position vector is r = ρ cos φi + ρ sin φj + zk. Then

d d d
z

dz

d

r
r r r

i j

=
∂
∂

+
∂
∂

+
∂
∂

= + + −
ρ

ρ
φ

φ

φ φ ρ ρ(cos sin ) ( ssin cos )

(cos sin ) sin

φ ρ φ φ
φ ρ ρ φ φ

i j k

i+(

+ +
= −

d dz

d d φφ ρ ρ φ φd d dz+ +cos ) j k

Thus, ds2 = dr · dr = (cos φdρ – ρ sin φdφ)2 + (sin φdρ + ρ cos φdφ)2 + (dz)2

 = (d ρ)2 + ρ2 (d φ)2 + (dz)2

(b) x = r sin θ cos φ, y = r sin θ sin φ, z = r cos θ

Then

dx = –r sin θ sin φdφ + r cos θ cos φdθ + sin θ cos φdr

 dy = r sin θ cos φdφ + r cos θ sin φdθ + sin θ sin φdr

 dz = –r sin θdφ + cos θdr

and

(ds)2 = (dx)2 + (dy)2 + (dz)2 = (dr)2 + r2 (dθ)2 + r2 sin2 θ (dφ)2

The scale factors are h1 = hr = 1, h2 = hθ = r, h3 = hφ = r sin θ.
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7.41. Find the volume element dV in (a) cylindrical and (b) spherical coordinates and sketch.

The volume element in orthogonal curvilinear coordinates u1, u2, u3 is

dV = h1h2h3 du1du2du3
1 2 3

( , , )

( , , )

x y z

u u u

∂=
∂

du1du2du3

(a) In cylindrical coordinates, u1 = ρ, u2 = φ, u3 = z, h1 = 1, h2 = ρ, h3 = 1 [see Problem 7.40(a)]. Then

dV = (1)(ρ)(1)dρdφdz = ρdρdφdz

This can also be observed directly from Figure 7.30(a).
(b) In spherical coordinates, u1 = r, u2 = θ, u3 = φ, h1 = 1, h2 = r, h3 = r sin θ [see Problem 7.40(b)]. Then

dV = (1)(r) (r sin θ) drdθdφ = r2 sin θdrdθd φ

This can also be observed directly from Figure 7.30(b).

Figure 7.30

7.42. Express in cylindrical coordinates: (a) grad Φ, (b) div A, and (c) ∇2 Φ.

Let u1 = ρ, u2 = φ, u3 = z, h1 = 1, h2 = ρ, h3 = 1 [see Problem 7.40(a) and (b).] Then

(a)
1

grad
1 ρ

∂ΦΦ = ∇Φ =
∂

e1
1

ρ φ
∂Φ+
∂

e2
1

1 z

∂Φ+
∂

e3 ρ
∂Φ=
∂

e1
1

ρ φ
∂Φ+
∂

e2
z

∂Φ+
∂

e3

where e1, e2, e3 are the unit vectors in the directions of increasing ρ, φ, z, respectively.

(b) div A = ∇ ⋅ A
1 2 3

1
(( )(1) ) ((1)(1) ) ((1)( ) )

(1)( )(1)
A A A

z
ρ ρ

ρ ρ φ
⎡ ⎤∂ ∂ ∂= + +⎢ ⎥∂ ∂ ∂⎣ ⎦

32
1

1
( )

AA
A

z
ρ

ρ ρ φ
∂∂⎡ ⎤∂= + +⎢ ⎥∂ ∂ ∂⎣ ⎦

where A = A1e1 + A2e2 + A3e3.

(c) 2

2 2

2 2 2

1 ( )(1) (1)(1) (1)( )

(1)( )(1) (1) ( ) (1)

1 1

z z

z

ρ φ ρ
ρ ρ ρ φ ρ φ

ρ
ρ ρ ρ ρ φ

⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂Φ ∂ ∂Φ⎛ ⎞∇ Φ = + +⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠ ⎝ ⎠⎣ ⎦
⎛ ⎞∂ ∂Φ ∂ Φ ∂ Φ= + +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
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Miscellaneous problems

7.43. Prove that grad f (r) = 
( )f r

r

′
r, where r = 2 2 2x y z+ +  and f ′(r) = df is df/dr is assumed to exist.

grad ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )
= ( ) ( ) ( ) ( )

f r f r f r f r f r
x y z

r r r
f r f r f r

x y z

x y z f r f r
f r f r f r x y z

r r r r r

∂ ∂ ∂= ∇ = + +
∂ ∂ ∂

∂ ∂ ∂′ ′ ′= + +
∂ ∂ ∂

′ ′′ ′ ′+ + = + + =

i j k

i j k

i j k i j k r

Another method: In orthogonal curvilinear coordinates u1, u2, u3, we have

1 2 3
1 1 2 2 3 3

1 1 1

h u h u h u

∂Φ ∂Φ ∂Φ∇Φ = + +
∂ ∂ ∂

e e e  (1)

If, in particular, we use spherical coordinates, we have u1 = r, u2 = θ, u3 = φ. Then letting Φ = f (r), a func-
tion of r alone, the last two terms on the right of Equation (1) are zero. Hence, on observing that e1 = r/r and 
h1, = 1, we have, the result

1 ( ) ( )
( )

1

f r f r
f r

r r r

′∂∇ = =
∂

r
r  (2)

7.44. (a) Find the Laplacian of φ = f (r). (b) Prove that φ = 1/r is a solution of Laplace’s equation ∇2 φ = 0.

(a) By Problem 7.43,
( )

( )
f r

f r
r

φ
′

∇ = ∇ = r

By Problem 7.35, assuming that f(r) has continuous second partial derivatives, we have

2

2
3

( )
Laplacian of ( )

( ) ( ) 1 ( ) ( )
+ ( ) + (3)

( ) ( ) 3 ( ) 2
( ) ( )

f r

r

f r f r d f r f r

r r r dr r r

rf r f r f r
r f r f r

r rr

φ φ φ
′⎧ ⎫= ∇ = ∇ ⋅ ∇ = ∇ ⋅ ⎨ ⎬

⎩ ⎭
′ ′ ′ ′⎧ ⎫ ⎧ ⎫= ∇ ⋅ ∇ ⋅ = ⋅⎨ ⎬ ⎨ ⎬

⎩ ⎭ ⎩ ⎭
′′ ′ ′+ ′′ ′= + = +

r

r r r r

Another method: In spherical coordinates, we have

2
2 2

2 2 2 2 2

1 1 1
sin

sin sin

U U U
U r

r rr r r
θ

θ θθ θ φ
∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞∇ = + +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

If U = f (r), the last two terms on the right are zero and we find

2 2
2

1 2
( ) ( ( )) ( ) ( )

d
f r r f r f r f r

dr rr
′ ′′ ′∇ = = +

(b) From the result in (a), we have

2
2

2 3 3

1 1 2 1 2 2
0

d d

r r r dr rdr r r

⎛ ⎞ ⎛ ⎞ ⎛ ⎞∇ = + = − =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠
showing that 1/r is a solution of Laplace’s equation.
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7.45. A particle moves along a space curve r = r(t), where t is the time measured from some initial time. If 
υ = ⏐dr/dt⏐ = ds/dt is the magnitude of the velocity of the particle (s is the arc length along the space curve 
measured from the initial position), prove that the acceleration a of the particle is given by

2dv v

dt ρ
= +a T N

where T and N are unit tangent and normal vectors to the space curve and
1/ 21 2 2 22 2 2 2

2 2 2 2

d d x d y d z

ds ds ds ds
ρ

−− ⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪ ⎪= = + +⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭

r

The velocity of the particle is given by v = υT. Then the acceleration is given by

2( )
d d dv d d d ds d d

dt dt dt dt dt ds dt dt ds

υ υυ υ υ υ= = = + = + = +v T T T
a T T T T  (1)

Since T has a unit magnitude, we have T · T = 1. Then, differentiating with respect to s,

0, 2 0 or 0
d d d d

ds ds ds ds
⋅ + ⋅ = ⋅ = ⋅ =T T T T

T T T T

from which it follows that dT/ds is perpendicular to T. Denoting by N the unit vector in the direction of dT/
ds, and called the principal normal to the space curve, we have

d

ds
κ=T

N  (2)

where k is the magnitude of dT/ds. Now, since T = d/r/ds [see Equation (7), Page 168], we have dT/ds = d2r/
ds2. Hence,

κ = =
⎛
⎝⎜

⎞
⎠⎟

+
⎛
⎝⎜

⎞
⎠⎟

+
d

ds

d x

ds

d y

ds

d z

ds

2

2

2

2

2 2

2

2 2

2

r ⎛⎛
⎝⎜

⎧
⎨
⎪

⎩⎪
Defining ρ = 1/k, Equation (2) becomes dT/ds = N/ρ. Thus, from Equation (1) we have, as required,

2d

dt

υ υ
ρ

= +a T N

The components dυ/dt and υ2/ρ in the direction of T and N are called the tangential and normal compo-
nents of the acceleration, the latter being sometimes called the centripetal acceleration. The quantities ρ and 
k are, respectively, the radius of curvature and curvature of the space curve.

SUPPLEMENTARY PROBLEMS

Vector algebra

7.46. Given any two vectors A and B, illustrate geometrically the equality 4A + 3(B – A) = A + 3B.

7.47. A man travels 25 miles northeast, 15 miles due east, and 10 miles due south. By using an appropriate scale, 
determine graphically (a) how far and (b) in what direction he is from his starting position. Is it possible to 
determine the answer analytically?

Ans. 33.6 miles, 13.2º north of east

7.48. If A and B are any two nonzero vectors which do not have the same direction, prove that mA + nB is a 
vector lying in the plane determined by A and B.
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7.49. If A, B, and C are non-coplanar vectors (vectors which do not all lie in the same plane) and x1A + y1B + z1

C = x2 A + y2B + z2C, prove that, necessarily, x1 = x2, y1 = y2, z1 = z2.

7.50. Let ABCD be any quadrilateral and points P, Q, R, and S the midpoints of successive sides. Prove that (a) PQRS is 
a parallelogram and (b) the perimeter of PQRS is equal to the sum of the lengths of the diagonals of ABCD.

7.51. Prove that the medians of a triangle intersect at a point which is a trisection point of each median.

7.52. Find a unit vector in the direction of the resultant of vectors A = 2i – j + k, B = i + j + 2k, C = 3i – 2j + 4k.

Ans. (6i – 2j + 7k)/ 89

The dot or scalar product

7.53. Evaluate ⏐(A + B) · (A – B)⏐ if A = 2i – 3j + 5k and B = 3i + j – 2k.

Ans. 24

7.54. Verify the consistency of the law of cosines for a triangle. [Hint: Take the sides of A, B, C where C = A – B.
Then use C · C = (A – B) · (A – B).]

7.55. Find a so that 2i – 3j + 5k and 3i + aj – 2k are perpendicular.

Ans. a = –4/3

7.56. If A = 2i + j + k, B = i – 2j + 2k and C = 3i – 4j + 2k, find the projection of A + C in the direction of B.

Ans. 17/3

7.57. A triangle has vertices at A(2, 3, 1), B (–1, 1, 2), and C(1, –2, 3). Find (a) the length of the median drawn 
from B to side AC and (b) the acute angle which this median makes with side BC.

Ans. (a) 
1

26
2

 (b) cos–1 91 /14

7.58. Prove that the diagonals of a rhombus are perpendicular to each other.

7.59. Prove that the vector (AB + BA)/(A + B) represents the bisector of the angle between A and B.

The cross or vector product

7.60. If A = 2i – j + k and B = i + 2j – 3k, find ⏐(2A + B) × (A – 2B)⏐.

Ans. 5 3

7.61. Find a unit vector perpendicular to the plane of the vectors A = 3i – 2j + 4k and B = i + j – 2k.

Ans. ±(2j + k)/ 5
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7.62. If A × B = A × C, does B = C necessarily?

7.63. Find the area of the triangle with vertices (2, –3, 1), (1, –1, 2), (–1, 2, 3).

Ans.
1

3
2

7.64 Find the shortest distance from the point (3, 2, 1) to the plane determine by (1, 1, 0), (3, –1, 1), (–1, 0, 2).

Ans. 2

Triple products

7.65. If A = 2i + j – 3k, B = i – 2j + k, C = –i + j – 4, find (a) A · (B × C), (b) C · (A × B), (c) A × (B × C), and 
(d) (A × B) × C.

Ans. (a) 20 (b) 20 (c) 8i – 19j – k (d) 25i – 15j – 10k

7.66. Prove that (a) A · (B × C) = B · (C × A) = C · (A × B) and (b) A × (B × C) = B (A · C) – C(A · B).

7.67. Find an equation for the plane passing through (2, –1, –2), (–1, 2, –3), (4, 1, 0).

Ans. 2x + y – 3z = 9

7.68. Find the volume of the tetrahedron with vertices at (2, 1, 1), (1, –1, 2), (0, 1, –1), (1, –2, 1).

Ans.
4

3

7.69. Prove that (A × B) · (C × D) + (B × C) · (A × D) + (C × A) · (B × D) = 0.

Derivatives

7.70 A particle moves along the space curve r = e–t cos ti + e–t sin tj + e–t k. Find the magnitude of the (a) the 
velocity and (b) the acceleration at any time t.

Ans. (a) 13e−  (b) 15e−

7.71. Prove that 
d

du
A

d

du

d

du
( )A B

B A
B× = × + ×  where A and B are differentiable functions of u.

7.72. Find a unit vector tangent to the space curve x = t, y = t2 z = t3 at the point where t = 1.

Ans. (i + 2j + 3k)/ 14

7.73. If r = acos ωt + b sin ωt, where a and b are any constant noncollinear vectors and ω is a constant scalar. 

prove that (a) 
d

dr
r

r=  = (a b)×ω and (b) .
d r

r2 + =ω
2

2 0
dt

7.74. If A = x2i – yj + xzk, B = yi + xj – xyzk, and C = i – yj + x3 zk, find (a) 
2

x y

∂
∂ ∂

(A + B) and
(b) d[ A · (B × C)] at the point (1, –1, 2).

Ans. (a) –4i + 8j (b) 8 dx
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7.75. If R i j + k, find
B R2= − ∂

∂
× ∂

∂
x y y z z

x y
2 2 2

2

2

2

22 xy  at the point (2, 1, 2).−

.16 5Ans

Gradient, divergence, and curl

7.76. If U, V, A, B have continuous partial derivatives, prove that (a) ∇(U + V) = ∇ U + ∇ V, (b) ∇ · (A + B)
= ∇ · A + ∇ · B and (c) ∇ × (A + B) = ∇ × A + ∇ × B.

7.77. If φ = xy + yz + zx and A = x2 yi + y2 zj + z2 xk, find (a) A · ∇φ, (b) φ∇ · A, and (c) (∇φ) × A at the point 
(3, –1, 2).

Ans. (a) 25, (b) 2, (c) 56i – 30j + 47k

7.78. Show that ∇ × (r2r) = 0 where r = xi + yj + zk and r = ⏐r⏐.

7.79. Prove that (a) ∇ × (UA) = (∇U) × A + U(∇ × A) and (b) ∇ · (A × B) = B · (∇ × A) – A · (∇ × B).

7.80. Prove that curl grad u = 0, stating appropriate conditions on U.

7.81. Find a unit normal to the surface x2 y – 2xz + 2y2z4 = 10 at the point (2, 1, –1).

Ans. ±(3i + 4j – 6k) 61

7.82. If A = 3xz2i – yzj + (x + 2z)k, find curl A.

Ans. –6xi + (6z – 1)k

7.83. (a) Prove that ∇ × (∇ × A) = – ∇2 A + ∇(∇ · A). (b) Verify the result in (a) if A is given as in problem 7.82.

Jacobians and curvilinear coordinates

7.84.
1 2, 3 1 2 3

( , , ) r r r
Prove that .

( , )

x y z

u u u u u u

∂ ∂ ∂ ∂= ⋅ ×
∂ ∂ ∂ ∂

7.85. Express (a) grad Φ, (b) div A, and (c) ∇2 Φ in spherical coordinates.

Ans. (a) 1 2 3

1 1
e e e

sinr r rθ θ φ
∂Φ ∂Φ ∂Φ+ +
∂ ∂ ∂

  (b) 
3

2
1 22

1 1 1
( ) (sin ) where

sin sin

A
r A A

r r rr
θ

θ θ θ φ
∂ ∂ ∂+ +
∂ ∂ ∂

 A 1 1 2 2 3 3= e e eA A A+ +

  (c) 
2

2
2 2 2 2 2

1 1 1
( ) sin

sin sin
c r

r rr r r

θ θ
θ θθ θ φ

∂ ∂Φ ∂Φ ∂ Φ⎛ ⎞ ⎛ ⎞+ +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
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7.86. The transformation from rectangular to parabolic cylindrical coordinates is defined by the equations x = 1/2 
(u2 – υ2), y = u υ, z = z. (a) Prove that the system is orthogonal. (b) Find ds2 and the scale factors. (c) Find 
the Jacobian of the transformation and the volume element.

Ans. (b) ds2 = (u2 + υ2)du2 + (u)2 + υ2)d υ2 + dz2, h1 = h2 = 2u υ 2+ , h3 = 1

  (c) u2 + υ2, (u2 + υ2) du dυ dz

7.87. Write (a) ∇2 Φ and (b) div A in parabolic cylindrical coordinates.

Ans. (a) 
2 2 2

2
2 2 2 2 2

1

u u zυ υ
⎛ ⎞∂ Φ ∂ Φ ∂ Φ∇ Φ = + +⎜ ⎟+ ∂ ∂ ∂⎝ ⎠

 (b) div A
32 2 2 2

1 22 2

1
= ( ) ( )

A
u A u A

u zu
υ υ

υυ
∂∂ ∂⎧ ⎫+ + + +⎨ ⎬∂ ∂ ∂+ ⎩ ⎭

7.88. Prove that for orthogonal curvilinear coordinates,

31 2

1 1 2 2 3 3

ee e

h u h u h u

∂Φ ∂Φ ∂Φ∇Φ = + +
∂ ∂ ∂

(Hint: Let ∇ Φ = a1e1 + a2e2 + a3e3 and use the fact that d Φ = ∇ Φ · d r must be the same in both rectangular 
and curvilinear coordinates.)

7.89. Give a vector interpretation to the theorem in Problem 6.35.

Miscellaneous problems

7.90. If A is a differentiable function of u and ⏐A(u)⏐ = 1, prove that dA/du is perpendicular to A.

7.91. Prove formulas 6, 7, and 8 on Page 171.

7.92. If ρ and φ are polar coordinates and A, B, n are any constants, prove that U = ρn (A cos nφ + B sin n φ)
satisfies Laplace’s equation.

7.93.
3

2
2

2cos 3sin cos
If , find .V V

r

θ θ φ+= ∇
2

4

6sin cos (4 5sin )
.Ans

r

θ φ θ−

7.94. Find the most general function of (a) the cylindrical coordinate ρ, (b) the spherical coordinate r, and (c) the 
spherical coordinate θ which satisfies Laplace’s equation.

Ans. (a) A + B ln ρ (b) A + B/r (c) A + B ln(cscθ – cotθ) where A and B are any constants

7.95. Let T and N denote, respectively, the unit tangent vector and unit principal normal vector to a space curve r
= r(u), where r(u) is assumed differentiable. Define a vector B = T = T × N called the unit binormal vector
to the space curve. Prove that

d

ds

d

ds

d

ds

T
N,

B
N,

N
B T= = − = −κ τ τ κ
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These are called the Frenet-Serret formulas and are of fundamental importance in differential geometry. In 
these formulas k is called the curvature, τ is called the torsion; and the reciprocals of these, ρ = 1/k and σ = 
1/τ, are called the radius of curvature and radius of torsion, respectively.

7.96. (a) Prove that the radius of curvature at any point of the plane curve y = f (x), z = 0 where f (x) is 
differentiable, is given by

2 3/2(1 )y

y
ρ

′+=
′′

(b) Find the radius of curvature at the point (π/2, 1, 0) of the curve y = sin x, z = 0.

Ans. (b) 2 2

7.97. Prove that the acceleration of a particle along a space curve is given respectively in (a) cylindrical and (b) 
spherical coordinates by

(ρ̈ – ρφ̇2)eρ + (ρφ̈ + 2ρ̇φ̇)eφ + z̈ez

(r̈ – rθ̇2 – rφ̇2
r

2sin ) (θ +e rθ̈ + 2ṙθ̈ – rφ̇2 sin θ cos θ)eθ + (2ṙφ̇ sin θ + 2rθ̇φ̇ cos θ + rφ̈ sin θ )eφ

where dots denote time derivatives and eρ, eφ, ez, er, eθ, eφ are unit vectors in the directions of increasing ρ, φ,
z, r, θ, φ, respectively.

7.98. Let E and H be two vectors assumed to have continuous partial derivatives (of second order at least) with 
respect to position and time. Suppose further that E and H satisfy the equations

∇ ⋅ ∇ ⋅ ∇ × − ∂
∂

∇ × ∂
∂

E = 0, H = 0, E =
H

, H =
E

,
1 1

c t c t
 (1)

prove that E and H satisfy the equation
2

2
2 2

1
=

c t

ψψ ∂∇
∂

 (2)

where ψ is a generic meaning and, in particular, can represent any component of E or H.
[The vectors E and H are called electric and magnetic field vectors in electromagnetic theory. Equations 

(1) are a special case of Maxwell’s equations. The result (2) led Maxwell to the conclusion that light was an 
electromagnetic phenomena. The constant c is the velocity of light.]

7.99. Use the relations in Problem 7.98 to show that

2 21
{ ( )}
2

E H c
t

∂ + + ∇ ⋅
∂

(E × H) = 0

7.100. Let A1, A2, A3 be the components of vector A in an xyz rectangular coordinate system with unit vectors i1, i2,
i3 (the usual i, j, k vectors), and A′1, A′2, A′3 the components of A in an x′ y′ z′ rectangular coordinate system 
which has the same origin as the xyz system but is rotated with respect to it and has the unit vectors i′1, i′2, i′3.
Prove that the following relations (often called invariance relations) must hold:

An = l1nA′1 + l2nA′2 + l3nA′3 n = 1, 2, 3

where i′m · in = lmn.
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7.101. If A is the vector of Problem 7.100, prove that the divergence of A (∇ · A) is an invariant (often called a 
scalar invariant); i.e., prove that

3 31 2 1 2A AA A A A

x y z x y z

′′ ′ ∂ ∂∂ ∂ ∂ ∂
+ + = + +

′ ′ ′∂ ∂ ∂ ∂ ∂ ∂
The results of this and the preceding problem express an obvious requirement that physical quantities must not 
depend on coordinate systems in which they are observed. Such ideas when generalized lead to an important 
subject called tensor analysis, which is basic to the theory of relativity.

7.102. Prove that (a) A · B, (b) A × B, and (c) ∇ × A are invariant under the transformation of Problem 7.100.

7.103. If u1, u2, u3 are orthogonal curvilinear coordinates, prove that

(a) 1 2 3
1 2 3

( , , )

( , , )

u u u
u u u

x y z

∂
= ∇ ⋅ ∇ × ∇

∂
(b)

u

∂
∂

⋅
1

r ∂∂
∂

× ∂
∂

⎛

⎝
⎜

⎞

⎠
⎟ ∇ ⋅ ∇ × ∇ =r r

u u
u u u

2 3
1 2 3 1( )

and give the significance of these in terms of Jacobians.

7.104. Use the axiomatic approach to vectors to prove relation 8 on Page 167.

7.105. A set of n vectors A1, A2, . . ., An is called linearly dependent if there exists a set of scalars c1, c2, . . ., cn not 
all zero such that c1A1 + c2A2 + . . . + cnAn = 0 identically; otherwise, the set is called linearly independent.
(a) Prove that the vectors A1 = 2i – 3j + 5k, A2 = i + j – 2k, A3 = 3i – 7j + 12k are linearly dependent. (b) 
Prove that any four three-dimensional vectors are linearly dependent. (c) Prove that a necessary and 
sufficient condition that the vectors A1 = a1i + b1j + c1k, A2 = a2i + b2 j + c2k, and A3 = a3i + b3 j + c3k be 
linearly independent is that A1 · A2 × A3 � 0. Give a geometrical interpretation of this.

7.106. A complex number can be defined as an ordered pair (a, b) of real numbers a and b subject to certain rules of 
operation for addition and multiplication. (a) What are these rules? (b) How can the rules in (a) be used to 
define subtraction and division? (c) Explain why complex numbers can be considered as two-dimensional 
vectors. (d) Describe similarities and differences between various operations involving complex numbers 
and the vectors considered in this chapter.
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Applications of Partial 
Derivatives

Applications to Geometry

The theoretical study of curves and surfaces began more than two thousand years ago when Greek philoso-
pher-mathematicians explored the properties of conic sections, helixes, spirals, and surfaces of revolution 
generated from them. While applications were not on their minds, many practical consequences evolved. 
These included representation of the elliptical paths of planets about the sun, employment of the focal prop-
erties of paraboloids, and use of the special properties of helixes to construct the double helical model of 
DNA.

The analytic tool for studying functions of more than one variable is the partial derivative. Surfaces are 
a geometric starting point, since they are represented by functions of two independent variables. Vector forms 
of many of these concepts were introduced in Chapter 7. In this chapter, corresponding coordinate equations 
are exhibited.

Figure 8.1

1. Tangent Plane to a Surface Let F(x, y, z) = 0 be the equation of a surface S such as that shown in Figure 
8.1. Assume that F, and all other functions in this chapter are continuously differentiable unless otherwise 
indicated. Suppose we wish to find the equation of a tangent plane to S at the point P(x0, y0, z0). A vector 
normal to S at this point is N0 = ∇F⏐P, the subscript P indicating that the gradient is to be evaluated at the 
point P(x0, y0, z0).

CHAPTER 8
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If r0 and r are tangent, the vectors drawn, respectively, from O to P(x0, y0, z0) and Q(x, y, z) on the tangent 
plane, the equation of the plane is
 (r – r0) · N0 = (r – r0) · ∇F⏐P = 0 (1)

since r – r0 is perpendicular to N0.
In rectangular form this is

0 0 0( ) ( ) ( ) 0
P PP

F F F
x x y y z z

x y z

∂ ∂ ∂− + − + − =
∂ ∂ ∂

(2)

In case the equation of the surface is given in orthogonal curvilinear coordinates in the form F(u1, u2, u3)
= 0, the equation of the tangent plane can be obtained using the result on Page 172 for the gradient in these 
coordinates. See Problem 8.4.

2. Normal Line to a Surface. Suppose we require equations for the normal line to the surface S at P(x0,
y0, z0), i.e., the line perpendicular to the tangent plane of the surface at P. If we now let r be the vector drawn 
from O in Figure 8.1 to any point (x, y, z) on the normal N0, we see that r – r0 is collinear with N0, and so 
the required condition is

 (r – r0 × N0 = (r – r0) × × ∇F⏐P = 0 (3)

By expressing the cross product in the determinant form

0 0 0

| | |x P y P z P

i j k

x x y y z z

F F F

− − −

we find that

0 0 0

P PP

x x y y z z

F FF
x zy

− − −
= =

∂ ∂∂
∂ ∂∂

 (4)

Setting each of these ratios equal to a parameter (such as t or u) and solving for x, y, and z yields the 
parametric equations of the normal line.

The equations for the normal line can also be written when the equation of the surface is expressed in 
orthogonal curvilinear coordinates. [See Problem 8.1(b).]

3. Tangent Line to a Curve Let the parametric equations of curve C of Figure 8.2 be x = f (u), y = g(u),
z = h(u), where we shall suppose, unless otherwise indicated, that f, g, and h are continuously differentiable. 
We wish to find equations for the tangent line to C at the point P(x0, y0, z0) where u = u0.

Fig. 8.2

Fx|P Fy|P Fz|P
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If R = f (u)i + g(u)j + h(u)k, then a vector tangent to C at the point P is given by 0 .
P

d

du
= R

T  If r0 and r

denote the vectors drawn respectively from O to P(x0, y0, z0) and Q(x, y, z) on the tangent line, then r – r0 is 
collinear with T0. Thus,

P

d

du0 0 0( ) ( ) 0− × = − × =R
r r T r r  (5)

In rectangular form this becomes
x x y y z z

f u g u h u
0 0 0

0 0 0( ) ( ) ( )

− − −
= =

′ ′ ′
 (6)

The parametric form is obtained by setting each ratio equal to u.
If the curve C is given as the intersection of two surfaces with equations F (x, y, z) = 0 and G(x, y, z) = 0, 

observe that ∇F × ∇G has the direction of the line of intersection of the tangent planes; therefore, the cor-
responding equations of the tangent line are

y z x yz x

z xy z x yPP P

x x y y z z

F F F FF F

G GG G G G

0 0 0− − −
= =  (7)

Note that the determinants in Equation (7) are Jacobians. A similar result can be found when the surfaces are 
given in terms of orthogonal curvilinear coordinates.

4. Normal Plane to a Curve Suppose we wish to find an equation for the normal plane to curve C at P(x0,
y0, z0) in Figure 8.2 (i.e., the plane perpendicular to the tangent line to C at this point). Letting r be the vector 
from O to any point (x, y, z) on this plane, it follows that r – r0 is perpendicular to T0. Then the required 
equation is

P

d

du0 0 0( ) . ( ) . 0− = − =R
r r T r r  (8)

When the curve has parametric equations x = f (u), y = g(u), z = h(u) this becomes

 f ′(u0)(x – x0) + g′ (u0)(y – y0) + h ′(u0)(z – z0) = 0 (9)

Furthermore, when the curve is the intersection of the implicitly defined surfaces

F(x, y, z) = 0 and G(x, y, z) = 0

then
y z x yz x

z xy z x yP

F F F FF F
x x y y z z

G GG G G G0 0 0

P P

( ) ( ) ( ) 0− + − + − =  (10)

5. Envelopes Solutions of differential equations in two variables are geometrically represented by one-
parameter families of curves. Sometimes such a family characterizes a curve called an envelope.

For example, the family of all lines (see Problem 8.9) one unit from the origin may be represented by x
sin α – y cos α – 1 = 0, where α is a parameter. The envelope of this family is the circle x2 + y2 = 1.

If φ(x, y, z) = 0, is a one-parameter family of curves in the xy plane, there may be a curve E which is tan-
gent at each point to some member of the family and such that each member of the family is tangent to E. If 
E exists, its equation can be found by solving simultaneously the equations

 φ(x, y, α) = 0, φ(α(x, y, α) = 0 (11)

and E is called the envelope of the family.
The result can be extended to determine the envelope of a one-parameter family of surfaces φ(x, y, z, α).

This envelope can be found from

 φ(x, y, z, α) = 0, φα(x , y, z, α) = 0 (12)

Extensions to two- (or more) parameter families can be made.
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Directional Derivatives

Suppose F(x, y, z) is defined at a point (x, y, z) on a given space curve C. Let F(x + Δx, y + Δy, z + Δz) be the 
value of the function at a neighboring point on C and let Δs denote the length of arc of the curve between 
those points. Then

s s

F F x x y y z z F x y z

s s0 0

( , , ) ( , , )lim lim
Δ → Δ →

Δ + Δ + Δ + Δ −=
Δ Δ

 (13)

if it exists, is called the directional derivative of F at the point (x, y, z) along the curve C and is given by

dF

ds

F

x

dx

ds

F

y

dy

ds

F

z

dz

ds
= ∂

∂
+ ∂

∂
+ ∂

∂  (14)

In vector form this can be written

dF

ds

F

x
i

F

y
j

F

z
k

dx

ds
i

dy

ds
j

dz= ∂
∂

+ ∂
∂

+ ∂
∂

⎛
⎝⎜

⎞
⎠⎟

+ +.
ds

k F
dr

ds
F T⎛

⎝⎜
⎞
⎠⎟ = =

ΔΔ

. .  (15) 

from which it follows that the directional derivative is given by the component of ∇F in the direction of the 
tangent to C.

Thus, the maximum value of the directional derivative is given by ⏐∇F⏐and these maxima occur in direc-
tions normal to the surfaces F(x, y, z) = c is (where c is any constant), which are sometimes called equipo-
tential surfaces or level surfaces.

Differentiation Under the Integral Sign

Let
u

u
f x dx a b

2

1

( ) ( , )φ α α α= ≤ ≤∫  (16) 

where u1 and u2 may depend on the parameter α. Then

u

u

du dud f
dx f u f u

d d d

1

2

2 1
2 1( , ) ( , )

φ α α
α α α α

∂= + −
∂∫  (17) 

for a < α < b, if f(x, α) and ∂f /∂α are continuous in both x and α in some region of the xα plane including 
u1 < x < u2, a < α < b and if u1 and u2 are continuous and have continuous derivatives for a < α < b.

In case u1 and u2 are constants, the last two terms of Equation (17) are zero.
The result (17), called Leibniz’s rule, is often useful in evaluating definite integrals (see Problems 8.15 

and 8.29).

Integration Under the Integral Sign

If φ(α) is defined by Equation (16) and f (x, α) is continuous in x and α in a region including u1 < x < u2, a
< x < b, then if u1 and u2 are constants,

u ub b b

a a u u a

d f x dx d f x d dx
2 2

1 1

( ) ( , ) ( , )φ α α α α α α
⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪= =⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪⎩ ⎭⎩ ⎭

∫ ∫ ∫ ∫ ∫  (18)

The result is known as interchange of the order of integration or integration under the integral sign. (See 
Problem 8.18.)

. . .∇F ∇F T
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Maxima and Minima

In Chapter 4 we briefly examined relative extrema for functions of one variable. The general idea was that 
for points of the graph of y = g(x) that were locally highest or lowest, the condition g´(x) = 0 was necessary. 
Such points P0(x0) were called critical points. [See Figure 8.5(a and b).] The condition g´(x) = 0 was useful 
in searching for relative maxima and minima, but it was not decisive. [See Figure 8.3(c).]

Figure 8.3                        Figure 8.4

To determine the exact nature of the function at a critical point, P0, g″(x0) ) had to be examined.

                                                       > 0                       counterclockwise rotation (relative minimum)
                                             g″(x0) < 0       implied     a clockwise rotation (relative maximum)
                                                       = 0                        need for further investigation

This section describes the n  ecessary and sufficient conditions for relative extrema of functions of two 
variables. Geometrically, we think of surfaces S represented by z = f (x, y). If at a point P0(x0, y0) then fx(x,
y0) = 0, means that the curve of intersection of S and the plane y = y0 has a tangent parallel to the x axis.
Similarly, fy(x0, y0) = 0 indicates that the curve of intersection of S and the cross section x = x0 has a tangent 
parallel the y axis. (See Problem 8.20.)

Thus,
fx(x, y0) = 0, fy(x0, y) = 0

are necessary conditions for a relative extrema of z = f (x, y) at P0; however, they are not sufficient because 
there are directions associated with a rotation through 360º that have not been examined. Of course, no dif-
ferentiation between relative maxima and relative minima has been made. (See Figure 8.4.)

A very special form fxy – fx fy, invariant under plane rotation and capable of characterizing the roots of a 
quadratic equation Ax2 + 2Bx + C = 0, allows us to form sufficient conditions for relative extrema. (See 
Problem 8.21.)

A point (x0, y0) is called a relative maximum point or relative minimum point of f(x, y) respectively accord-
ing as f (x0 + h, y0 + k) < f (x0, y0) or f (x0 + h, y0 + k) > f (x0, y0) for all h and k such that 0 < ⏐h⏐ < δ, 0 < ⏐k⏐
< δ where δ is a sufficiently small positive number.

A necessary condition that a differentiable function f (x, y) have a relative maximum or minimum is

f f

x y
0, 0

∂ ∂= =
∂ ∂

 (19)

If (x0, y0) is a point (called a critical point) satisfying Equations (19) and if Δ is defined by

x y

f f f

x yx y
0 0

22 2 2

2 2

( , )

⎧ ⎫⎛ ⎞⎛ ⎞ ⎛ ⎞∂ ∂ ∂⎪ ⎪Δ = −⎜ ⎟⎜ ⎟ ⎜ ⎟⎨ ⎬⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂∂ ∂⎪ ⎪⎝ ⎠⎝ ⎠ ⎝ ⎠⎩ ⎭
 (20)

then
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1. (x0, y0) is a relative maximum point if Δ > 0 and
x y x y

f f

x y
0 0 0 0

2 2

2 2
( , ) ( , )

0 or 0
⎛ ⎞∂ ∂⎜ ⎟< <
⎜ ⎟∂ ∂⎝ ⎠

.

2. (x0, y0) is a relative minimum point of Δ > 0 and 
x y x y

f f

x y
0 0 0 0

2 2

2 2
( , ) ( , )

0 or 0
⎛ ⎞∂ ∂⎜ ⎟> >
⎜ ⎟∂ ∂⎝ ⎠

.

3. (x0, y0) is neither a relative maximum nor a relative minimum point if Δ < 0. If Δ < 0, < 0, (x0, y0) is 
sometimes called a saddle point.

4. No information is obtained if Δ = 0 (in such case further investigation is necessary).

Method of Lagrange Multipliers for Maxima and Minima

A method for obtaining the relative maximum or minimum values of a function F(x, y, z) subject to a con-
straint condition φ(x, y, z) = 0, consists of the formation of the auxiliary function

 G(x, y, z) ≡ F(x, y, z) + λφ(x, y, z) (21) 

subject to the conditions
G G G

x y z
0, 0, 0

∂ ∂ ∂= = =
∂ ∂ ∂

 (22) 

which are necessary conditions for a relative maximum or minimum. The parameter λ, which is independent 
of x, y, z, is called a Lagrange multiplier.

The conditions in Equation (22) are equivalent to ∇G = 0, and, hence, 0 = ∇F + λ ∇ φ.
Geometrically, this means that ∇F and ∇φ are parallel. This fact gives rise to the method of Lagrange 

multipliers in the following way.
Let the maximum value of F on φ(x, y, z) = 0 be A and suppose it occurs at P0(x0, y0, z0). (A similar argu-

ment can be made for a minimum value of F.) Now consider a family of surfaces F(x, y, z) = C.
The member F(x, y, z) = A passes through P0, while those surface F(x, y, z) = B with B < A do not. (This 

choice of a surface, i.e., f(x, y, z) = A, geometrically imposes the condition φ(x, y, z) = 0 on F.) Since at P0

the condition 0 = ∇F + λ ∇ φ tells us that the gradients of F(x, y, z) = A and φ(x, y, z) are parallel, we know 
that the surfaces have a common tangent plane at a point that is maximum for F. Thus, ∇G = 0 is a necessary 
condition for a relative maximum of F at P0. Of course, the condition is not sufficient. The critical point so 
determined may not be unique and it may not produce a relative extremum.

The method can be generalized. If we wish to find the relative maximum or minimum values of a function 
F(x1, x2, x3, . . ., xn) subject to the constraint conditions φ(x1, . . ., xn) = 0, φ2(x1, . . ., xn) = 0, . . ., φk(x1, . . ., 
xn) = 0, we form the we form the auxiliary function

 G(x1, x2, . . ., xn) ≡ F + λ1φ1 + λ2φ2 + . . . + λkφk (23) 

subject to the (necessary) conditions

n

G G G

x x x1 2

0, 0, ..........., 0
∂ ∂ ∂= = ≡
∂ ∂ ∂

 (24) 

where λ1, λ2, . . ., λk, which are independent of x 1, x2, . . ., xn, are the Lagrange multipliers.

Applications to Errors

The theory of differentials can be applied to obtain errors in a function of x, y, z, etc., when the errors in x,
y, z, etc., are known. See Problem 8.28.
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SOLVED PROBLEMS

Tangent Plane And Normal Line To A Surface

8.1. Find equations for the (a) tangent plane and (b) normal line to the surface x2yz + 3y2 = 2xz2 – 8z at the point 
(1, 2, –1).

(a) The equation of the surface is F = x2yz + 3y2 – 2xz2 + 8z = 0. A normal line to the surface at (1, 2, –1) is

N0 = ∇F⏐(1, 2, –1) = (2xyz – 2z2)i + (x2z + 6y)j + (xy – 4xz + 8)k⏐(1, 2, –1)

                                                                  = –6i + 11j + 14k

Referring to Figure 8.1:
The vector from O to any point (x, y, z) on the tangent plane is r = xi + yj + zk.
The vector from O to the point (1, 2, –1) on the tangent plane is r0 = i + 2j – k.
The vector r – r0 = (x – 1)i + (y – 2)j + (z + 1)k lies in the tangent plane and is thus perpendicular 
to N0.

Then the required equation is

(r – r0) · N0 = 0     i.e.,     {(x – 1)i + (y – 2)j + (z + 1)k} · {–6i + 11j + 14k} = 0

–6(x – 1) + 11(y – 2) + 14(z + 1) = 0 or 6x – 11y – 14z + 2 = 0

(b) Let r = xi + yj + zk be the vector from O to any point (x, y, z) of the normal N0. The vector from O to the 
point (1, 2, –1) on the normal is r0 = 2i + 2j – k. The vector r – r0 = (x – 1)i + (y – 2)j + (z + 1)k is col-
linear with N0. Then

r r N i e x y x0 0( ) 0 . . 1 2 1 0

6 11 14

− × = − − + =
−

i j k

which is equivalent to the equations

11(x – 1) = –6(y – 2), 14(y – 2) = 11(z + 1), 14(x – 1) = –6(z + 1)

These can be written as
x y z1 2 1

6 11 14

− − += =
−

often called the standard form for the equations of a line. By setting each of these ratios equal to the parameter 
t, we have

x = 1 – 6t, y = 2 + 11t, z = 14t – 1 

called the parametric equations for the line.

8.2. In what point does the normal line of Problem 8.1(b) meet the plane x + 3y – 2z = 10?

Substituting the parametric equations of Problem 8.1(b), we have

1 – 6t + 3(2 + 11t) – 2(14t – 1) = 10 or t = –1

Then x = 1 – 6t = 7, y = 2 + 11t = –9, z = 14t – 1 = –15 and the required point is (7, – 9, –15).

8.3. Show that the surface x2 – 2yz + y3 = 4 is perpendicular to any member of the family of surfaces x2 + 1 = 
(2 – 4a)y2 + az2 at the point of intersection (1, –1, 2).

i.e.,
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Let the equations of the two surfaces be written in the form

F = x2 – 2yz + y3 – 4 = 0 and G = x2 + 1 – (2 – 4a)y2 – az2 = 0

Then

∇F = 2xi + (3y2 – 2z)j – 2yk,   ∇G = 2xi – 2(2 – 4a)yj – 2azk

Thus, the normals to the two surfaces at (1, –1, 2) are given by

N1 = 2i – j + 2k, N2 = 2i + 2(2 – 4a)j – 4ak

Since N1 · N2 = (2)(2) – 2(2 – 4a) – (2)(4a) ≡ 0, it it follows that N1 and N2 are perpendicular for all a,
and so the required result follows.

8.4. The equation of a surface is given in spherical coordinates by F(r, θ, φ) = 0, where we suppose that F is 
continuously differentiable. (a) Find an equation for the tangent plane to the surface at the point (r0, θ0, φ0).
(b) Find an equation for the tangent plane to the surface r = 4 cos θ at the point (2 2, π /4, 3π /4). (c) Find 
a set of equations for the normal line to the surface in ( ) at the indicated point.

(a) The gradient of Φ in orthogonal curvilinear coordinates is

h u h u h u

h u h u h u

1 2 3
1 1 2 2 3 3

1 2 3
1 1 2 2 3 3

1 1 1

1 1 1
where , ,

∂Φ ∂Φ ∂Φ∇Φ = + +
∂ ∂ ∂

∂ ∂ ∂= = =
∂ ∂ ∂

e e e

r r r
e e e

(see Pages 170 and 172).
In spherical coordinates u1 = r, u2 = θ, u3 = φ, h1 = 1, h2 = r, h3 = r sin θ and r = xi + yj + zk = r sin θ cos 

φi + r sin θ sin φj + r cos θk.
Then

1

2

3

sin cos sin sin cos

cos cos cos sin sin

sin cos

θ θ θ θ θ
θ φ θ φ θ

φ φ

= + +⎧
⎪ = + −⎨
⎪ = − +⎩

e i j k

e i j k

e i j

 (1) 

and

F F F
F

r r r1 2 3
1 1

e e e
sinθ θ φ

∂ ∂ ∂∇ = + +
∂ ∂ ∂

 (2)

As on Page 196, the required equation is (r – r0) · ∇F⏐P = 0.
Now, substituting Equations (1) and (2), we have

P P P

P P

F F F

r r r

F F

r r

0
0 0 0 0

0 0 0

0 0
0

cos1
sin sin cos sin

sin

1
cos sin

φ
θ φ θ φ

θ θ φ

θ θ
θ

⎧ ⎫∂ ∂ ∂⎪ ⎪+ + +⎨ ⎬∂ ∂ ∂⎪ ⎪⎩ ⎭
⎧ ⎫∂ ∂+ −⎨ ⎬∂ ∂⎩ ⎭

j

k

Denoting the expressions in braces by A, B, C, respectively, so that ∇ F⏐p = Ai + Bj + Ck, we see that the 
required equation is A(x – x0) + B(y – y0) + C(z – z0) = 0. This can be written in spherical coordinates by using 
the transformation equations for x, y, and z in these coordinates.
(b) We have F = r – 4 cos θ = 0. Then ∂F/∂r = 1, ∂F/∂θ = 4 sin θ, ∂F/∂φ = 0.

sin cosφ φ+i j

P
P

F
F sin

r
| θ

⎧∂⎪∇ = ⎨ ∂⎪⎩ P P

F F
n

r r
0

0 0 0 0
0 0 0

sin1
cos cos cos

sin

φ
θ φ θ φ

θ θ φ
⎫∂ ∂ ⎪+ − ⎬∂ ∂ ⎪⎭

i0sinθ
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Since r0 = 2 2 , θ0 = π/4, φ0 = 3π/4, we have from (a), ∇ F⏐p = Ai + Bj + Ck = –i + j.

From the transformation equations, the given point has rectangular coordinates (– 2 , 2 , 2), and so 

r – r0 = (x + 2 )i + (y – 2 )j + (z – 2)k.
The required equation of the plane is thus –(x + 2 ) + (y – 2 ) = 0 or y – x = 2 2 . In spherical coor-

dinates this becomes r sin θ sinφ – r sin θ cos φ = 2 2 .
In rectangular coordinates the equation r = 4 cos θ becomes x2 + y2 + (z – 2)2) = 4 and the tangent plane 

can be determined from this as in Problem 8.1. In other cases, however, it may not be so easy to obtain the 
equation in rectangular form, and in such cases the method of part (a) is simpler to use.
(c) The equations of the normal line can be represented by

x y2 2

1 1

+ −=
−

 = z = 2

Tangent Line and Normal Plane to a Curve

8.5. Find equations for (a) the tangent line and (b) the normal plane to the curve x = t – cos t, y = 3 + sin 2t, z = 
1 + cos 3t at the point where t = 1/2π.

(a) The vector from origin O (see Figure 8.2) to any point of curve C is R = (t – cos t)i + (3 + sin 2t)j + (1 + 
cos 3t)k. Then a vector tangent to C at the point where t = 1

2
π is

t
t

d
t i t t

dt0 1/ 2
1/ 2

(1 sin ) 2cos2 3sin 3 | 2 2 3π
π

=
=

= = + + − = − +R
T j k i j k

The vector from O to the point where t = 1/2π is r0 = 1/2πi + 3j + k.
The vector from O to any point (x, y, z) on the tangent line is r = xi + yj + zk.

Then r – r0 = (x – 1
2

π)i + y – 3)j + (z – 1) k is collinear with T0, so that the required equation is

i e x y z1
0 0 2

( ) , . ., 3 1 0

2 2 3

π− × = − − − =

−

i j k

r r T 0

and the required equations are 
x y z1

2 3 1

2 2 3

π− − −= =
−

 or, in parametric form, x t y t1
2

2 , 3 2 ,π= + = −
z t3 1= + .
(b) Let r = xi + yj + zk be the vector from O to any point (x, y, z) of the normal plane. The vector from O to 

the point where t = 1
2

π is r0 = 1
2

πi + 3j + k. The vector r – r0 = (x – 1
2

π)i + (y – 3)j + (z – 1)k lies in the 
normal plane and, hence, is perpendicular to T0. Then the required equation is (r – r0) · T0 = 0 or 2
(x – 1

2
π) – 2(y – 3) + 3(z – 1) = 0.

8.6. Find equations for (a) the tangent line and (b) the normal plane to the curve 3x2y + y2z = –2, 2xz – x2y = 3 at 
the point (1, –1, 1).

(a) The equations of the surfaces intersecting in the curve are

F = 3x2y + y2z + 2 = 0, G = 2xz – x2y – 3 = 0

The normals to each surface at the point P(1, –1, 1) are, respectively,

N1 = ∇ F⏐P = 6xy i + (3x2 + 2yz)j + y2k = –6 + j + k

                                                     N2 = ∇ G⏐P = (2z – 2xy)i – x2j + 2xk = 4i – j + 2k

Then a tangent vector to the curve at P is

T0 = N1 × N2 = (–6i + j + k) × (4 – j + 2k) = 3i + 16j + 2k

i.e.,
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Thus, as in Problem 8.5(a), the tangent line is given by

(r – r0) × T0 = 0 or {(x – 1)i + (y + 1)j + (z – 1)k} × {3i + 16j + 2k} = 0

i.e.,
x y z

x t y t z t
1 1 1

or 1 3 , 16 1, 2 1
3 16 2

− + −= = = + = − = +

(b) As in Problem 8.5(b), the normal plane is given by

(r – r0) · T0 = 0 or {(x – 1)i + (y + 1)j + (z – 1)k} · {3i + 16j + 2k} = 0

i.e.,
3(x – 1) + 16(y + 1) + 2(z – 1) = 0 or 3x + 16y + 2z = –11

The results in (a) and (b) can also be obtained by using Equations (7) and (10), respectively, from Page 
197.

8.7. Establish equation (10), from Page 197.

Suppose the curve is defined by the intersection of two surfaces whose equations are F(x, y, z) = 0, G(x,
y, z) = 0, where we assume F and G to be continuously differentiable.

The normals to each surface at point P are given, respectively, by N1 = ∇ F ⏐P and N2 = ∇ G⏐P. Then a 
tangent vector to the curve at P is T0 = N1 × N2 = ∇ F⏐P. × ∇G ⏐P. Thus, the equation of the normal plane is 
(r – r0) · T0 = 0. Now

P P x y z x y z P

y z x yx x
x y z

x xy z x yPP P
x y z P

F G F i F j F k G i G j G k

F F F FF F
F F F

G GG G G G
G G G

0 | | {( ) ( )} |= ∇ × ∇ = + + × + +

= = + +

T

i j k

i j k

and so the required equation is

y z x yz x
P

z xy z x yPP P

F F F FF F
r r F or x x y y z z

G GG G G G0 0 0 0( ) . | 0 ( ) ( ) ( ) 0− ∇ = − + − + − =

Envelopes

8.8. Prove that the envelope of the family φ(x, y, α) = 0, if it exists, can be obtained by solving simultaneously 
the equations φ = 0 and φα = 0.

Assume parametric equations of the envelope to be x = f (α), y = g (α). Then φ( f (α), g(α), α) = 0 identi-
cally, so, upon differentiating with respect to α (assuming that φ, f, and g have continuous derivatives), we 
have

 φx f ′ (α) + φy g′(α) + φα = 0 (1)

The slope of any member of the family φ(x, y, α) = 0 at (x, y) is given by φx dx + φy dy = 0 or x

y

dy

dx
.

φ
φ

= −

The slope of the envelope at (x, y) is 
dy dy d g

dx dx d f

/ ( )

/ ( )

α α
α α

′
= =

′
. Then at any point where the envelope and a 

member of the family are tangent, we must have

x
x y

y

g
f g

f

( )
or ( ) ( ) 0

( )

φ α φ α φ α
φ α

′ ′ ′− = + =
′

 (2)

Comparing Equations (2) with (1), we see that φα = 0, and the required result follows.
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8.9. (a) Find the envelope of the family x sin α + y cos α = 1. (b) Illustrate the results geometrically.

(a) By Problem 8.8 the envelope, if it exists, is obtained by solving simultaneously the equations φ (x, y, α)
= x sin α + y cosα – 1 = 0 and φα (x, y, α) = x cos α – y cos α = 0. From these equations we find x = sin 
α, y = cos α or x2 + y2 = 1.

(b) The given family is a family of straight lines, some members of which are indicated in Figure 8.5. The 
envelope is the circle x2 + y2 = 1.

Fig. 8.5

8.10. Find the envelope of the family of surfaces z = 2 αx – a2y.

By a generalization of Problem 8.8, the required envelope, if it exists, is obtained by solving simultane-
ously the equations

φ = 2 αx – α2 y – z = 0 (1)

and
 φ α = 2x – 2αy = 0 (2)

From Equation (2), α = x/y. Then substitution in Equation (1) yields x2 = yz, the required envelope.

8.11. Find the envelope of the two-parameter family of surfaces z = αx + βy – αβ.

The envelope of the family F(x, y, z, α, β) = 0, if it exists, is obtained by eliminating α and β between the 
equations F = 0, Fα = 0, Fβ = 0 (see Problem 8.43). Now

F = z – αx – βy + α β = 0, Fα = – x + β = 0, Fβ = – y + α = 0

Then β = x, α = y, and we have z = xy.

Directional derivatives

8.12. Find the directional derivative of F = x2yz3 along the curve x = e–u, y = 2 sinu + 1, z = u – cos u at the point P
where u = 0.

The point P corresponding to u = 0 is (1, 1, –1). Then

∇ F = 2xyz3i + x2z3j + 3x2yz2k = – 2i – j + 3k at P

A tangent vector to the curve is

u

u

dr d
e u u u k

du du

e u u at P

{ (2sin 1) ( cos ) }

2 cos (1 sin ) 2

−

−

= + + + −

= − + + + = − + +

i j

i j k i j k

and the unit tangent vector in this direction is

0
2

6

− + += i j k
T
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Then

F 0
2 3 1

Directional derivative =   . ( 2 3 ). 6
26 6

⎛ ⎞− + +∇ = − − + = =⎜ ⎟
⎝ ⎠

i j k
T i j k

Since this is positive, F is increasing in this direction.

8.13. Prove that the greatest rate of change of F, i.e., the maximum directional derivative, takes place in the 
direction of, and has the magnitude of, the vector ∇ F.

dF d
F

ds ds
.= ∇ r

 is the projection of ∇ F in the direction 
d

ds

r
. This projection is a maximum when ∇ F and 

dr/ds have the same direction. Then the maximum value of dF/ds takes place in the direction of ∇ F, and the 
magnitude is ⏐∇ F⏐.

8.14. (a) Find the directional derivative of U = 2x3y – 3y2z at P (1, 2, –1) in a direction toward Q(3, –1, 5). (b) In 
what direction from P is the directional derivative a maximum? (c) What is the magnitude of the maximum 
directional derivative?

(a) ∇ U = 6x2yi + (2x3 – 6yz)j – 3y2k = 12i + 14j – 12k at P.

The vector from P to Q = (3 – 1)i + (–1 –2)j + [5 – (–1)]k = 2i – 3j + 6k

The unit vector from P to 
2 2 2

2 3 6 2 3 6
Q = T=

7(2) ( 3) (6)

− + − +=
+ − +

i j k i j k

Then

Directional derivative at 
2 3 6 90

P = (12 14 12 ).
7 7

− +⎛ ⎞+ − = −⎜ ⎟⎝ ⎠
i j k

i j k

        i.e., U is decreasing in this direction.
(b) From Problem 8.13, the directional derivative is a maximum in the direction 12i + 14j – 12k.

(c) From Problem 8.13, the value of the maximum directional derivative is | 12 14 12 |+ − =i j k
144 196 144 22+ + = .

Differentiation under the integral sign

8.15. Prove Leibnitz’s rule for differentiating under the integral sign.

u

u

u u

u u

u u u u

u u u u

f x dx

f x dx f x dx

f x dx f x f x dx f x dx

f x f

2

1

2 2

1 1

1 2 2 2

1 1 1 1

( )

( )

( ) ( )

( ( )

( ) ( ) ( ) ( )

( ( ) ( ) ( )

Let ( ) ( , ) . Then

( ) ( ) ( , ) ( , )

( , ) ( , ) ( , ) ( , )

[ ( , )

α

α

α α α

α α α

α α α α α

α α α α α

φ α α

φ φ α α φ α α α α

α α α α α α α

α α

+Δ

+Δ

+Δ

+Δ

=

Δ = + Δ − = + Δ −

= + Δ + + Δ + + Δ −

= + Δ −

∫
∫ ∫

∫ ∫ ∫ ∫
u u u

u u u
x dx f x dx f x dx

2 2 1

1 2 1

( ) ( ) ( )

( ) ( ) ( )
( , )] ( , ) ( , )

α α α α α

α α α
α α α α α

+Δ +Δ
+ + Δ − + Δ∫ ∫ ∫

By the mean value theorem for integrals, we have

u u

u u
f x f x dx f x dx

2 2

1 1

( ) ( )

( ) ( )
[ ( , ) – ( , )] ( , )

α α

α α
α α α α ξ+ Δ = Δ∫ ∫  (1)

u

u
f x dx f u u

1

1

( )

1 1 1
( )

( , ) ( , ) [ ( ) – ( )]
α α

α
α α ξ α α α α α

+Δ
+ Δ = + Δ + Δ∫  (2)
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u

u
f x dx f u u

2

2

( )

2 1 1
( )

( , ) ( , ) [ ( ) – ( )]
α α

α
α α ξ α α α α α

+Δ
+ Δ = + Δ + Δ∫  (3)

where ξ is between α + Δα, ξ1 is between u1 (α) and u1(α + Δα) and ξ2 is between u2 (α) and u2(α + Δ α).
Then

u

u

u u
f x dx f f

2

1

( )
2 1

2 1
( )

( , ) ( , ) – ( , )
α

αα

φ ξ ξ α α ξ α α
φ α α

Δ ΔΔ = + + Δ + Δ
Δ Δ Δ∫

Taking the limit as Δα → 0, making use of the fact that the functions are assumed to have continuous deriva-
tives, we obtain

u

u

u ud
f x dx f f

d

2

1

( )
2 1

2 1
( )

( , ) ( , ) – ( , )
α

αα

φ ξ ξ α α ξ α α
φ α α

Δ Δ
= + + Δ + Δ

Δ Δ∫

8.16. If 
x

dx
x

2 sin
( , find ( ) where 0.

α

α

αφ α φ α α) = ′ ≠∫
By Leibniz’s rule,

a

x d d
dx

a x d d

x dx

x

2

2

2

2
2

2

3 2

3 2 3 2

sin sin ( ) sin ( )
( ( ) – ( )

2 sin sin
cos –

sin 2 sin sin 3 sin – 2sin
– –

α

α

α

α

α

α α α α αφ α α α
α α αα

α αα
α α

α α α α α
α α α α

∂ ⋅ ⋅⎛ ⎞′ ) = +⎜ ⎟∂ ⎝ ⎠

= +

= + =

∫

∫

8.17.
dx

x 20
If 1

– cos – 1

π π α
α α

= ⋅ >∫ ,
dx

x 20
find

(2 – cos )

π

⋅∫ (See Problem 5.58.)

By Leibniz’s rule, if 
dx

x
2 –1/ 2

0
( ) ( – 1) , then

( – cos )

π
φ α π α

α
= =∫

dx

x
2 –3/ 2

2 3/ 20

1 –
( ) – ( – 1) 2

( – cos ) 2 ( – 1)

π παφ α π α α
α α

= = =∫

Thus,
dx

x 2 3/ 20

–

( – cos ) ( – 1)

π πα
α α

=∫ , from which 
dx

x 20

2

(2 – cos ) 3 3

π π= ⋅∫

Integration under the integral sign

8.18. Prove the result (18), on Page 198, for integration under the integral sign.

Consider:
u

u
f x dx dx

2

1

( ) ( , )
α

α
ψ α α⎧ ⎫= ⎨ ⎬

⎩ ⎭∫ ∫ (2)

By Leibniz’s rule, 
u u

u u
f x dx dx f x dx

2 2

1 1

( ) ( , ) ( , ) ( )
α

α
ψ α α α φ α

α
∂ ⎧ ⎫′ = = =⎨ ⎬∂ ⎩ ⎭∫ ∫ ∫

Then, by integration, 

d c( ) ( )
α

α
ψ α φ α α= +∫ (2)
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Since ψ(a) = 0 from Equation (1), we have c = 0 in (2). Thus from Equation (1) and (2) with c = 0, we 
find

u u

u u
f x dx dx f x dx dx

2 2

1 1

( , ) ( , )
α α

α α
α α⎧ ⎫ ⎧ ⎫=⎨ ⎬ ⎨ ⎬

⎩ ⎭ ⎩ ⎭∫ ∫ ∫ ∫
Putting α = b, the required result follows.

8.19.
b bb x

dx a b
a x a a

2

20

– 1– cos
Prove that ln ln if , 1.

– cos – 1

π
π

⎛ ⎞+⎛ ⎞ ⎜ ⎟= >⎜ ⎟ ⎜ ⎟⎝ ⎠ +⎝ ⎠
∫

From Problem 5.58, 
dx

x 20
1.

– cos – 1

π π α
α α

= ⋅ >∫

Integrating the left side with respect to α from a to b yields

b
b

a
a

dx b x
dx x dx dx

x a x0 0 0

– cos
In ( – cos ) In

– cos – cos

π π π
α

α
⎧ ⎫ ⎛ ⎞

=⎨ ⎬ ⎜ ⎟
⎩ ⎭ ⎝ ⎠∫ ∫ ∫ ∫

Integrating the right side with respect to α to b yields
b

a

b bd
a

a a

2
2

2 20

+ – 1
ln ( + – 1) ln

– 1 + – 1

π π α π α π
α

⎛ ⎞
⎜ ⎟= =
⎜ ⎟⎝ ⎠

∫

and the required result follows.

Maxima and minima

8.20. Prove that a necessary condition for f (x, y) to have a relative extremum (maximum or minimum) at (x0, y0) is 
that fx(x0, y0) = 0, fy (x0, y0) = 0.

If f(x0, y0) is to be an extreme value for f (x, y), then it must be an extreme value for both f (x, y0) and f (x0,
y). But a necessary condition that these have extreme values at xx = 0 and y = y0, respectively, is fx (x0, y0) = 0, 
fy(x0, y0) = 0 (using results for functions of one variable).

8.21. Let f be continuous and have continuous partial derivatives of order two, at least, in a region R with the 
critical point P0(x0, y0) an interior point. Determine the sufficient conditions for relative extrema at P0.

In the case of one variable, sufficient conditions for a relative extrema were formulated through the second 
derivative [if positive then a relative minimum, if negative then a relative maximum, if zero a possible point of 
inflection but more investigation is necessary]. In the case of z = f (x, y) that is before us we can expect the 
second partial derivatives to supply information. (See Figure 8.6.)

Fig. 8.6
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First observe that solutions of the quadratic equation 
B B AC

At Bt C t
A

2
2 –2 4 – 4

2 0 are
2

±
+ + = = .

Further observe that the nature of these solutions is determined by B2 – AC. If the quantity is positive, the 
solutions are real and distinct; if negative, they are complex conjugate; and if zero, the two solutions are coin-
cident.

The expression B2 – AC also has the property of invariance with respect to plane rotations

x x y

y x y

cos sin

cos sin

θ θ
θ θ

= −
= −

It has been discovered that with the identifications A = fxx, B = fxy, C = fyy, we have the partial derivative 
form f 2

xy – fxxfyy that characterizes relative extrema.
The demonstration of invariance of this form can be found in analytic geometric books. However, if you 

would like to put the problem in the context of the second partial derivative, observe that

x x x x y

y x y x y

x y
f f f f f

x x
x y

f f f f f
x y

cos sin

– sin cos

θ θ

θ θ

∂ ∂= + = +
∂ ∂
∂ ∂= + = +
∂ ∂

Then, using the chain rule to compute the second partial derivatives and proceeding by straightforward 
but tedious calculation, we show that.

xy xx yy x y xx yyf f f f f f2 2= = −

The following equivalences are a consequence of this invariant form (independently of direction in the 
tangent plane at P0):

xy xx yy xx yyf f f f f2 0 and 0= < >  (1)

xy xx yy xx yyf f f f f2 0 and 0= < <  (2)

The key relation is (1) because in order that this equivalence hold, both terms fx fy must have the same 
sign. We can look to the one-variable case (make the same argument for each coordinate direction) and con-
clude that there is a relative minimum at P0 if both partial derivatives are positive and a relative maximum if 
both are negative. We can make this argument for any pair of coordinate directions because of the invariance 
under rotation that was established.

If relation (2) holds, then the point is called a saddle point. If the quadratic form is zero, no information 
results.

Observe that this situation is analogous to the one-variable extreme value theory in which the nature of f
at x, and with f ′(x) = 0, is undecided if f ″(x) = 0.

8.22. Find the relative maxima and minima of f (x, y) = x3 + y3 – 3x – 12y + 20.

fx = 3x2 – 3 = 0 when x = ±1, fy = 3y2 – 12 = 0 when y = ±2. Then critical points are P(1, 2), Q(–1, 2), 
R(1, –2), S(–1, –2).

fxx = 6x, fyy = 0. Then Δ = fxx fyy – f 2
xy = 36xy.

At P(1, 2), Δ > 0 and fxx (or fyy) > 0; hence P is a relative minimum point.
At Q(–1, 2), Δ < 0 and Q is neither a relative maximum or minimum point.
At R(1, –2), Δ < 0 and R is neither a relative maximum or minimum point.
At S(–1, –2), Δ > 0 and fxx (or fyy) < 0 so S is a relative maximum point.
Thus, the relative minimum value of f(x, y) occurring at P is 2, while the relative maximum value occur-

ring at S is 38. Points Q and R are saddle points.

8.23. A rectangular box, open at the top, is to have a volume of 32 cubic feet. What must be the dimensions so that 
the total surface is a minimum?
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If x, y, and z are the edges (see Fig. 8.7), then

 Volume of box = V = xyz = 32 (1)

 Surface area of box = S = xy + 2yz + 2xz (2)

or, since z = 32/xy from Equation (1),

S xy
x y

64 64= + +

Fig. 8.7

S
y

x x2

64
– 0 when

∂ = =
∂

2x y 64=  (3)

S
x

y y2

64
– 0

∂ = =
∂

when 2xy 64=  (4)

Dividing Equations (3) and (4), we find y = x so that x3 = 64 or x = y = 4 and z = 2.

xx yy xy xxx y S S S
x y x

2
3 3 3

128 128 128
For = 4, – – 1 0 and s 0.

⎛ ⎞⎛ ⎞= Δ = = > = >⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
 Hence, it follows that the 

dimensions 4 feet × 4 feet × 2 feet give the minimum surface.

Lagrange multipliers for maxima and minima

8.24. Consider F(x, y, z) subject to the constraint condition G(x, y, z) = 0. Prove that a necessary condition that 
F(x, y, z) have an extreme value is that FxGy – FyGx = 0.

     Since G(x,      y,      z) = 0,      we can consider z as a function of x and y—say,      z = f (x,      y). A necessary condition that 
F[x, y, f (x, y)] have an extreme value is that the partial derivatives with respect to x and y be zero. This gives

Fx + Fzzx = 0 (1)

Fy + FzZy = 0 (2)

Since G(x, y, z) = 0, we also have

 Gx + Gxzx = 0 (3)

 Gy + Gzzy = 0 (4)

From Equations (1) and (3) we have 

 FxGx – FxGx = 0 (5) 

and from Equations (2) and (4) we have 

 FyGz – FzGy = 0 (6)

Then from Equations (5) and (6) we find FxGy – FyGx = 0.
These results hold only if Fz � 0, Gz � 0.

8.25. Referring to Problem 8.24, show that the stated condition is equivalent to the conditions φx = 0, φy = 0 where 
φ = F + λG and λ is a constant.

If φx = 0, Fx + λGx = 0. If φy = 0, Fy + λGy = 0. Elimination of λ between these equations yields FxGy – 
Fy Gx = 0.
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The multiplier λ is the Lagrange multiplier. If desired, we can consider equivalently φ = λF + G where 
φx = 0, φy = 0.

8.26. Find the shortest distance from the origin to the hyperbola x2 + 8xy + 7y2 = 225, z = 0.

We must find the minimum value of x2 + y2 (the square of the distance from the origin to any point in the 
xy plane) subject to the constraint x2 + 8xy + 7y2 = 225.

According to the method of Lagrange multipliers, we consider φ = x2 + 8xy + 7y2 – 225 + λ(x2 + y2).
Then

 φx = 2x + 8y + 2λx = 0   or   (λ + 1) x + 4y = 0 (1)

 φy = 8x + 14y + 2λy = 0   or   4x + (λ + 7)y = 0 (2)

From Equations (1) and (2), since (x, y) � (0, 0), we must have

21 4
0, i.e., 8 – 9 or = 1, –9

4 7

λ
λ λ λ

λ
+

= + =
+

Case 1: λ = 1. From Equation (1) or (2), x = –2y, and substitution in x2 + 8xy + 7y2 = 225 yields –5y2 = 225, 
for which no real solution exists.

Case 2: λ = –9. From Equation (1) or (2), y = 2x, and substitution in x2 + 8xy + 7y2 = 225 yields 45x2 = 225. 

Then x2 = 5, y2 = 4x2 = 20 and so x2 + y2 = 25. Thus, the required shortest distance is 25  = 5.

8.27. (a) Find the maximum and minimum values of x2 + y2 + z2 subject to the constraint conditions x2/4 + y2/5 + 
z2/25 = 1 and z = x + y. (b) Give a geometric interpretation of the result in (a).

(a) We must find the extrema of F = x2 + y2 + z2 subject to the constraint conditions 
x x2 2

1 4 5
φ = + +

z
x y z

2

2– 1 0 and – 0
25

φ= = + = . In this case we use two Lagrange multipliers λ1, λ2 and consider 

the function

x y z
G F x y z x y z

2 2 2
2 2 2

1 1 2 2 1 2–1 ( – )
4 5 25

λ φ λ φ λ λ
⎛ ⎞

= + + = + + + + + + +⎜ ⎟⎜ ⎟⎝ ⎠
Taking the partial derivatives of G with respect to x, y, z and setting them equal to zero, we find

x y x
x y z

G x G y G z1 1 1
2 2 2

2 2
2 0, 2 0, 2 – 0

2 5 25

λ λ λ
λ λ λ= + + = = + + = = + =  (1)

Solving these equations for x, y, z, we find

x y z2 2 2

1 1 1

–2 –5 25
, ,

4 2 10 2 50

λ λ λ
λ λ λ

= = =
+ + +

 (2)

From the second constraint condition, x + y – z = 0, we obtain, on division by λ2, assumed different from 
zero (this is justified, since otherwise we would have x = 0, y = 0, z = 0, which would not satisfy the first con-
straint condition), the result

1 1 1

2 5 25
0

4 2 10 2 50λ λ λ
+ + =

+ + +

Multiplying both sides by 2(λ1 + 4)(λ1 + 5)(λ1 + 5)(λ1 + 25) and simplifying yields

17λ2
1 + 245λ1 + 750 = 0 or (λ1 + 10)(17λ1 + 75) = 0

from which λ1 = –10 or –75/17.
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Case 1: λ1 = –10.
From (2), x = 1

3
λ2, y = 1

2
λ2, z = 5/6λ2. Substituting in the first constraint condition, x2/4 + y2 /5 + z2/25

= 1, yields λ2
2 = 180/19 or λ2 = ±6 5 /19 . This gives the two critical points

( ) ( )2 5 /19 , 3 5 /19 , 5 5 /19 , –2 5 /19 , – 3 5 /19 , – 5 5 /19

The value of x2 + y2 + z2 corresponding to these critical points is (20 + 45 + 125)/19 = 10.

Case 2: λ1 = –75/17.
From (2), x = 34/7 λ2, y = –17/4λ2, z = 17/28λ2. Substituting in the first constraint condition, x2/4 + y2/5

+ z2/25 = 1, yields λ2 = ±140/(17 646 ) which give the critical points

( ) ( )40 / 646 , – 35 646 , 5 / 646 , –40 / 646 , – 35 646 , – 5 / 646

The value of x2 + y2 + z2 corresponding to these is (1600 + 1225 + 25)/646 = 75/17.
Thus, the required maximum value is 10 and the minimum value is 75/17.

(b) Since x2 + y2 + z2 represents the square of the distance of (x, y, z) from the origin (0, 0, 0), the problem is 
equivalent to determining the largest and smallest distances from the origin to the curve of intersection of 
the ellipsoid x2/4 + y2/5 + z2/25 = 1 and the plane z = x + y. Since this curve is an ellipse, we have the 

interpretation that 10  and 75 /17  are the lengths of the semimajor and semiminor axes of this el-
lipse.

The fact that the maximum and minimum values happen to be given by –λ1 in both Case 1 and Case 2 is 
more than a coincidence. It follows, in fact, on multiplying Equations (1) by x, y, and z in succession and add-
ing, for we then obtain

x y z
x x y y z z

2 2 2
2 2 21 1 1

2 2 2
2 2

2 2 2 – 0
2 5 25

λ λ λ
λ λ λ+ + + + + + + =

i.e.,

x y z
x y z x y z

2 2 2
2 2 2

1 2 ( – ) 0
4 5 25

λ λ
⎛ ⎞

+ + + + + + + =⎜ ⎟⎜ ⎟⎝ ⎠

Then, using the constraint conditions, we find x2 + y2 + z2 = –λ1.
For a generalization of this problem, see Problem 8.76.

Applications to errors

8.28. The period T of a simple pendulum of length l is given by T = 2 l g/ . Find (a) the error and (b) the percent 
error made in computing T by using l = 2 m and g = 9.75 m/ sec2, if the true values are l = 19.5m and g = 
9.81 m/sec2.

(a) T = 2πl1/2g– 1/2. Then

dT g l dl l g dg dl dg
glg

–1/ 2 –1/ 2 1/ 2 –3/ 2
3

1 1 1
(2 ( ) (2 )(– ) –

2 2

ππ π π= + =  (1)

Error in g = Δg = dg = + 0.06; error in l = Δl = dl = – 0.5

The error in T is actually ΔT, which is in this case approximately equal to dT. Thus, we have from Equa-
tion (1),

T dT

T l g T

3

2
Error in (–0.05) – ( 0.06) – 0.0444 sec (approx.)

(9.75)(2)(9.75)

2
The value of for 2, 9.75 is 2 2.846 sec (approx.)

9.75

π π

π

= = + =

= = = =
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(b) Percent error (or relative error) in 
dT

T
T

–0.0444
–1.56%.

2.846
= = =

Another method: Since ln T = ln 2π + 
1

2
 ln l – 

1

2
 ln g,

dT dl dg

T l g

1 1 1 –0.05 1 0.06
– – –1.56%

2 2 2 2 2 9.75

+⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
 (2)

as before. Note that Equation (2) can be written

Percent error in T = 
1

2
 Percent error in l – 

1

2
 Percent error in g

Miscellaneous problems

8.29.
x

dx
x

1

0

– 1
Evaluate .

In∫
In order to evaluate this integral, we resort to the following device. Define

x
dx

x

1

0

– 1
( ) 0

In

α
φ α α= >∫

Then by Leibniz’s rule

x x x
dx dx dx

x x

1 1 1

0 0 0

– 1 In 1
( )

In In 1

α α
φ α

α α
⎛ ⎞∂′ = = = =⎜ ⎟⎜ ⎟∂ +⎝ ⎠

∫ ∫ ∫
Integrating with respect to α, φ(α) = ln(α + 1) + c. But since φ(0) = 0, c = 0, and so φ(α) = ln(α + 1).
Then the value of the required integral is φ(1) = ln 2.
The applicability of Leibniz’s rule can be justified here, since if we define F(x, α) = (xα – 1)/lnx, 0 < x < 

1, F(0, α) = 0, F(1, α) = α, then F(x, α) is continuous in both x and α for 0 < x <  1 and all finite α > 0.

8.30. Find constants a and b for which F a b x ax bx2

0
( , ) {sin – ( )}

π
= +∫ 2

}
dx is a minimum.

The necessary conditions for a minimum are ∂F/∂a = 0. Performing these differentiations, we obtain

F
x ax bx dx x x ax bx dx

a a
F

x ax bx dx x x ax bx dx
b b

2 2 2 2

0 0

2 2 2

0 0

{sin – ( )} – 2 {sin – ( )} 0

{sin – ( )} – 2 {sin – ( )} 0

π π

π π

∂ ∂= + = + =
∂ ∂
∂ ∂= + = + =
∂ ∂

∫ ∫
∫ ∫

From these we find

x dx b x dx x x dx

x dx b x dx x x dx

4 3 2

0 0 0

3 2

0 0 0

sin

sin

π π π

π π π

α

α

⎧ + =⎪⎪
⎨
⎪ + =⎪⎩

∫ ∫ ∫
∫ ∫ ∫

or
a b

a b

5 4
2

4 3

– 4
5 4

4 3

π π π

π π π

⎧
+ =⎪⎪

⎨
⎪ + =⎪⎩

Solving for a and b, we find

a b
3 5 4 2

20 320 240 12
– – 0.40065. – 1.24798

π π π π
= ≈ = ≈
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We can show that for these values, F(a, b) is indeed a minimum using the sufficiency conditions on Page 
200.

The polynomial ax2 + bx is said to be a least square approximation of sin x over the interval (0, π). The 
ideas involved here are of importance in many branches of mathematics and their applications.

SUPPLEMENTARY PROBLEMS

Tangent plane and normal line to a surface

8.31. Find the equations of (a) the tangent plane and (b) the normal line to the surface x2 + y2 = 4z at (2, –4, 5).

Ans. (a) x y z– 2 – = 5 (b) 
x y z– 2 4 – 5

1 –2 –1

+= =

8.32. If z = f (x, y), prove that the equations for the tangent plane and normal line at point P(x0, y0, z0) are given, 

respectively, by (a) x yz z f p x x f p y y0 0 0– ( – ) ( – )= +  and (b) 
x x y y z z

fx p fx p
0 0 0– – –

–1
= = .

8.33. Prove that the acute angle γ between the z axis and the normal line to the surface F(x, y, z) = 0 at any point is 

given by x y zF F F F2 2 2
2sec / .γ = +

8.34. The equation of a surface is given in cylindrical coordinates by F(ρ, φ, z) = 0, where F is continuously 
differentiable. Prove that the equations of (a) the tangent plane and (b) the normal line at the point P(ρ0, φ0,

z0) are given, respectively, by A x x B y y C z z0 0 0( – ) ( – ) ( – ) 0+ + =  and 
x x y y z z

A B C
0 0 0– – –

= =

where x0 = ρ0 cos φ0, y0 = ρ0 sin φ0 and A F p F p0 0

1
cos – sin ,ρ φφ φ

ρ
= B F p F p0 0

1
sin cos ,ρ φφ φ

ρ
= +

and zC F= p.

8.35. Use Problem 8.34 to find the equation of the tangent plane to the surface πz = ρφ at the point where ρ = 2, 
φ = π/2, z = 1. To check your answer, work the problem using rectangular coordinates.

Ans. 2x – πy + 2πz = 0

Tangent line and normal plane to a curve

8.36. Find the equations of (a) the tangent line and (b) the normal plane to the space curve x = 6 sin t, y = 4 cos 3t.
z = 2 sin 5t at the point where t = π/4.

Ans. (a) 
x y z– 3 2 2 2 2

3 –6 –5

+ += =  (b) x y z3 – 6 – 5 26 2=

8.37. The surfaces x + y + z = 3 and x2 – y2 + 2z2 = 2 intersect in a space curve. Find the equations of (a) the 
tangent line and (b) the normal plane to this space curve at the point (1, 1, 1).

Ans. (a) 
x y z– 1 – 1 – 1

–3 1 2
= =  (b) x y z3 – – 2 0=

p p
p p  fx   fx
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Envelopes

8.38. Find the envelope of each of the following families of curves in the xy plane: (a) y ax 2– α=  and 

(b)
x y2 2

1.
1 –α α

+ =  In each case construct a graph.

Ans. (a) x y2 4=  (b) x y x y1, – 1+ = ± = ±

8.39. Find the envelope of a family of lines having the property that the length intercepted between the x and y
axes is a constant a.

Ans. x2/3 + y2/3 = a2/3

8.40. Find the envelope of the family of circles having centers on the parabola y = x2 and passing through its 
vertex. [Hint: Let (α, α2) be any point on the parabola.]

Ans. x2 = –y3/(2y + 1)

8.41. Find the envelope of the normals (called an evolute) to the parabola y = x2 and construct a graph.

Ans. 8(y – 1)3 = 27x2

8.42. Find the envelope of the following families of surfaces: (a) α(x – y) – α2z = 1 and (b) (x – α)2 + y2 = 2αz.

Ans. (a) 4z = (x – y)2, (b) y2 = z2 + 2xz

8.43. Prove that the envelope of the two-parameter family of surfaces F(x, y, z, α, β) = 0, if it exists, is obtained by 
eliminating α and β in the equations F = 0, Fα = 0, and Fβ = 0.

8.44. Find the envelope of the two-parameter families (a) z = αx + βy – α2 – β2 and (b) x cos α + y cos β + z cos γ
= a where cos2 α + cos2 β + cos2 γ = 1 and a is a constant.

Ans. (a) 4z = x2 + y2 (b) x2 + y2 + z2 = a2

Directional derivatives

8.45. (a) Find the directional derivative of U = 2xy – z2 at (2, –1, 1) in a direction toward (3, 1, –1). (b) In what 
direction is the directional derivative a maximum? (c) What is the value of this maximum?

Ans. (a) 10/3 (b) – 2i + 4j – 2k (c) 2 6

8.46. The temperature at any point (x, y) in the xy plane is given by T = 100xy/(x2 + y2). (a) Find the directional 
derivative at the point (2, 1) in a direction making an angle of 60º with the positive x axis. (b) In what 
direction from (2, 1) would the derivative be a maximum? (c) What is the value of this maximum?

Ans. (a) 12 3  – 6 (b) in a direction making an angle of π – tan–1 2 with the positive x axis. or in the direc-
tion –i + 2j (c) 12 5

8.47. Prove that if F(ρ, φ, z) is continuously differentiable, the maximum directional derivative of F at any point is 

given by 
F F F

z

2 2 2

2

1

ρ φρ
⎛ ⎞ ⎛ ⎞∂ ∂ ∂⎛ ⎞+ + ⋅⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠⎝ ⎠ ⎝ ⎠

1
2
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Differentiation under the integral sign

8.48.
d

x dx
d

1/ 2If ( ) cos , find
α

α

φφ α α
α

= ∫

Ans. x x dx
1/ 2 2 2

2

1 1 1
sin – cos – cos

2

α

α
α α

αα α∫

8.49. (a) If 
x dF

F dx
d

2
–1

0
( ) tan , find

α
α

α α
= ∫  by Leibniz’s rule. (b) Check the result in (a) by direct 

integration.

Ans. (a) –1 21
2 tan – In ( 1)

2
α α α +

8.50. Given px dx p
p

1

0

1
, – 1

1
= >

+∫ , prove that 
( )

( )

m

p m

m

m
x x dx

p

1

10

–1 !
(In )

1
+=

+∫

8.51. x dx
2

0

1 + 1 –
Prove that In (1 cos ) In , 1.

2

π α
α π α

⎛ ⎞
⎜ ⎟+ = <
⎜ ⎟⎝ ⎠

∫

8.52. x dx
2

2

0

In , 1
Prove that In (1 – 2 cos ) Discuss the case 1.

0, 1

π π α α
α α α

α
⎧ <⎪+ = ⋅ =⎨ >⎪⎩

∫

8.53.
dx

x 30

59
Show that .

2048(5 – 3cos )

π π=∫

Integration under the integral sign

8.54.
1

0
Verify that ∫ ⎧

⎨
⎩

2

1∫ x dx2 2( – )α ⎫
⎬
⎭

dx
2

1
α = ∫ ⎧

⎨
⎩

1

0∫ x dx2 2( – )α
2

1
α = ∫ ⎫

⎬
⎭

dx

8.55. Starting with the result x dx
2

0
( – sin ) 2 ,

π
α πα=∫  prove that for all constants a and b, x) dx = 2πα, prove 

that for all constants a and b,

b x a x dx b a
2 2 2 2 2

0
{( – sin ) – ( – sin ) } 2 ( – )

π
π=∫

8.56. Use the result 
dx

x

2

0 2

2
, 1

sin – 1

π π α
α α

= >
+∫  to prove that 

x
dx

x

2

0

5 3sin 9
In 2 In

5 4sin 8

π
π

⎛ ⎞+ ⎛ ⎞=⎜ ⎟ ⎜ ⎟+ ⎝ ⎠⎝ ⎠∫

8.57. (a) 
dx

x

–1
/ 2

0 2

cos
Use the result ,

1 cos 1 –

π α
α α

=
+∫ 0 < α < 1 to show that for 0 < a < 1, 0 < b < 1,

b x
x dx a b

a x

/ 2 –1 2 –1 2

0

1 cos 1
sec In {(cos ) – (cos ) }

1 cos 2

π ⎛ ⎞+ =⎜ ⎟+⎝ ⎠∫

(b) x x dx
2

/ 2

0

1 5
Show that sec In (1 cos ) .

2 72

π π+ =∫

Maxima and minima, lagrange multipliers

8.58. Find the maxima and minima of F(x, y, z) = xy2 z) = xy2z3 subject to the conditions x + y + z = 6, x > 0, y > 0, 
z > 0. 

Ans. maximum value = 108 at x = 1, y = 2, z = 3
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8.59. What is the volume of the largest rectangular parallelepiped which can be inscribed in the ellipsoid x2/9 + 
y2/16 + z2/36 = 1?

Ans. 64 3

8.60. (a) Find the maximum and minimum values of x2 + y2 subject to the condition 3x2 + 4xy + 6y2 = 140. (b) 
Give a geometrical interpretation of the results in (a).

Ans. maximum value = 70, minimum value = 20

8.61. Solve Problem 8.23 using Lagrange multipliers.

8.62. Prove that in any triangle ABC there is a point P such that PA
2

 + PB
2

 + PC
2

 is a minimum and that P is 
the intersection of the medians.

8.63. (a) Prove that the maximum and minimum values of f (x, y) = x2 + xy + y2 in the unit square 0 < x <  1, 0 <
y <  1 are 3 and 0, respectively. (b) Can the result of (a) be obtained by setting the partial derivatives of f (x,
y) with respect to x and y equal to zero. Explain.

8.64. Find the extreme values of z on the surface 2x2 + 3y2 + z2 – 12xy + 4xz = 35.

Ans. maximum = 5, minimum = –5

8.65. Establish the method of Lagrange multipliers in the case where we wish to find the extreme values of F(x, y,
z) subject to the two constraint conditions G(x, y, z) = 0, H(x, y, z) = 0.

8.66. Prove that the shortest distance from the origin to the curve of intersection of the surfaces xyz = a and y = bx,

where a > 0, b > 0, is a b b23 ( 1) / 2+ .

8.67. Find the volume of the ellipsoid 11x2 + 9y2 + 15z2 – 4xy + 10yz – 20xz = 80.

Ans. 64π 2 /3

Applications to errors

8.68. The diameter of a right circular cylinder is measured as 6.0 ± 0.03 inches, while its height is measured as 4.0 
± 0.02 inches. What is the largest possible (a) error and (b) percent error made in computing the volume?

Ans. (a) 1.70 in3 (b) 1.5 percent

8.69. The sides of a triangle are measured to be 12.0 and 15.0 feet, and the included angle is 60.0º. If the lengths 
can be measured to within 1 percent accuracy, while the angle can be measured to within 2 percent accuracy, 
find the maximum error and percent error in determining the (a) area and (b) the opposite side of the 
triangle.

Ans. (a) 2.501 ft2, 3.21 percent (b) 0.287 ft, 2.08 percent
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Miscellaneous problems

8.70. If ρ and φ are cylindrical coordinates, a and b are any positive constants, and n is a positive integer, prove 
that the surface ρn sin nφ = a and ρn cos nφ = b are mutually perpendicular along their curves of intersection.

8.71. Find an equation for (a) the tangent plane and (b) the normal line to the surface 8rθφ = π2 at the point where 
r = 1, θ = π/4, φ = π/2, (r, θ, φ) being spherical coordinates.

Ans. (a) x y z2 2 24 – ( 4 ) (4 – ) –π π π π π+ + = 2 (b)
x y z

2 2

– 2 / 2 – 2 / 2

–4 4 – 4π π π π
= =

+

8.72. (a) Prove that the shortest distance from the point (a, b, c) to the plane Ax + By + Cz + D = 0 is

Aa Bb Cc D

A B C2 2 2

+ + +

+ +

(b) Find the shortest distance from (1, 2, –3) to the plane 2x – 3y + 6z = 20.

Ans. (b) 6

8.73. The potential V due to a charge distribution is given in spherical coordinates (r, θ, φ) by

p
V

r2

cosθ=

where p is a constant. Prove that the maximum directional derivative at any point is

p

r

2 2

3

sin 4cosθ θ+

8.74. Prove that 
m nx x m

dx
x n

1

0

– 1
ln

ln 1

⎛ ⎞+= ⎜ ⎟+⎝ ⎠∫  if m > 0, n > 0. Can you extend the result to the case m > – 1, n > –1?

8.75. (a) If b2 – 4ac < 0 and a > 0, c > 0, prove that the area of the ellipse ax2 + bxy + cy2 = 1 is 2π/ ac b24 .−
(Hint: Find the maximum and minimum values of x2 + y2 subject to the constraint ax2 + bxy + cy2 = 1.)

8.76. Prove that the maximum and minimum distances from the origin to the curve of intersection defined by x2/a2

+ y2/b2 + z2/c2 = 1 and Ax + By + Cz = 0 can be obtained by solving for d the equation

A a B b C c

a d b d c d

2 2 2 2 2 2

2 2 2 2 2 2
0

– – –
+ + =

8.77. Prove that the last equation in the preceding problem always has two real solutions d 2
1 and d 2

2 for any real 
nonzero constants a, b, c and any real constants A, B, C (not all zero). Discuss the geometrical significance 
of this.

8.78. (a) 
M

M

dx M M
I

x M
–1

2 2 2 3 2 2 20

1
Prove that tan

( ) 2 2 ( )αα α α α
= = +

+ +∫ .

(b) MM

dx

x

x

2 2 20
Find lim I . This can be denoted by .

( )α→∞ +∫

(c)
M M

M M

d dx d dx

d dx x2 2 2 2 2 20 0
Is lim lim ?

( ) ( )α αα α→∞ →∞
=

+ +∫ ∫
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8.79. Find the point on the paraboloid z = x2 + y2 which is closest to the point (3, –6, 4).

Ans. (1, –2, 5)

8.80. Investigate the maxima and minima of f(x, y) = (x2 – 2x + 4y2 – 8y)2.

Ans. Minimum value = 0

8.81. (a)
x dx

x x

/ 2

2 20

cos In
Prove that – .

cos sin 2( 1) 1

π απ α
α α α

=
+ + +∫

(b)
x dx

a
x x

2
/ 2

20

cos 3 5 – 8 ln 2
Use ( ) to Prove that .

50(2cos sin )

π π +=
+∫

8.82. (a) Find sufficient conditions for a relative maximum or minimum of w = f (x, y, z).

(b) Examine w = x2 + y2 + z2 – 6xy + 8xz – 10yz for maxima and minima.

[Hint: For (a) use the fact that the quadratic form Aα2 + Bβ 2 + Cγ2 + 2Dαβ + 2Eαγ + 2Fβγ > 0 (i.e., is positive
definite) if

A D F
A D

A D B E
D B

F E C

0, 0. 0> > >
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Multiple Integrals

Much of the procedure for double and triple integrals may be thought of as a reversal of partial differentiation 
and otherwise is analogous to that for single integrals. However, one complexity that must be addressed re-
lates to the domain of definition. With single integrals, the functions of one variable were defined on intervals 
of real numbers. Thus, the integrals only depended on the properties of the functions. The integrands of 
double and triple integrals are functions of two and three variables, respectively, and as such are defined on 
two- and three-dimensional regions. These regions have a flexibility in shape not possible in the single-
variable cases. For example, with functions of two variables, and the corresponding double integrals, rectan-
gular regions a < x < b, c < y < d are common. However, in many problems the domains are regions 
bounded above and below by segments of plane curves. In the case of functions of three variables, and the 
corresponding triple integrals other than the regions a < x < b, c < y < d, e < z < f, there are those bounded 
above and below by portions of surfaces. In very special cases, double and triple integrals can be directly 
evaluated. However, the systematic technique of iterated integration is the usual procedure. It is here that the 
reversal of partial differentiation comes into play.

Figure 9.1

Definitions of double and triple integrals are given as follows. Also, the method of iterated integration is 
described.

Double Integrals

Let F(x, y) be defined in a closed region ℜ of the xy plane (see Figure 9.1). Subdivide ℜ into n subregions 
Δ ℜk of area ΔAk, k = 1, 2, . . . , n. Let (ξk, ηk) be some point of ΔAk. Form the sum

n

k k k
k

F A
1

( , )ξ η
=

Δ∑  (1)

Consider
n

k k k
n

k

F A
1

lim ( , )ξ η
→∞

=

Δ∑  (2)

CHAPTER 9
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where the limit is taken so that the number n of subdivisions increases without limit and such that the largest 
linear dimension of each ΔAk approaches zero. See Figure 9.2(a). If this limit exists, it is denoted by

F x y dA( , )
ℜ∫ ∫  (3) 

and is called the double integral of F(x, y) over the region ℜ.
It can be proved that the limit does exist if F(x, y) is continuous (or sectionally continuous) in ℜ.
The double integral has a great variety of interpretations with any individual one dependent on the form 

of the integrand. For example, if F(x, y) = ρ(x, y) represents the variable density of a flat iron plate, then the 
double integral ∫A ρ dA of this function over a same-shaped plane region A is the mass of the plate. In Figure 
9.2(b) we assume that F(x, y) is a height function [established by a portion of a surface z = F(x, y)] for a 
cylindrically shaped object. In this case the double integral represents a volume.

Figure 9.2

Iterated Integrals

If ℜ is such that any lines parallel to the y axis meet the boundary of ℜ in, at most, two points (as is true in 
Figure 9.1), then we can write the equations of the curves ACB and ADB bounding ℜ as y = f1(x) and y = 
f2(x), respectively, where f1(x) and f2(x) are single-valued and continuous in a < x < b. In this case we can 
evaluate the double integral (3) by choosing the regions Δℜk as rectangles formed by constructing a grid of 
lines parallel to the x and y axes and ΔAk as the corresponding areas. Then Equation (3) can be written

b f x

x a y f x

b f x

x a y f x

F x y dx dy F x y dy dx

F x y dy dx

2

1

2

1

( )

( )

( )

( )

( , ) ( , )

( , )

ℜ
= =

= =

=

⎧ ⎫= ⎨ ⎬
⎩ ⎭

∫ ∫ ∫ ∫

∫ ∫
 (4)

where the integral in braces is to be evaluated first (keeping x constant) and finally integrating with respect 
to x from a to b. The result (4) indicates how a double integral can be evaluated by expressing it in terms of 
two single integrals called iterated integrals.
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The process of iterated integration is visually illustrated in Figure 9.3(a) and (b) and further illustrated as 
follows.

Figure 9.3

The general idea, as demonstrated with respect to a given three-space region, is to establish a plane sec-
tion, integrate to determine its area, and then add up all the plane sections through an integration with respect 
to the remaining variable. For example, choose a value of x (say, x = x�). The intersection of the plane x = x�

with the solid establishes the plane section. In it, z = F(x�, y) is the height function, and if y = f1(x) and y = 
f2(x) for all z) are the bounding cylindrical surfaces of the solid, then the width is f2(x�) – f1(x�), i.e., y2 – y1.

Thus, the area of the section is 
y

y
A F x y dy

2

1

( , )′= ∫ . Now establish slabs Aj Δ xj, where, for each interval Δ xj = 

xj – xj–r, there is an intermediate value x�j. Then sum these to get an approximation to the target volume. Add-
ing the slabs and taking the limit yields

n b y

j j
x a y

j

V A x F x y dx dx
2

11

lim ( , )
→∝

=

⎛ ⎞= Δ = ⎜ ⎟⎝ ⎠∑ ∫ ∫
In some cases the order of integration is dictated by the geometry. For example, if ℜ is such that any lines 

parallel to the x axis meet the boundary of ℜ in, at most, two points (as in Figure 9.1), then the equations of 
curves CAD and CBD can be written x = g1(y) and x = g2(y), respectively, and we find, similarly,

d g y

y c x g y
F x y dx dy F x y dx dy

2

1

( )

( )
( , ) ( , )

= =
ℜ

=∫∫ ∫ ∫
 (5)

d g y

y c x g y
F x y dx dy

2

1

( )

( )
( , )

= =

⎧ ⎫= ⎨ ⎬
⎩ ⎭∫ ∫

If the double integral exists, Equations (4) and (5) yield the same value. (See, however, Problem 9.21.) In 
writing a double integral, either of the forms (4) or (5), whichever is appropriate, may be used. We call one 
form an interchange of the order of integration with respect to the other form.

In case ℜ is not of the type shown in Figure 9.3, it can generally be subdivided into regions ℜ1, ℜ2, . . . , 
which are of this type. Then the double integral over ℜ is found by taking the sum of the double integrals 
over ℜ1, ℜ2, . . . .
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Triple Integrals

These results are easily generalized to closed regions in three dimensions. For example, consider a function 
F(x, y, z) defined in a closed three-dimensional region ℜ. Subdivide the region into n subregions of volume 
ΔVk, k = 1, 2, . . . , n. Letting (ξk, ηk, ζk) be some point in each subregion, we form

n

k k k k
x

k

F V
1

lim ( , , )ξ η ξ
→∞

=

Δ∑  (6)

where the number n of subdivisions approaches infinity in such a way that the largest linear dimension of 
each subregion approaches zero. If this limit exists, we denote it by

F x y z dV( , , )
ℜ
∫∫∫  (7) 

called the triple integral of F(x, y, z) over ℜ. The limit does exist if F(x, y, z) is continuous (or piecemeal 
continuous) in ℜ.

If we construct a grid consisting of planes parallel to the xy, yz, and xz planes, the region ℜ is subdivided 
into subregions which are rectangular parallelepipeds. In such case we can express the triple integral over ℜ
given by (7) as an iterated integral of the form

x Yb g a f x y b g x f

x a y g x z f x y x a y g x z f x y
F x y z dx dy dz F x y z dz dy dx

2 2 2 2( , )

1 1 1 1

( ) ( , ) ( )

( ) ( , ) ( ) ( , )
( , , ) ( , , )

= = = = = =

⎡ ⎤⎧ ⎫= ⎨ ⎬⎢ ⎥⎩ ⎭⎣ ⎦∫ ∫ ∫ ∫ ∫ ∫  (8) 

(where the innermost integral is to be evaluated first) or the sum of such integrals. The integration can also 
be performed in any other order to give an equivalent result.

The interated triple integral is a sequence of integrations, first from surface portion to surface portion, then 
from curve segment to curve segment, and finally from point to point. (See Figure 9.4.)

Extensions to higher dimensions are also possible.

Figure 9.4
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Transformations of Multiple Integrals

In evaluating a multiple integral over a region ℜ, it is often convenient to use coordinates other than rectan-
gular, such as the curvilinear coordinates considered in Chapters 6 and 7.

If we let (u, υ) be curvilinear coordinates of points in a plane, there will be a set of transformation equa-
tions x = f (u, υ), y = g(u, υ) mapping points (x, y) of the xy plane into points (u, υ) of the uυ plane.

In such case the region ℜ of the xy plane is mapped into a region ℜ´ of the uν plane. We then have

x y
F x y dx dy G u du d

u

( , )
( , ) ( , )

( , )
υ υ

υ
∂=
∂∫∫ ∫∫  (9)

where G(u, υ), ≡ F{f (u, υ), g(u, υ)} and

x x
x y u

y yu

u

( , )

( , )
υ

υ
υ

∂ ∂
∂ ∂ ∂≡

∂ ∂∂
∂ ∂

 (10) 

is the Jacobian of x and y with respect to u and υ (see Chapter 6).
Similarly, if (u, υ, w) are curvilinear coordinates in three dimensions, there will be a set of transformation 

equations x = f (u, υ, w), y = g(u, υ, w), z = h(u, υ, w) and we can write

( , , )
( , , ) ( , , )

( , , )

x y z
F x y z dx dy dz G u w du dv dw

u w
ℜ ℜ

υ
υ

∂=
∂∫∫∫ ∫∫∫  (11) 

where G(u, υ, w) ≡ F{( f (u, υ, w), g(u, υ, w), h(u, υ, w)} and

x x x

u w
x y z y y y

u w u w
z z z

u w

( , , )

( , , )

υ

υ υ

υ

∂ ∂ ∂
∂ ∂ ∂

∂ ∂ ∂ ∂≡
∂ ∂ ∂ ∂

∂ ∂ ∂
∂ ∂ ∂

 (12) 

is the Jacobian of x, y, and z with respect to u, υ, and w.
The results (9) and (11) correspond to change of variables for double and triple integrals. Generalizations 

to higher dimensions are easily made.

The Differential Element of Area in Polar Coordinates, Differential Elements of 
Area in Cylindral and Spherical Coordinates

Of special interest is the differential element of area dA for polar coordinates in the plane, and the differential 
elements of volume dV for cylindrical and spherical coordinates in three-space. With these in hand, the dou-
ble and triple integrals as expressed in these systems are seen to take the following forms. (See Figure 9.5.)

The transformation equations relating cylindrical coordinates to rectangular Cartesian ones appear in 
Chapter 7, in particular,

x = ρ cos φ, y = ρ sin φ, z = z

The coordinate surfaces are circular cylinders, planes, and planes. (See Figure 9.5.)

At any point of the space (other than the origin), the set of vectors 
z

r r r
, ,

ρ φ
⎧ ⎫∂ ∂ ∂
⎨ ⎬∂ ∂ ∂⎩ ⎭

 constitutes an orthogo-
nal basis.
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Figure 9.5

In the cylindrical case, r = ρ cos φi + ρ sin φj + zk and the set is

z

r r r
cos i sin j, sin i cos j,φ φ ρ φ ρ φ

ρ ρ
∂ ∂ ∂= + = − + =
∂ ∂ ∂
∂r ∂r ∂r

j, k

Therefore,
z

r r r
.ρ

ρ φ
∂ ∂ ∂⋅ × =
∂ ∂ ∂
∂r ∂r ∂r

That the geometric interpretation of d d dz
z

r r r ρ φ
ρ φ

∂ ∂ ∂⋅ ×
∂ ∂ ∂
∂r ∂r ∂r

 is an infinitesimal rectangular parallelepiped 

suggests that the differential element of volume in cylindrical coordinates is

dV d d dzρ ρ φ=

Thus, for an integrable but otherwise arbitrary function F(ρ, φ, z) of cylindrical coordinates, the iterated 
triple integral takes the form

z g z f z

z g z f z
F z d d dz

2 2 2

1 1 1

( ) ( , )

( ) ( , )
( , , )

φ

φ
ρ φ ρ ρ φ∫ ∫ ∫

The differential element of area for polar coordinates in the plane results by suppressing the z coordinate. 
It is

dA d d
r r ρ φ
ρ φ

∂ ∂= ×
∂ ∂
∂r ∂r

and the iterated form of the double integral is

F d d
2 2

1 1

( )

( )
( , )

ρ φ ρ

ρ φ ρ
ρ φ ρ ρ φ∫ ∫

The transformation equations relating spherical and rectangular Cartesian coordinates are

x = r sin θ cos φ, y = r sin θ sin φ, z = r cos θ

In this case the coordinate surfaces are spheres, cones, and planes. (See Figure 9.5.)
Following the same pattern as with cylindrical coordinates we discover that

dV = r2 sin θ dr d θ d φ

and the iterated triple integral of F(r, θ, φ) has the spherical representation
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r r

r r
F r r dr d d

2 2 2

1 1 1

( ) ( , )
2

( ) ( , )
( , , ) sin

θ φ φ θ

θ φ φ θ
θ φ θ θ φ∫ ∫ ∫

Of course, the order of these integrations may be adapted to the geometry.
The coordinate surfaces in spherical coordinates are spheres, cones, and planes. If r is held constant—say, 

r = a—then we obtain the differential element of surface area

dA = a2 sin θ dθ dφ

The first octant surface area of a sphere of radius a is

a d d a d a d a
/ 2 / 2 / 2 / 2

2 2 2 22
00 0 0 0

sin ( cos )
2

ππ π π π πθ θ φ θ φ φ= − = =∫ ∫ ∫ ∫
Thus, the surface area of the sphere is 4πa2.

SOLVED PROBLEMS

Double integrals

9.1. (a) Sketch the region ℜ in the xy plane bounded by y = x2, x = 2, y = 1. (b) Give a physical interpretation to 

2 2( ) .x y dx dy
ℜ

+∫∫  (c) Evaluate the double integral in (b).

(a) The required region ℜ is shown shaded in Figure 9.6.

(b) Since x2 + y2 is the square of the distance from any point (x, y) to (0, 0), we can consider the double inte-
gral as representing the polar moment of inertia (i.e., moment of intertia with respect to the origin) of the 
region ℜ (assuming unit density).

Figure 9.6 Figure 9.7

We can also consider the double integral as representing the mass of the region ℜ, assuming a density 
varying as x2 + y2.

(c) Method 1: The double integral can be expressed as the iterated integral

x
x x

x y x y x y

y
x y dy dx x y dy dx x y

2
2 2 22 2 2

2 2 2 2 2

1 1 1 1 1 1
( ) ( )

3= = = = = =

⎧ ⎫⎪ ⎪+ = + = +⎨ ⎬
⎪ ⎪⎩ ⎭∫ ∫ ∫ ∫ ∫

x

x
dx x x dx

62
4 2

1

1 1006

3 3 105=

⎛ ⎞
= + − − =⎜ ⎟

⎝ ⎠∫
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The integration with respect to y (keeping x constant) from y = 1 to y = x2 corresponds formally to sum-
ming in a vertical column (see Figure 9.6). The subsequent integration with respect to x from x = 1 to x = 2 
corresponds to addition of contributions from all such vertical columns between x = 1 and x = 2.

Method 2: The double integral can also be expressed as the iterated integral

x yy x y y x y y

x
x y dx dy x y dx dy xy dy

34 2 4 2 4 22 2 2 2 2

1 1 1
( ) ( )

3 == = = = =

⎧ ⎫+ = + = +⎨ ⎬
⎩ ⎭∫ ∫ ∫ ∫ ∫

x

x
x x dx

62
4 2

1

1 1006

3 3 105=

⎛ ⎞
= + − − =⎜ ⎟

⎝ ⎠∫
In this case the vertical column of region ℜ in Figure 9.6 is replaced by a horizontal column, as in Figure 

9.7. Then the integration with respect to x (keeping y constant) from x = y  to x = 2 corresponds to summing 
in this horizontal column. Subsequent integration with respect to y from y = 1 to y = 4 corresponds to addition 
of contributions for all such horizontal columns between y = 1 and y = 4.

9.2. Find the volume of the region bounded by the elliptic paraboloid z = 4 – x2 – 
1

4
y2 and the plane z = 0.

Because of the symmetry of the elliptic paraboloid, the result can be obtained by multiplying the first 
octant volume by 4.

Letting z = 0 yields 4x2 + y2 = 16. The limits of integration are determined from this equation. The required 
volume is

x
x y

x y dy dx y x y dx

2
2 2 432 2 4 2

2 2 2

0 0 0 0

1 1
4 4 4 4 16

4 4 3

−
− ⎛ ⎞⎛ ⎞− − = − − = Π⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠∫ ∫ ∫

Hint: Use trigonometric substitutions to complete the integrations.

9.3. The geometric model of a material body is a plane region R bounded by y = x2 and y = x22 −  on the 
interval 0 < x <  1, and with a density function ρ = xy. (a) Draw the graph of the region. (b) Find the mass 
of the body. (c) Find the coordinates of the center of mass.

(a) See Figure 9.8.

Figure 9.8

(b)

x
b f x

a f x x

y
M dy dx yx dy dx x dx

x x x
x x x dx

2
2

2

2 2
1

221 2 1

0 0

12 4 61
2 4

0 0

2

1 7
(2 )

2 2 8 12 24

ρ
−

− ⎡ ⎤
= = = ⎢ ⎥⎣ ⎦

⎡ ⎤
= − − = − − =⎢ ⎥⎣ ⎦

∫ ∫ ∫ ∫ ∫

∫
(c) The coordinates of the center of mass are defined to be

b f x b f x

a f x a f x
x x dy dx y y dy dx

M M

2 2

1 1

( ) ( )

( ) ( )

1 1
andρ ρ= =∫ ∫ ∫ ∫
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where
b f x

a f x
M dy dx

2

1

( )

( )
ρ= ∫ ∫

Thus,

x
x x

x x

x

x

y
M x x xy dy dx x dx x x x dx
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My yx dy dx

2
2

2 2

2
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1 1 1 17

3 10 14 3 10 14 105

13 2
4

120 15

−
−

−

⎡ ⎤
= = = − −⎢ ⎥⎣ ⎦
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= = − +

∫ ∫ ∫ ∫

∫ ∫
9.4. Find the volume of the region common to the intersecting cylinders x2 + y2 = a2 and x2 + z2 = a2.

Required volume = 8 times volume of region shown in Figure 9.9

( )

a x

a x

a

x y

a

x y

a

x

zdy dx

a x dy dx

a
a x dx

2 2

2 2

0 0

2 2

0 0

3
2 2

0

8

8

16
8

3

−

−

= =

= =

=

=

= = −

= − =

∫ ∫

∫ ∫

∫

z dy dx

As an aid in setting up this integral, note that z dy dx corresponds to the volume of a column such as shown 

darkly shaded in Figure 9.9. Keeping x constant and integrating with respect to y from y = 0 to y = a x2 2−
corresponds to adding the volumes of all such columns in a slab parallel to the yz plane, thus giving the volume 
of this slab. Finally, integrating with respect to x from x = 0 to x = a corresponds to adding the volumes of all 
such slabs in the region, thus giving the required volume.

9.5. Find the volume of the region bounded by z = x + y, z = 6, x = 0, y = 0, z = 0.

Figure 9.9
Figure 9.10

Required volume = volume of region shown in Figure 9.10

( )

x

x y

x

x y

x

x y dy dx

x y y dx

x dx

6 6

0 0

6
6 2

0 0

6 2

0

{6 ( )}

1
(6 )

2

1
6 36

2

−

= =

−

= =

=

= − +

= − −

= − =

∫ ∫

∫

∫
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In this case the volume of a typical column (shown darkly shaded) corresponds to {6 – (x + y)} dy dx. The 
limits of integration are then obtained by integrating over the region ℜ of Figure 9.10. Keeping x constant and 
integrating with respect to y from y = 0 to y = 6 – x (obtained from z = 6 and z = x + y) corresponds to summing 
all columns in a slab parallel to the yz plane. Finally, integrating with respect to x from x = 0 to x = 6 corre-
sponds to adding the volumes of all such slabs and gives the required volume.

Transformation of double integrals

9.6. Justify Equation (9), Page 225, for changing variables in a double integral.

In rectangular coordinates, the double integral of F(x, y) over the region ℜ (shaded in Figure 9.11) is 
F x y dx dy( ( , ) .

ℜ
∫∫  We can also evaluate this double integral by considering a grid formed by a family of u

and υ curvilinear coordinate curves constructed on the region ℜ, as shown in Figure 9.11.

Figure 9.11

Let P be any point with coordinates (x, y) or (u, υ), where x = f (u, υ) and y = g(u, υ). Then the vector r
from O to p is given by r = xi + yj = f (u, υ)i + g(u, υ)j. The tangent vectors to the coordinate curves u = c1 and 
υ = c2, where c1 and c2 are constants, are ∂r/∂ υ and ∂r/∂u, respectively. Then the area of region Δℜ of Figure 

9.11 is given approximately by 
r

u
u

r
.υ

υ
∂ ∂× Δ Δ
∂ ∂
∂r ∂r
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x y
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so that 
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∂ ∂ ∂× Δ Δ = Δ Δ
∂ ∂ ∂
∂r ∂r

The double integral is the limit of the sum

x y
F f u g u u

u

( , )
{ ( , ), ( , )}

( , )
υ υ υ

υ
∂ Δ Δ
∂∑

taken over the entire region ℜ. An investigation reveals that this limit is

x y
F f u g u du d

u

( , )
{ ( , ), ( , )}

( , )ℜ

υ υ υ
υ

∂=
∂∫ ∫
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where ℜ� is the region in the uυ plane into which the region ℜ is mapped under the transformation x = f (u, υ),
y = g(u, υ).

Another method of justifying this method of change of variables makes use of line integrals and Green’s 
theorem in the plane (see Problem 10.32).

9.7. If u = x2 – y2 and υ = 2xy, find ∂(u, υ) in terms of u and υ.

x y

x y

u u x yu
x y

y xx y
2 22 2( , )

4( )
2 2( , )

υ
υ υ

−∂ = = = +
∂

From the identity (x2 + y2)2 = (x2 – y2)2 + (2xy)2, we have

x y u x y u2 2 2 2 2 2 2 2 2( ) andυ υ+ = + + = +
Then, by Problem 6.43,

x y

u u x y x y u
2 2 2 2

( , ) 1 1 1

( , ) ( , ) / ( , ) 4( ) 4υ υ υ

∂ = = =
∂ ∂ ∂ + +

Another method: Solve the given equations for x and y in terms of u and υ and find the Jacobian directly.

9.8. Find the polar moment of inertia of the region in the xy plane bounded by x2 – y2 = 1, x2 – y2 = 9, xy = 2, xy = 
4, assuming unit density.

Under the transformation x2 – y2 = u, 2xy = υ, the required region ℜ in the xy plane, shaded in Figure 
9.12(a), is mapped into region ℜ� of the uυ plane, shaded in Figure 9.12(b). Then:

u

x y
x y dx dy x y du d

u

du d
u du d

u

2 2 2 2

9 82 2

1 42 2

( , )
Required polar moment of inertia ( ) ( )

( , )

1
8

44

ℜ

υ
ℜ

υ
υ

υυ υ
υ

′ℜ

= =
′

∂
= + = +

∂

= + = =
+

∫ ∫ ∫ ∫

∫ ∫ ∫ ∫

where we have used the results of Problem 9.7.

Figure 9.12

Note that the limits of integration for the region ℜ� can be constructed directly from the region ℜ in the 
xy plane without actually constructing the region ℜ�. In such case we use a grid, as in Problem 9.6. The coor-
dinates (u, υ) are curvilinear coordinates, in this case called hyperbolic coordinates.
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9.9 Evaluate x y dx dy2 2 ,
ℜ

+∫ ∫  where ℜ is the region in the xy plane bounded by x2 + y2 = 4 and x2 + y2 = 9.

The presence of x2 + y2 suggests the use of polar coordinates (ρ, φ), where x = ρ cos φ, y = ρ sin φ (see 
Problem 6.39). Under this transformation the region ℜ [Figure 9.13(a)] is mapped into the region ℜ� [Figure 
9.13(b)].

Figure 9.13

Since
x y( , )

,
( , )

ρ
ρ φ

∂ =
∂

 it follows that

x y
x y dx dy x y d d d d2 2 2 2 ( , )

( , )
ρ φ ρ ρ φ

ρ φ′ ′ℜ ℜ ℜ

∂+ = + = ⋅
∂∫ ∫ ∫ ∫ ∫ ∫

d d d d
3

2 3 2 232

20 2 0 0

19 38

3 3 3

π π π

φ ρ φ φ

ρ πρ ρ φ φ φ
= = = =

= = = =∫ ∫ ∫ ∫
We can also write the integration limits for ℜ� immediately on observing the region ℜ, since for fixed φ.

ρ varies from ρ = 2 to ρ = 3 within the sector shown dashed in Figure 9.13(a). An integration with respect to 
φ from φ = 0 to φ = 2π then gives the contribution from all sectors. Geometrically, ρ dρ dφ represents the area 
dA, as shown in Figure 9.13(a).

9.10. Find the area of the region in the xy plane bounded by the lemniscate ρ2 = a2 cos 2φ.

Here the curve is given directly in polar coordinates (ρ, φ). By assigning various to φ and finding correspond-
ing values of ρ, we obtain the graph shown in Figure 9.14. The required area (making use of symmetry) is

a
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d d d

a d a a

cos23
/ 4 cos2 / 4

0 0 0
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/ 4 / 42 2 2
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4 4
2
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π φ π

φ ρ φ
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π π
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ρρ ρ φ φ

φ φ φ
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=

==

=

= = =

∫ ∫ ∫

∫
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Figure 9.14 Figure 9.15

Triple integrals

9.11. (a) Sketch the three-dimensional region ℜ bounded by x + y + z = a (a > 0), x = 0, y = 0, z = 0. (b) Give a 
physical interpretation to

x y z dx dy dz2 2 2( )
ℜ

+ +∫∫∫
(c) Evaluate the triple integral in (b).

(a) The required region ℜ is shown in Figure 9.15.

(b) Since x2 + y2 + z2 is the square of the distance from any point (x, y, z) to (0, 0, 0), we can consider the 
triple integral as representing the polar moment of inertia (i.e., moment of inertia with respect to the ori-
gin) of the region ℜ (assuming unit density).

We can also consider the triple integral as representing the mass of the region if the density varies as 
x2 + y2 + z2.

(c) The triple integral can be expressed as the iterated integral
a a x a x y
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∫
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4 4 4
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( ) ( ) ( )

3 4 12
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2 6 20

⎧ ⎫− − −− +⎨ ⎬
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∫

∫
The integration with respect to z (keeping x and y constant) from z = 0 to z = a – x – y corresponds to 

summing the polar moments of inertia (or masses) corresponding to each cube in a vertical column. The sub-
sequent integration with respect to y from y = 0 to y = a – x (keeping x constant) corresponds to addition of 
contributions from all vertical columns contained in a slab parallel to the yz plane. Finally, integration with 
respect to x from x = 0 to x = a adds up contributions from all slabs parallel to the yz plane.

Although this integration has been accomplished in the order z, y, x, any other order is is clearly possible 
and the final answer should be the same.
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9.12. Find (a) the volume and (b) the centroid of the region ℜ bounded by the parabolic cylinder z = 4 – x2 and the 
planes x = 0, y = 6, z = 0, assuming the density to be a constant σ.

The region ℜ is shown in Figure 9.16.

Figure 9.16
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(b) Total mass 
x

x y z
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22 6 4
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32σ σ

−

= = =
= =∫ ∫ ∫  by (a), since σ is constant. Then
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x
22 6 4-x

x=0 y=0 z=0 256 /5 8

Total mass 32 5

σ
σ

= =
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Thus, the centroid has coordinates (3/4, 3, 8/5).
Note that the value for y  could have been predicted because of symmetry.

Transformation of triple integrals

9.13. Justify Equation (11), Page 225, for changing variables in a triple integral.

By analogy with Problem 9.6, we construct a grid of curvilinear coordinate surfaces which subdivide the 
region ℜ into subregions, a typical one of which is Δℜ (see Figure 9.17).
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Figure 9.17

The vector r from the origin O to point P is

r = xi + yj + zk = f (u, υ, w)i + g(u, υ, w)j + h(u, υ, w)k

assuming that the transformation equations are x = f (u, υ, w), y = g(u, υ, w), and z = h (u, υ, w).
Tangent vectors to the coordinate curves corresponding to the intersection of pairs of coordinate surfaces 

are given by ∂r/∂u, ∂r/∂υ, ∂r/∂w. Then the volume of the region Δℜ of Figure 9.17 is given approximately by

x y z
u w u w

u w u w

r r r ( , , )

( , , )
υ υ

υ υ
∂ ∂ ∂ ∂⋅ × Δ Δ Δ = Δ Δ Δ
∂ ∂ ∂ ∂

∂r∂r∂r

The triple integral of F(x, y, z) over the region is the limit of the sum

x y z
F f u w g u w h u w u w

u w

( , , )
{ ( , , ), ( , , ), ( , , )}

( , , )
υ υ υ υ

υ
∂ Δ Δ Δ
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An investigation reveals that this limit is

x y z
F f u w g u w h u w du d dw

u w

( , , )
{ ( , , ), ( , , ), ( , , )}

( , , )
υ υ υ υ

υ
∂
∂∫ ∫ ∫

where ℜ� is the region in the uυw space into which the region ℜ is mapped under the transformation.
Another method for justifying this change of variables in triple integrals makes use of Stokes’s theorem 

(see Problem 10.84).

9.14. What is the mass of a circular cylindrical body represented by the region 0 < ρ < c, 0 < φ <  2π, 0 < z <
h, and with the density function μ = z sin2 φ?

h c
M z d d dz

2 2

0 0 0
sin

π
φρ ρ φ π= =∫ ∫ ∫

9.15. Use spherical coordinates to calculate the volume of a sphere of radius a.
a

V a dr d d a
/ 2 / 2 2 3

0 0 0

4
8 sin

3

π π
θ θ φ π= =∫ ∫ ∫

9.16. Express F x y z dx dy dz( , , )
′ℜ

∫∫∫  in (a) cylindrical and (b) spherical coordinates.

(a) The transformation equations in cylindrical coordinates are x = ρ cos φ, y = ρ sin φ, z = z.

As in Problem 6.39, ∂(x, y, z)/∂(ρ, φ, z) = ρ. Then, by Problem 9.13, the triple integral becomes

G z d d dz( , , )ρ φ ρ ρ φ
′ℜ

∫∫∫
where ℜ� is the region in the ρ, φ, z space corresponding to ℜ and where G(ρ, φ, z ≡ F(ρ cos φ, ρ sin φ, z).
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(b) The transformation equations in spherical coordinates are x = r sin θ cos φ, y = r sin θ sin φ, z = r cos θ.

By Problem 6.101, ∂(x, y, z)/∂(r, θ, φ) = r2 sin θ. Then, by Problem 9.13, the triple integral becomes

H r r dr d d2( , , ) sinθ φ θ θ φ
′ℜ

∫∫∫
where ℜ� is the region in the r, θ, φ space corresponding to ℜ, and where H(r, θ, φ) ≡ F(r sin θ cos φ,
r sin θ sin φ, r cos θ).

9.17. Find the volume of the region above the xy plane bounded by the paraboloid z = x2 + y2 and the cylinder x2 + y2 = a2.

The volume is most easily found by using cylindrical coordinates. In these coordinates the equations for 
the paraboloid and cylinder are, respectively, z = ρ2 and ρ = a. Then

Required volume = 4 times volume shown in Figure 9.18
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∫ ∫

∫

Figure 9.18

The integration with respect to z (keeping ρ and φ constant) from z = 0 to z = ρ2 corresponds to summing 
the cubical volumes (indicated by dV) in a vertical column extending from the xy plane to the paraboloid. The 
subsequent integration with respect to ρ (keeping φ constant) from ρ = 0 to ρ = a corresponds to addition of 
volumes of all columns in the wedge-shaped region. Finally, integration with respect to φ corresponds to add-
ing volumes of all such wedge-shaped regions.

The integration can also be performed in other orders to yield the same result.
We can also set up the integral by determining the region ℜ� in ρ, φ, z space into which ℜ is mapped by 

the cylindrical coordinate transformation.

9.18. (a) Find the moment of inertia about the z axis of the region in Problem 9.17, assuming that the density is 
the constant σ. (b) Find the radius of gyration.

(a) The moment of inertia about the z axis is
a

z z
I

2

0

/2 2

0 0
4

π ρ

φ ρ
ρ

= =
= ∫ ∫ ∫ dz d dσρ ρ φ

a
a a

d d d
6 6

/2 /25

0 0 0
0

4 4
6 3

π π

φ ρ φ
ρ

ρ π σσ ρ ρ φ σ φ
= = =

=
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The result can be expressed in terms of the mass M of the region, since, by Problem 9.17,

M a4volume desnity so
2

π σ= × = z

a a M
I Ma

a

6 6
2

4

2 2
that

3 3 3

π σ π
π

= = ⋅ =

Note that in setting up the integral for Iz we can think of σ ρ dz dρ dφ dz dρ dφ as being the mass of the 
cubical volume element, ρ2σ ρ dz dρ dφ as the moment of inertia of this mass with respect to the z axis, and 

2ρ
′ℜ

∫∫∫ dz d dσρ ρ φ  as the total moment of inertia about the z axis. The limits of integration are determined 

as in Problem 9.17.

(b) The radius of gyration is the value K such that MK2 = 
2

3
Ma2; i.e., K2 = 

2

3
a2 or K = a 2 / 3.

The physical significance of K is that if all the mass M were concentrated in a thin cylindrical shell of 
radius K, then the moment of inertia of this shell about the axis of the cylinder would be Iz.

9.19. (a) Find the volume of the region bounded above by the sphere x2 + y2 + z2 = a2 and below by the cone z2

sin2 α = (x2 + y2) cos2 α, where α is a constant such that 0 < α < π. (b) From the result in (a), find the 
volume of a sphere of radius a.

In spherical coordinates the equation of the sphere is r = a and that of the cone is θ = α. This can be seen 
directly or by using the transformation equations x = r sin θ cos φ, y = r sin θ sin φ, z = r cos θ. For example, 
z2 sin2 α = (x2 + y2) cos 2 α becomes, on using these equations, r2 cos2 θ sin2 α = (r2 sin2 θ cos2 φ + r2 sin2 θ
sin2 φ) cos2 α, i.e., r2 cos2 θ sin2 α = r2 sin2 θ cos2 α, from which tan θ = ± tan α and so θ = α or θ = π – α. It 
is sufficient to consider one of these—say, θ = α.

Figure 9.19

(a) Required volume = 4 times volume (shaded) in Figure 9.19
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The integration with respect to r (keeping θ and φ constant) from r = 0 to r = a corresponds to summing 
the volumes of all cubical elements (such as indicated by dV) in a column extending from r = 0 to r = a. The 
subsequent integration with respect to θ (keeping φ constant) from θ = 0 to θ = π/4 corresponds to summing 
the volumes of all columns in the wedge-shaped region. Finally, integration with respect to φ corresponds to 
adding volumes of all such wedge-shaped regions.

(b) Letting α = π, the volume of the sphere thus obtained is

a
a

3
32 4

(1 cos )
3 3

π π π− =

9.20. (a) Find the centroid of the region in Problem 9.19. (b) Use the result in (a) to find the centroid of a 
hemisphere.

(a) The centroid ( x , y , z ) is, due to symmetry, given by x  = y  = 0 and

z dVxy
z
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Total mass
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σ
= = ∫ ∫ ∫
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Since z = r cos θ and σ is constant, the numerator is
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The denominator, obtained by multiplying the result of Problem 9.19(a) by σ, is 
2

3
πσa3 (1 – cos α).

Then

a
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1
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(b) Letting α = π/2, z  = 
3

8
a.

Miscellaneous problems

9.21. Prove that (a) 
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(b) This follows at once on formally interchanging x and y in (a) to obtain 

x y x y
dx dy dx dy

x y x y

1 1

3 30 0

1
,

2( ) ( )ℜ

⎧ ⎫− − = −⎨ ⎬+ +⎩ ⎭∫∫ ∫ ∫  and then multiplying both sides by –1.

This example shows that interchange in order of integration may not always produce equal results. A suf-
ficient condition under which the order may be interchanged is that the double integral over the corresponding 

region exists. In this case 
x y

dx dy
x y 3

,
( )ℜ

−
+∫∫  where ℜ is the region 0 < x <  1, 0 < y <  1, fails to exist be-

cause of the discontinuity of the integrand at the origin. The integral is actually an improper double integral 
(see Chapter 12).

9.22. Prove that F u du dt x u F u du
t xx

( ) ( ) ( )
0 00 ∫ ∫∫ { } = −

Let I x F u du dt J x x u F u du
tx z

( ) ( ) , ( ) ( ) ( )= { } = −∫∫ 00 0∫∫

∫ ∫′ = ′ =

.

( ) ( ) , ( ) ( )

Then

I x F u du J x F u du
z z

0 0

using Leibniz’s rule, Page 198. Thus, I�(x) = J�(x), and so I(x) = J(x) = c, where c is a constant. Since I(0) = 
J(0) = 0, c = 0, and so I(x) = J(x).

The result is sometimes written in the form
x x x

F x dx x u F u du2

0 0 0
( ) ( ) ( )= −∫ ∫ ∫

The result can be generalized to give (see Problem 9.58)

x x x xn nF x dx x u F u du
n

1

0 0 0 0

1
( ) ( ) ( )

( 1)!
−= −

−∫ ∫ ∫ ∫LL

SUPPLEMENTARY PROBLEMS

Double integrals

9.23. (a) Sketch the region ℜ in the xy plane bounded by y2 = 2x and y = x. (b) Find the area of ℜ. (c) Find the 
polar moment of inertia of ℜ, assuming constant density σ.

Ans. (b) 
2

3
 (c) 48σ/35 = 72M/35, where M is the mass of ℜ

9.24. Find the centroid of the region in problem 9.23.

Ans. x y
4

, 1
5

= =

9.25. Given 
y

y x
x y dx dy

3 4

0 1
( )

−

= =
+∫ ∫ , (a) sketch the region and give a possible physical interpretation of the double 

integral, (b) interchange the order of integration, and (c) evaluate the double integral.

Ans. (b) 
x

x y
x y dy dx

22 4

1 1
( )

−

= =
+∫ ∫  (c) 241/60

9.26. Show that 
x

x y x

2

1= =∫ ∫ sin
x

y2

π
x y x

dx
4 2

2= =
+ ∫ ∫ sin

x

y2

π
dy dx

3

4( 2)
.

π
π

+=

9.27. Find the volume of the tetrahedron bounded by x/a + y/b + z/c = 1 and the coordinate planes.

Ans. abc/6

9.28. Find the volume of the region bounded by z = x3 + y2, z = 0, x = –a, x = –a, y = –a, y = a.

Ans. 8a4/3



CHAPTER 9  Multiple Integrals240

9.29. Find (a) the moment of inertia about the z axis and (b) the centroid of the region in Problem 9.28, assuming 
a constant density σ.

Ans. (a) a Ma M6 2112 14
, where mass

45 15
σ = =  (b) x y z a27

0,
15

= = =

Transformation of double integrals

9.30. Evaluate x y dx dy2 2 ,
ℜ

+∫∫  where ℜ is the region x2 + y2 < a2.

Ans.
2

3
πa3

9.31. If ℜ is the region of Problem 9.30, evaluate x ye dx dy
2 2( ) .− +

ℜ
∫∫

Ans. ae
2

(l )π −−

9.32. By using the transformation x + y = u, y = uυ, show that 
x y x y

x y

e
e dy dx

1 1 /( )

0 0

1

2

− +

= =

−=∫ ∫ .

9.33. Find the area of the region bounded by xy = 4, xy = 8, xy3 = 5, xy3 = 15. (Hint: Let xy = u, xy3 = υ.)

Ans. 2 ln 3

9.34. Show that the volume generated by revolving the region in the first quadrant bounded by the parabolas y2 = x,
y2 = 8x, x2 = y, x2 = 8y about the x axis is 279π/2. (Hint: Let y2 = ux, x2 = υy.)

9.35. Find the area of the region in the first quadrant bounded by y = x3, y = 4x3, x = y3, x = 4y3.

Ans.
1

8

9.36. Let ℜ be the region bounded by x + y = 1, x = 0, y = 0. Show that 
x y

dx dy
x y

sin1
cos .

2ℜ

⎛ ⎞− =⎜ ⎟+⎝ ⎠∫∫  (Hint: Let 
x – y = u, x + y = υ.)

Triple integrals

9.37. (a) Evaluate
x y z x y

xyz dz dy dx
2 2

1 1 2

0 0
.

= = = +∫ ∫ ∫ (b) Give a physical interpretation to the integral in (a).

Ans. (a) 
3

8

9.38. Find (a) the volume and (b) the centroid of the region in the first octant bounded by x/a + y/b + z/c = 1, 
where a, b, c are positive.

Ans. (a) abc/6 (b) x  = a/4, y  = b/4, z  = c/4

9.39. Find (a) the moment of inertia and (b) the radius of gyration about the z axis of the region in Problem 9.38.

Ans. (a) M(a2 + b2)/10 (b) a b( 2 + 2)/10

9.40. Find the mass of the region corresponding to x2 + y2 + z2 <  4, x ε 0, y ε 0, z ε 0, if the density is equal to 
xyz.

Ans. 4/3

9.41. Find the volume of the region bounded by z = x2 + y2 and z = 2x.

Ans. π/2
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Transformation of triple integrals

9.42. Find the volume of the region bounded by z = 4 – x2 – y2 and the xy plane.

Ans. 8π

9.43. Find the centroid of the region in Problem 9.42, assuming constant density σ.

Ans. x y z
4

0,
3

= = =

9.44. (a) Evaluate x y z dx dy dz2 2 2 ,
ℜ

+ +∫∫∫ ∫  where ℜ is the region bounded by the plane z = 3 and the cone 

z = z x y2 2 .= +  (b) Give a physical interpretation of the integral in (a). (Hint: Perform the integration in 

cylindrical coordinates in the order ρ, z, φ.)

Ans. 27π(2 2  – 1)/2

9.45. Show that the volume of the region bonded by the cone z x y2 2= +  and the paraboloid z = x2 + y2 is π/6.

9.46. Find the moment of inertia of a right circular cylinder of radius a and height b, about its axis if the density is 
proportional to the distance from the axis.

Ans.
3

5
Ma2

9.47. (a) Evaluate 
dx dy dz

x y z2 2 2 3 2
,

( )ℜ + +∫∫∫  where ℜ is the region bounded by the spheres x2 + y2 + z2 = a2 and 

x2 + y2 + z2 = b2 where a > b > 0. (b) Give a physical interpretation of the integral in (a).

Ans. (a) 4π ln(a/b)

9.48. (a) Find the volume of the region bounded above by the sphere r = 2a cos θ and below by the cone φ = α,
where 0 < α < π/2. (b) Discuss the case α = + π/2.

Ans.
4

3
πa3(1 – cos4 α)

9.49. Find the centroid of a hemispherical shell having outer radius a and inner radius b if the density (a) is 
constant and (b) varies as the square of the distance from the base. Discuss the case a = b.

Ans. Taking the z axis as the axis of symmetry: (a) x  = y  = 0, z  = 
3

8
(a4 – b4)/(a3 – b3)

(b) x  = y  = 0, z  = 
5

8
(a6 – b6)/(a5 – b5)

Miscellaneous problems

9.50. Find the mass of a right circular cylinder of radius a and height b if the density varies as the square of the 
distance from a point on the circumference of the base.

Ans.
1

6
πa2 bk(9a2 + 2b2), where k = constant of proportionality

9.51. Find (a) the volume and (b) the centroid of the region bounded above by the sphere x2 + y2 + z2 = a2 and 
below by the plane z = b where a > b > 0, assuming constant density.

Ans. (a) 
1

3
π(2a3 – 3a2b + b3) (b) x  = y  = 0, z  = 

3

4
(a + b)2/(2a + b)

9.52. A sphere of radius a has a cylindrical hole of radius b bored from it, the axis of the cylinder coinciding with 

a diameter of the sphere. Show that the volume of the sphere which remains is 
4

3
π[a3 – (a2 – b2)3/2].
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9.53. A simple closed curve in a plane is revolved about an axis in the plane which does not intersect the curve. 
Prove that the volume generated is equal to the area bounded by the curve multiplied by the distance traveled 
by the centroid of the area (Pappus’s theorem).

9.54. Use Problem 9.53 to find the volume generated by revolving the circle x2 + (y – b)2 = a2, b > a > 0 about the 
x axis.

Ans. 2π2 a2b

9.55. Find the volume of the region bounded by the hyperbolic cylinders xy = 1, xy = 9, xz = 4, xz = 36, yz = 25, 
yz = 49. (Hint: Let xy = u, xz = υ, yz = w.)

Ans. 64

9.56 Evaluate x a y b z c dx dy dz2 2 2 2 2 21 ( / / / )
ℜ

− + +∫∫∫  where ℜ is the region interior to the ellipsoid x2/a2 + 

y2/b2 + z2 /c2 = 1. (Hint: Let x = au, y = bυ, z = cw. Then use spherical coordinates.)

Ans.
1
4

π2 abc

9.57. If ℜ is the region x2 + xy + y2 <  1, prove that x xy ye dx dy e
e

2 2( ) 2
( 1).

3

π− + +

ℜ

= −∫∫  (Hint: Let x = u cos α – υ

sin α, y = u sin α + υ cos α and choose α so as to eliminate the xy term in the integrand. Then let u = aρ cos 
φ, υ = bρ sin φ where a and b are appropriately chosen.)

9.58. Prove that 
x x x xn nF x dx x u F u du n

n
1

0 0 0 0

1
( ) ( ) ( ) for 1,2,3,... (see problem 9.22).

( 1)!
−= − =

−∫ ∫ ∫ ∫L. . . 1, 2, 3, . . . (see problem 9.22).
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CHAPTER 10

Line Integrals, 
Surface Integrals, and 

Integral Theorems

Construction of mathematical models of physical phenomena requires functional domains of greater com-
plexity than the previously employed line segments and plane regions. This section makes progress in meet-
ing that need by enriching integral theory with the introduction of segments of curves and portions of surfaces 
as domains. Thus, single integrals as functions defined on curve segments take on new meaning and are then 
called line integrals. Stokes’s theorem exhibits a striking relation between the line integral of a function on 
a closed curve and the double integral of the surface portion that is enclosed. The divergence theorem relates 
the triple integral of a function on a three-dimensional region of space to its double integral on the bounding 
surface. The elegant language of vectors best describes these concepts; therefore, it would be useful to reread 
the introduction to Chapter 7, where the importance of vectors is emphasized. (The integral theorems also 
are expressed in coordinate form.)

Line Integrals

The objective of this section is to geometrically view the domain of a vector or scalar function as a segment 
of a curve. Since the curve is defined on an interval of real numbers, it is possible to refer the function to this 
primitive domain, but to do so would suppress much geometric insight.

A curve C in three-dimensional space may be represented by parametric equations:

 x = f1(t), y = f2(t), z = f3(t), a < t < b (1) 

or in vector notation:

 x = r(t) (2)

where

r(t) = xi + yj + zk

(see Figure 10.1).
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Figure 10.1

For this discussion it is assumed that r is continuously differentiable. While (as we are doing) it is con-
venient to refer the Euclidean space to a rectangular Cartesian coordinate system, it is not necessary. (For 
example, cylindrical and spherical coordinates sometimes are more useful.) In fact, one of the objectives of 
the vector language is to free us from any particular frame of reference. Then, a vector A[x(t), y(t, z(t)] or a 
scalar Θ is pictured on the domain C, which, according to the parametric representation, is referred to the 
real number interval a < t < b.

The integral

C∫ A · dr (3) 

of a vector field A defined on a curve segment C is called a line integral. The integrand has the representa-
tion

A1 dx + A2 dy + A3 dz

obtained by expanding the dot product.
The scalar and vector integrals

n

k k k kC n
k

t dt t
1

( ) lim ( , , )ξ η ζ
→∞ =

Θ = Θ Δ∑∫  (4)

n

k k kC n
k

t dt
1

( ) lim ( , , )ξ η ζ
→∞ =

= ∑∫ A AA A ktΔ  (5)

can be interpreted as line integrals; however, they do not play a major role [except for the fact that the scalar 
integral (3) takes the form (4)].

The following three basic ways are used to evaluate the line integral (3):

1. The parametric equations are used to express the integrand through the parameter t. Then

t

C t

d
dt

dt1

r2⋅ = ⋅∫ ∫A dr Adr A
dr

2. If the curve C is a plane curve (for example, in the xy plane) and has one of the representations y = f (x)
or x = g(y), then the two integrals that arise are evaluated with respect to x or y, whichever is more 
convenient.

3. If the integrand is a perfect differential, then it may be evaluated through knowledge of the endpoints 
(that is, without reference to any particular joining curve). (See the section on independence of path on 
Page 246; also see Page 251.)

These techniques are further illustrated for plane curves in the next section and for three-space in the prob-
lems.
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Evaluation of Line Integrals for Plane Curves

If the equation of a curve C in the plane z = 0 is given as y = f (x), the line integral (2) is evaluated by placing 
y = f (x), dy = f´(x) dx in the integrand to obtain the definite integral

a

a
P x f x dx Q x f x f x dx

2

1

{ , ( )} { , ( )} ( )′+∫  (6)

which is then evaluated in the usual manner.
Similarly, if C is given as x = g,(y), then dx = g� (y) dy and the line integral becomes

b

b
P g y y g y dy Q g y y dy

2

1

{ ( ), } ( ) { ( ), }′ +∫  (7)

If C is given in parametric form x = φ(t), y = ψ(t), the line integral becomes
t

t
P t t t dt Q t t t dt

2

1

{ ( ), ( )} ( ) { ( ), ( )}, ( )φ ψ φ φ ψ ψ′ ′+∫  (8)

where t1 and t2 denote the values of t corresponding to points A and B, respectively.
Combinations of these methods may be used in the evaluation. If the integrand A · dr is a perfect differ-

ential dΘ, then
c d

C a b
d d c d a b

( , )

( , )
r ( , ) ( , )⋅ = Θ = Θ − Θ∫ ∫A dr  (9)

Similar methods are used for evaluating line integrals along space curves.

Properties of Line Integrals Expressed for Plane Curves

Line integrals have properties which are analogous to those of ordinary integrals. For example:

1.
C C C

P x y dx Q x y dy P x y dx Q x y dy( , ) ( , ) ( , ) ( , )+ = +∫ ∫ ∫
2.

a b a b

a b a b
P dx Q dy P dx q dy

2 2 1 1

1 1 2 2

( , ) ( , )

( , ) ( , )
+ = − +∫ ∫

Thus, reversal of the path of integration changes the sign of the line integral.

3.
a b

a b

2 2

1 1

( , )

( , )∫
a b a b

a b a b
P dx Q dy P dx Q dy P dx Q dy

3 3 2 2

1 1 3 3

( , ) ( , )

( , ) ( , )
+ = + + +∫ ∫

where (a3, b3) is another point on C.
Similar properties hold for line integrals in space.

Simple Closed Curves, Simply and Multiply Connected Regions

A simple closed curve is a closed curve which does not intersect itself anywhere. Mathematically, a curve in the 
xy plane is defined by the parametric equations x = φ(t), y = ψ(t) where φ and ψ are single-valued and continuous 
in an interval t1 < t < t2. If φ(t1) = φ(t2) and ψ(t1) = ψ(t2), the curve is said to be closed. If φ(u) = φ(υ) and ψ(u) = 
ψ(υ) only when u = υ (except in the special case where u = t1 and υ = t2), the curve is closed and does not intersect 
itself, and so is a simple closed curve. We shall also as-
sume, unless otherwise stated, that φ and ψ are piecewise 
differentiable in t1 < t < t2.

If a plane region has the property that any closed 
curve in it can be continuously shrunk to a point with-
out leaving the region, then the region is called simple
connected; otherwise, it is called multiply connected
(see Figure 10.2 and Page 127).

Multiple connectedSimple closed curve

Positive 
orientation

Figure 10.2
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As the parameter t varies from t1 to t2, the plane curve is described in a certain sense or direction. For 
curves in the xy plane, we arbitrarily describe this direction as positive or negative according as a person 
traversing the curve in this direction with his head pointing in the positive z direction has the region enclosed 
by the curve always toward his left or right, respectively. If we look down upon a simple closed curve in the 
xy plane, this amounts to saying that traversal of the curve in the counterclockwise direction is taken as 
positive, while traversal in the clockwise direction is taken as negative.

Green’s Theorem in the Plane

This theorem is needed to prove Stokes’s theorem (Page 251). Then it becomes a special case of that 
theorem.

Let P, Q, ∂P/∂y, ∂Q/∂x be single-valued and continuous in a simple connected region ℜ bounded by a 
simple closed curve C. Then

C

Q P
P dx Q dy dx dy

x yℜ

⎛ ⎞∂ ∂+ = −⎜ ⎟∂ ∂⎝ ⎠∫ ∫∫ÑC∫�  (10)

where
C∫�  is used to emphasize that C is closed and that it is described in the positive direction.

This theorem is also true for regions bounded by two or more closed curves (i.e., multiply connected re-
gions). See Problem 10.10.

Conditions for a Line Integral to Be Independent of the Path

The line integral of a vector field A is independent of path if its value is the same regardless of the (allowable) 
path from initial to terminal point. (Thus, the integral is evaluated from knowledge of the coordinates of these 
two points.)

For example, the integral of the vector field A = yi + xj is independent of path since
x y

C C x y
d y dx x dy d xy x y x y

2 2

1 1
2 2 1 1( )⋅ = + = = −∫ ∫ ∫A r

Thus, the value of the integral is obtained without reference to the curve joining P1 and P2.
This notion of the independence of path of line integrals of certain vector fields, important to theory and 

application, is characterized by the following three theorems.

Theorem 1 A necessary and sufficient condition that 
C

d⋅∫ A r  be independent of path is that there exists 
a scalar function Θ such that A = ∇Θ.

Theorem 2 A necessary and sufficient condition that the line integral 
C

d⋅∫ A r  be independent of path is 
that ∇ × A = 0.

Theorem 3 If ∇ × A = 0, then the line integral of A over an allowable closed path is 0; i.e., 
C∫� A · dr = 0.

If C is a plane curve, then Theorem 3 follows immediately from Green’s theorem, since in the plane case 
∇ × A reduces to

A A

y x
1 2∂ ∂

=
∂ ∂

EXAMPLE. Newton’s second law for forces is 
d m

dt

( ) ,= v
F  where m is the mass of an object and v is its 

velocity.

When F has the representation F = –∇Θ, it is said to be conservative. The previous theorems tell us that the 
integrals of conservative fields of force are independent of path. Furthermore, showing that ∇ × F = 0 is the 
preferred way of showing that F is conservative, since it involves differentiation, while demonstrating that 
Θ exists such that F = –∇Θ requires integration.
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Surface Integrals

Our previous double integrals have been related to a very special surface, the plane. Now we consider other 
surfaces. yet, the approach is quite similar. Surfaces can be viewed intrinsically, i.e., as non-Euclidean spaces: 
however, we do not do that. Rather, the surface is thought of as embedded in a three-dimensional Euclidean 
space and expressed through a two-parameter vector representation:

x = r(υ1, υ2)

While the purpose of the vector representation is to be general (that is, interpretable through any allow-
able three-space coordinate system), it is convenient to initially think in terms of rectangular Cartesian co-
ordinates: therefore, assume

r = xi + yj + zk

and that there is a parametric representation

 x = r(υ1, υ2), y = r(υ1, υ2), z = r(υ1, υ2) (11)

The functions are assumed to be continuously differentiable.
The parameter curves υ2 = const and υ1 const establish a coordinate system on the surface (just as 

y = const and x = const form such a system in the plane). The key to establishing the surface integral of a 
function is the differential element of surface area. (For the plane, that element is dA = dx, dy.)

At any point P of the surface

d d d1 2
1 2

υ υ
υ υ

∂ ∂= +
∂ ∂

r r
x

spans the tangent plane to the surface. In particular, the directions of the coordinate curves υ2 = const and υ1

= const are designated by d d d d1 1 2 2
1 2

,andυ υ
υ υ

∂ ∂=
∂ ∂

r r
x x  respectively (see Figure 10.3).

The cross product

d x d d d1 2 1 2
1 2

υ υ
υ υ

∂ ∂= ×
∂ ∂

r r
x x

is normal to the tangent plane at P, and its magnitude 
1 2υ υ

∂ ∂×
∂ ∂

r r
 is the area of a differential coordinate 

parallelogram.

Figure 10.3

(This is the usual geometric interpreation of the cross product abstracted to the differential level.) This 
strongly suggests the following definition:

Definition The differential element of surface area is

dS d d1 2
1 2

υ υ
υ υ

∂ ∂= ×
∂ ∂

r r
 (12)

For a function Θ(υ1, υ2) that is everywhere integrable on S,
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S S

dS d d1 2 1 2
1 2

( , )υ υ υ υ
υ υ

∂ ∂Θ = Θ ×
∂ ∂∫∫ ∫∫

r r
 (13)

is the surface integral of the function Θ.
In general, the surface integral must be referred to three-space coordinates to be evaluated. If the surface 

has the Cartesian representation z = f (x, y) and the identifications

υ1 = x, υ2 = y, z = f (υ, υ2)

are made, then

z z

x y1

+
υ υ

∂ ∂ ∂ ∂= = +
∂ ∂ ∂ ∂2

r r
i k, j k

and

z z

x x2 2υ υ
∂ ∂ ∂ ∂× = − −

∂ ∂ ∂ ∂
r r

k j i

Therefore,

z z

x y

1/ 222

1 2

1
υ υ

⎡ ⎤⎛ ⎞∂ ∂ ∂ ∂⎛ ⎞× = + +⎢ ⎥⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦

r r

Thus, the surface integral of Θ has the special representation

S

z z
S x y z dx dy

x y

1/ 222

( , , ) 1
⎡ ⎤⎛ ⎞∂ ∂⎛ ⎞= Θ + +⎢ ⎥⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦

∫∫  (14)

If the surface is given in the implicit form F(x, y, z) = 0, then the gradient may be employed to obtain 
another representation. To establish it, recall that, at any surface point P, the gradient ∇F is perpendicular 
(normal) to the tangent plane (and, hence, to S).

Therefore, the following equality of the unit vectors holds (up to sign):

F

x yF 1 2| | υ υ
∇ ⎛ ⎞∂ ∂ ∂ ∂= ± × ×⎜ ⎟∂ ∂ ∂ ∂∇ ⎝ ⎠

r r r r
 (15)

[A conclusion of the theory of implicit functions is that from F(x, y, z) = 0 (and under appropriate condi-
tions) there can be produced an explicit representation z = f (x, y) of a portion of the surface. This is an exist-
ence statement. The theorem does not say that this representation can be explicitly produced.] With this fact 
in hand, we again let υ1 = x, υ2 = y, z = f (υ1, υ2). Then

∇F = Fxi + fyj + Fzk

Taking the dot product of both sides of Equation (15), K yields

zF

F

1 2

1

| |

υ υ

= ±
∇ ∂ ∂×

∂ ∂
r r

The ambiguity of sign can be eliminated by taking the absolute value of both sides of the equation. 
Then

x y z

z z

F F FF

F F

2 2 2 1/ 2

1 2

[( ) ( ) ( ) ]| |

| | | |υ υ
+ +∂ ∂ ∇× = =

∂ ∂
r r

and the surface integral of Θ takes the form

x y z

zS

F F F
dx dy

F

2 2 2 1/ 2[( ) ( ) ( ) ]

| |

+ +
∫∫  (16)

The formulas (14) and (16) also can be introduced in the following nonvectorial manner.
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Let S be a two-sided surface having projection ℜ on the xy plane, as in Figure 10.4. Assume that an equa-
tion for S is z = f (x, y), where f is single-valued and continuous for all x and y in ℜ. Divide ℜ into n subre-
gions of area ΔAp, p = 1, 2, . . . , n, and erect a vertical column on each of these subregions to intersect S in 
an area ΔSp.

Figure 10.4

Let φ(x, y, z) be single-valued and continuous at all points of S. Form the sum
n

p p p p
p

S
1

( , , )φ ξ η ζ
=

Δ∑  (17)

where (ξp, ηp, ζp) is some point of ΔSp. If the limit of this sum as n → � in such a way that each ΔSp → 0 
exists, the resulting limit is called the surface integral of φ(x, y, z) over S and is designated by

S

x y z dS( , , )φ∫∫  (18)

Since ΔSp = ⎜sec γp⎜ ΔAp approximately, where γp is the angle between the normal line to S and the positive 
z axis, the limit of the sum (17) can be written

x y z dA( , , ) | sec |
ℜ

φ γ∫∫  (19)

The quantity ⎜sec γ ⎜ is given by

p

z z

x y

22
1

| sec | 1
| |

γ ⎛ ⎞∂ ∂⎛ ⎞= = + + ⎜ ⎟⎜ ⎟⋅ ∂ ∂⎝ ⎠ ⎝ ⎠n k
 (20)

Then, assuming that z = f (x, y) has continuous (or sectionally continuous) derivatives in ℜ, (19) can be writ-
ten in rectangular form as

z z
x y z dx dy

x y

22

( , , ) 1
ℜ

φ ⎛ ⎞∂ ∂⎛ ⎞+ + ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠∫∫  (21)

In case the equation for S is given as F(x, y, z) = 0, (21) can also be written

x y z

z

F F F
x y z dx dy

F

2 2 2( ) ( ) ( )
( , , )

| |ℜ

φ
+ +

∫∫  (22)

The results (21) or (22) can be used to evaluate (18).
In the preceding we have assumed that S is such that any line parallel to the z axis intersects S in only one 

point. In case S is not of this type, we can usually subdivide S into surfaces S1, S2, . . . which are of this type. 
Then the surface integral over S is defined as the sum of the surface integrals over S1, S2, . . . .
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The results stated hold when S is projected onto a region ℜ on the xy plane. In some cases it is better 
to project S onto the yz or xz planes. For such cases, (18) can be evaluated by appropriately modifying (21) 
and (22).

The Divergence Theorem

The divergence theorem establishes equality between a triple integral (volume integral) of a function over a 
region of three-dimensional space and the double integral of the function over the surface that bounds that 
region. This relation is very important in the expression of physical theory. (See Figure 10.5.)

Divergence (or Gauss) Theorem
Let A be a vector field that is continuously differentiable on a closed-space region V bounded by a smooth 
surface S. Then

V S

dV dS∇ ⋅ = ⋅∫∫∫ ∫∫A A n  (23)

where n is an outwardly drawn normal.
If n is expressed through direction cosines, i.e., n = i cos α + j cos β + k cos γ, then Equation (23) may 

be written

Figure 10.5

S

AA A
dV

x y z
31 2 ∂∂ ∂⎛ ⎞+ + =⎜ ⎟∂ ∂ ∂⎝ ⎠∫∫∫ ∫∫ (A1 cos α + A2 cos β + A3 cos γ) dS (24)

The rectangular Cartesian component form of Equation (23) is

V S

AA A
dV A dy dz A dz dx A dx dy

x y z
31 2

1 2 3( )
∂∂ ∂⎛ ⎞+ + = + +⎜ ⎟∂ ∂ ∂⎝ ⎠∫∫∫ ∫∫  (25)

EXAMPLE. If B is the magnetic field vector, then one of Maxwell’s equations of electromagnetic theory is 
∇ · B = 0. When this equation is substituted into the left member of Equation (23), the right member tells us 
that the magnetic flux through a closed surface containing a magnetic field is zero. A simple interpretation of 
this fact results by thinking of a magnet enclosed in a ball. All magnetic lines of force that flow out of the ball 
must return (so that the total flux is zero). Thus, the lines of force flow from one pole to the other, and there is 
no dispersion.
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Stokes’s Theorem

Stokes’s theorem establishes the equality of the double integral of a vector field over a portion of a surface and 
the line integral of the field over a simple closed curve bounding the surface portion. (See Figure 10.6.)

Suppose a closed curve C bounds a smooth surface portion S. If the component functions of x = r(υ1, υ2)
have continuous mixed partial derivatives, then for a vector field A with continuous partial derivatives on S

C
S

d dS⋅ = ⋅∇ ×∫ ∫∫A r n AÑC∫�  (26)

where n = cos αi + cos βj + cos γk with α, β, and γ represeting the angles made by the outward normal n
and i, j, and k, respectively.

Then the component form of Equation (26) is

C
S

A AA A A A
A dx A dy A dz dS

y z z x x y
3 32 1 2 1

1 2 3( ) cos cos cosα β γ
⎡ ⎤∂ ∂∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞⎛ ⎞+ + = − + − + −⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠ ⎝ ⎠⎣ ⎦

∫ ∫∫ÑC∫�  (27)

If ∇ × A = 0, Stokes’s theorem tells us that 
C

d 0.⋅ =∫ A rÑC∫�  This is Theorem 3 on Page 233.

Figure 10.6

SOLVED PROBLEMS

Line integrals

10.1. Evaluate x y dx y x dy
(1, 2) 2 2

(0, 1)
( ) ( )− + +∫  along (a) a straight line from (0, 1) to (1, 2), (b) a straight lines 

from (0, 1) to (1, 1) and then from (1, 1) to (1, 2), and (c) the parabola x = t, y = t2 + 1.

(a) An equation for the line joining (0, 1) and (1, 2) in the xy plane is y = x + 1. Then dy = dx and the line 
integral equals

x
x x dx x x dx x x dx

1 12 2 2

0 0
{ ( 1)} {( 1) } (2 2 ) 5 / 3

=
− + + + + = + =∫ ∫

(b) Along the straight line from (0, 1) to (1, 1), y = 1, dy = 0 and the line integral equals

x
x dx x x dx

1 12 2

0 0
( 1) (1 )(0) ( 1) 2 / 3

=
− + + = − = −∫ ∫

Along the straight line from (1, 1) to (1, 2), x = 1, dx = 0 and the line integral equals

y t
y y dy y dy

2 22 2

1
(1 )(0) ( 1) ( 1) 10 / 3

=
− + + = + =∫ ∫

Then the required value = –2/3 + 10/3 = 8.3.
(c) Since t = 0 at (0, 1) and t = 1 at (1, 2), the line integral equals

t
t t dt t t t dt t t t t dt

1 12 2 2 2 5 2 2

0 0
{ ( 1) {( 1) }2 (2 4 2 2 1) 2

=
− + + + + = + + + − =∫ ∫
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10.2. If A = (3x2 – 6yz)i + (2y + 3xz)j + (1 – 4xyz2)k, evaluate 
C

d from (0,1,1) to (1,1,1)⋅∫ A r  along the 
following paths C:

(a) x = t, y = t2, z = t3

(b) The straight lines from (0, 0, 0) to (0, 0, 1), then to (0, 1, 1), and then to (1, 1, 1)

(c) The straight line joining (0, 0, 0) and (1, 1, 1)

C C

C

d x yz y xz xyz dx dy dz

x yz dx y xz dy xyz dz

2 2

2 2

{(3 6 ) (2 3 )} (1 4 ) } ( )

{(3 6 ) (2 3 ) (1 4 )

⋅ = − + + + − ⋅ + +

= − + + + −

∫ ∫
∫

A r i j k i j k

(a) If x = t, y = t2, z = t3, points (0, 0, 0) and (1, 1, 1) correspond to t = 0 and t = 1, respectively. Then

C t

t

d t t t dt t t t d t t t t d t

t t dt t t dt t t dt

1 2 2 3 2 3 2 2 3 2 3

0

1 2 5 3 5 2 11

0

{3 6( )( )} {2 3( )( )} ( ) {1 4( )( )( ) } ( )

{3 6 } (4 6 )} (3 12 ) 2

=

=

⋅ = − + + + −

= − + + + − =

∫ ∫
∫

A r

Another method: Along C, A = (3t2 – 6t5) i + (2t2 + 3t4)j + (1 – 4t9)k and r = xi + yj + zk = ti + t2j + t3k,
dr = (i + 2tj + 3t2k)dt. Then

C
d t t dt t t dt t t dt

1 2 5 3 5 2 11

0
(3 6 ) (4 6 ) (3 12 ) 2⋅ = − + + + − =∫ ∫A r

(b) Along the straight line from (0, 0, 0) to (0, 1, 1), x = 0, y = 0, dx = 0, dy = 0, while z varies from 0 to 1. 
Then the integral over this part of the path is

z z
z z z dz dz

1 12 2

0 0
{3(0) 6(0)( )}0 {2(0) 3(0)( )0 {1 4(0)(0)( )} 1

= =
− + + + − = =∫ ∫

Along the straight line from (0, 0, 1) to (0, 1, 1), x = 0, z = 1, dx = 0, dz = 0, while y varies from 0 to 1. 
Then the integral over this part of the path is

y y
y y dy y y dy

1 12 2

0 0
{3(0) 6( )(1)}0 {2 3(0)(1)} {1 4(0)( )(1) }0 2 1

= =
− + + + − = =∫ ∫

Along the straight line from (0, 1, 1), to (1, 1, 1), v = 1, z = 1, dy = 0, dz = 0, while x varies from 0 to 1. 
Then the integral over this part of the path is

x x
x dx x x x dx

1 12 2 2

0 0
{3 6(1)(1)} {2(1) 3 (1)}0 {1 4 (1)(1) }0 (3 6) 5

= =
− + + + − = − = −∫ ∫

Adding,

C
dx 1 1 5 3⋅ = + − = −∫ A

(c) The straight line joining (0, 0, 0) and (1, 1, 1) is given in parametric form by x = t, y = t, z = t. Then

C t
d t t dt t t dt t dt

1 2 2 2 4

0
(3 6 ) (2 3 ) (1 4 ) 6 / 5

=
⋅ = − + + + − =∫ ∫A r

10.3. Find the work done in moving a particle once around an ellipse C
in the xy plane, if the ellipse has its center at the origin with 
semimajor and semiminor axes 4 and 3, respectively, as indicated 
in Figure 10.7, and if the force field is given by

F = (3x – 4y + 2z)i + (4x + 2y – 3z2)j + (2xz – 4y2 + z3)k

In the plane z = 0, F = (3x – 4y)i + (4x + 2y)j – 4y2k, and 
dr = dxi + dyj, so that the work done is

C C

C

d x y x y y dx dy

x y dx x y dy

2{(3 4 ) (4 2 ) 4 } ( )

(3 4 ) (4 2 )

⋅ = − + + − ⋅ +

= − + +

∫ ∫
∫

F r i j k i jÑ
Ñ

C∫�

C∫�

Figure 10.7



CHAPTER 10  Line Integrals, Surface Integrals, and Integral Theorems 253

Choose the parametric equations of the ellipse as x = 4 cos t, y = 3 sin t, where t varies from 0 to 2π (see 
Figure 10.7). Then the line integral equals

t

t

t t t dt t t t dt

t t dt t t

2

0

2 22

00

{3(4 cos ) 4(3sin )}{ 4sin } {4(4 cos ) 2(3sin )}{3cos }

(48 30 sin cos ) (48 15sin ) 96

π

π π
π

=

=

− − + +

= − = − =

∫
∫ (48 − 30 sin t cos t)dt = (48t – 15 sin2 t)

In traversing C we have chosen the counterclockwise direction indicated in Figure 10.7. We call this the 
positive direction or say that C has been traversed in the positive sense. If C were traversed in the clockwise 
(negative) direction, the value of the integral would be –96π.

10.4. Evaluate 
C

y ds∫  along the curve C given by y = x2  from x = 3 to x = 24.

C

ds dx dy y dx x dx

y ds x x dx x dx x

2 2 2

24
24 24 3 / 2

2 3
3

Since 1 ( ) 1 1/ , we have

4
2 1 1/ 2 1 ( 1) 156

3

′= + = + = +

= + = + = + =∫ ∫ ∫

Green’s theorem in the plane

10.5. Prove Green’s theorem in the plane if C is a closed curve which has the property that any straight line 
parallel to the coordinate axes cuts C in, at most, two points.

Let the equations of the curves AEB and AFB (see Figure 10.8) be y = Y1(x) and y = Y2(x), respectively. If 
ℜ is the region bounded by C, we have

b Y x

x a y Y x

Y xb b

x a ay Y x

b a

a b C

P P
dx dy dy dx

y y

P x y dx P x Y P x Y dx

P x Y dx P x Y dx Pdx

2

1

2

1

( )

( )

( )

2 1
( )

1 2

( , ) [ ( , ) ( , )]

( , ) ( , )

ℜ
= =

= =

⎡ ⎤∂ ∂= ⎢ ⎥∂ ∂⎣ ⎦

= = −

= − − = −

∫∫ ∫ ∫

∫ ∫

∫ ∫ ∫ÑC∫�
Then

C

P
Pdx dx dy

yℜ

∂= −
∂∫ ∫∫ÑC∫� (1)

Figure 10.8

Similarly, let the equations of curves EAF and EBF be x = X1 (y) and x = X2(y), respectively. Then

f y f

y c x x y c

c f

f c C

Q Q
dx dy dx dy Q X y Q X y dy

x x

Q X y dy Q X y dy Q dy

2

1

( )

2 1( )

1 2

[ ( , ) ( , )]

( , ) ( , )

χ

ℜ
= =

∂ ∂⎡ ⎤= = −⎢ ⎥∂ ∂⎣ ⎦

= + =

∫∫ ∫ ∫ ∫

∫ ∫ ∫ÑC∫�
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Then

C

Q
Q dy dx dy

xℜ

∂=
∂∫ ∫∫ÑC∫� (2)

Adding Equations (1) and (2), 

C

Q P
P dx Q dy dx dy

x yℜ

⎛ ⎞∂ ∂+ = −⎜ ⎟∂ ∂⎝ ⎠∫ ∫∫ÑC∫�

10.6. Verify Green’s theorem in the plane for

C
xy x dx x y dy2 2(2 ) ( )− + +∫ÑC∫�

where C is the closed curve of the region bounded by y = x2 and y2 = x.
The plane curve y = x2 and y2 = x intersect at (0, 0) and (1, 1). The positive direction in traversing C is as 

shown in Figure 10.9.
Along y = x2, the line integral equals

x
x x x dx x x d x x x x dx

1 12 2 2 2 2 3 2 5

0 0
{(2 )( ) } { ( ) } ( ) (2 2 ) 7 / 6

=
− + + = + + =∫ ∫

Along y2 = x, the line integral equals

y
y y y d y y y dy y y y dy

0 02 2 2 2 2 2 4 5 2

1 1
{(2)( ) ( ) ( ) } ( ) { } (4 2 2 ) 17 /15

=
− + + = − + = −∫ ∫

Then the required line integral = 7/6 – 17/15 = 1/30.

Q P
dx dy x y xy x dx dy

x y x y
2 2( ) (2 )

ℜ ℜ

⎛ ⎞ ⎧ ⎫∂ ∂ ∂ ∂− = + − −⎨ ⎬⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎩ ⎭∫∫ ∫∫
x

x y x
x dx dy x dy dx

2

1

0
(1 2 ) (1 2 )

ℜ
= =

= − = −∫∫ ∫ ∫
x

x y x
y xy dx

2

1

0
( 2 )

= =
= −∫

x x x x dx
1 1/ 2 3 / 2 2 3

0
( 2 2 ) 1 / 30= − − + =∫

Hence, Green’s theorem is verified.

Figure 10.9

10.7. Extend the proof of Green’s theorem in the plane given in Problem 10.5 to the curves C for which lines 
parallel to the coordinate axes may cut C in more than two points.

Consider a closed curve C such as is shown in Figure 10.10, in which lines parallel to the axes may meet 
C in more than two points. By constructing line ST, the region is divided into two regions ℜ1 and ℜ2, which 
are of the type considered in Problem 10.5 and for which Green’s theorem applies, i.e.,

STUS

Q P
P dx Q dy dx dy

x y
,

1ℜ

⎛ ⎞∂ ∂+ = −⎜ ⎟∂ ∂⎝ ⎠∫ ∫∫  (1)
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SVTS

Q P
P dx Q dy dx dy

x y
1ℜ

⎛ ⎞∂ ∂+ = −⎜ ⎟∂ ∂⎝ ⎠∫ ∫∫  (2)

Figure 10.10

Adding the left-hand sides of Equations (1) and (2), and omitting the integrand P dx + Q dy in each case, 
we have

STUS SVTS ST TUS SVT TS TUS SVT TUSVT

+ = + + + = + =∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫

using the fact that 
ST TS

.= −∫ ∫

Adding the right-hand sides of Equations (1) and (2), omitting the integrand, 
1 2ℜ ℜ ℜ

+ =∫∫ ∫∫ ∫∫ , where ℜ con-
sists of regions ℜ1 and ℜ2.

Then
TUSVT

Q P
P dx Q dy dx dy

x yℜ

⎛ ⎞∂ ∂+ = −⎜ ⎟∂ ∂⎝ ⎠∫ ∫∫ , and the theorem is proved.

A region ℜ such as is considered here and in Problem 10.5, for which any closed lying in ℜ can be con-
tinuously shrunk to a point without leaving ℜ, is called a simply connected region. A region which is not 
simply connected is called multiply connected. We have shown here that Green’s theorem in the plane applies 
to simply connected regions bounded by closed curves. In Problem 10.10 the theorem is extended to multiply 
connected regions.

For more complicated simply connected regions, it may be necessary to construct more lines, such as ST,
to establish the theorem.

10.8. Show that the area bounded by a simple closed curve C is given by 
C

x dy y dx
1

.
2

−∫ÑC∫�
In Green’s theorem, put P = –y, Q = x. Then

C
x dy y dx x y dx dy dx dy A

x y
( ) ( ) 2 2

ℜ ℜ

⎛ ⎞∂ ∂− = − − = =⎜ ⎟∂ ∂⎝ ⎠∫ ∫∫ ∫∫ÑC∫�

where A is the required area. 
C

A x dy y dx
1

Thus, .
2

= −∫ÑC∫�

10.9. Find the area of the ellipse x = a cos θ, y = b sin θ.

C
x dy y dx a b d b a d

ab d ab d ab

2

0

2 22 2

0 0

1 1
Area ( cos )( cos ) ( sin )( sin )

2 2
1 1

(cos sin )
2 2

π

π π

θ θ θ θ θ θ

θ θ θ θ π

= − = − −

= + = =

∫ ∫

∫ ∫

ÑC∫� (a cos θ)(b cos θ)dθ – (b sin θ)(–a sin θ)dθ
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10.10. Show that Green’s theorem in the plane is also valid for a multiply connected region ℜ such as is shown in 
Figure 10.11.

The shaded region ℜ, shown in Figure 10.11, is multiply connected, since not every closed curve lying in 
ℜ can be shrunk to a point without leaving ℜ, as is observed by considering a curve surrounding DEFGD, for 
example. The boundary of ℜ, which consists of the exterior boundary AHJKLA and the interior boundary 
DEFGD, is to be traversed in the positive direction, so that a person traveling in this direction always has the 
region on his left. It is seen that the positive directions are those indicated Figure 10.11.

In order to establish the theorem, construct a line such as AD, called a crosscut, connecting the exterior 
and interior boundaries. The region bounded by ADEFGDALKJHA is simply connected, and so Green’s theo-
rem is valid. Then

H

E

G
F

ℜ
DA

O

y

L
K

J

Figure 10.11

ADEFGDALKJHA

Q P
P dx Q dy dx dy

x yℜ

⎛ ⎞∂ ∂+ = −⎜ ⎟∂ ∂⎝ ⎠∫ ∫∫ÑC∫�
But the integral on the left, leaving out the integrand, is equal to

AD DEFGD DA ALKJHA DEFGD ALKJHA

+ + + = +∫ ∫ ∫ ∫ ∫ ∫
since

AD DA
.= −∫ ∫  Thus, if C1 is the curve ALKJHA, C2 is the curve DEFGD, and C is the boundary of ℜ

consisting of C1 and C2 (traversed in the positive directions), then 
C C C1 2

+ =∫ ∫ ∫  and so

C

Q P
P dx Q dy dx dy

x yℜ

⎛ ⎞∂ ∂+ = −⎜ ⎟∂ ∂⎝ ⎠∫ ∫∫ÑC∫�

Independence of the path

10.11. Let P(x, y) and Q(x, y) be continuous and have continuous first partial derivatives at each point of a simply 

connected region ℜ. Prove that a necessary and sufficient condition that
C

P dx Q dy 0+ =∫ÑC∫�  around every 
closed path C in ℜ is that ∂P/∂y = ∂Q/∂x identically in ℜ.

Sufficiency. Suppose ∂P/∂y = ∂Q/∂x. Then, by Green’s theorem,

C

Q P
P dx Q dy dx dy

x y
0

ℜ

⎛ ⎞∂ ∂+ = − =⎜ ⎟∂ ∂⎝ ⎠∫ ∫∫ÑC∫�

where ℜ is the region bounded by C.

Necessity. Suppose
C

P dx Q dy 0+ =∫ÑC∫�  around every closed path C in ℜ and that ∂P/∂y � ∂Q/∂x at some 
point of ℜ. In particular, suppose ∂P/∂y – ∂Q/∂x > 0 at the point (x0, y0).

By hypothesis, ∂P/∂y and ∂Q are continuous in ℜ, so that there must be some region τ containing (x0, y0)
as an interior point for which ∂P/∂y – ∂Q/∂x > 0. If Γ is the boundary of τ, then by Green’s theorem,

Q P
P dx Q dy dx dy

x y
0

τ
Γ

⎛ ⎞∂ ∂+ = − >⎜ ⎟∂ ∂⎝ ⎠∫ ∫∫ÑC∫�
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contradicting the hypothesis that 
Q P

dx Q dy dx dy
x y

0
τ

⎛ ⎞∂ ∂+ = − >⎜ ⎟∂ ∂⎝ ⎠∫∫C∫�
� P  for all closed curves in in ℜ.

Thus, ∂Q/∂x – ∂P/∂y cannot be positive.
Similarly, we can show that ∂Q/∂x – ∂P/∂y cannot be negative, and it follows that it must be identically 

zero; i.e., ∂P/∂y = ∂Q/∂x identically in ℜ.

10.12 Let P and Q be defined as in Problem 10.11. Prove that a necessary and sufficient condition that 
B

A
P dx Q dy+∫ be independent of the path in ℜ joining points A and B is that ∂P/∂y = ∂ Q/∂x identically in ℜ.

Figure 10.12

Sufficiency. If ∂P/∂y = ∂Q/∂x, then by Problem 10.11,

ADBEA

P dx Q dy 0+ =∫
(See Figure 10.12.) From this, omitting for brevity the integrand P dx + Q dy, we have

C C
ADB BEA ADB BEA AEB

1 2

0, and so+ = = − = =∫ ∫ ∫ ∫ ∫ ∫ ∫
i.e., the integral is independent of the path.

Necessity. If the integral is independent of the path, then for all paths C1 and C2 in ℜ we have

C C
ADB AEB

1 2
ADBEA

, and = 0= =∫ ∫ ∫ ∫ ∫
From this it follows that the line integral around any closed path in ℜ is zero, and, hence, by Problem 10.11 
that ∂P/∂y = ∂Q/∂x.

10.13. Let P and Q be as in Problem 10.11. (a) Prove that a necessary and sufficient condition that P dx + Q dy be 
an exact differential of a function 	(x, y) is that ∂P/∂y = ∂Q/∂x. (b) Show that in such case 

B B

A A
P dx Q dy d B A( ) ( )φ φ φ+ = = −∫ ∫  where A and B are any two points.

(a) Necessity. If P dx + Q dy = d φ = dx dy
x y

,
φ φ∂ ∂+

∂ ∂
 an exact differential, then 

∂φ/∂x = P (1)
∂φ/∂y = 0 (2)

Thus, by differentiating Equations (1) and (2) with respect to y and x, respectively, ∂P/∂y = ∂Q/∂x, since we 
are assuming continuity of the partial derivatives.

Sufficiency. By Problem 10.12, if ∂P/∂y = ∂Q/∂x, then P dx Q dy+∫ is independent of the path joining two 
points. In particular, let the two points be (a, b) and (x, y) and define

x y

a b
x y P dx Q dy

( , )

( , )
( , )φ = +∫

Then
x x y x y

a b a b
x x y x y P dx Q dy P dx Q dy

( , ) ( , )

( , ) ( , )
( , ) ( , )φ φ

+ Δ
+ Δ − = + − +∫ ∫

x x y

x y
P dx Q dy

( , )

( , )

+ Δ
= +∫
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Since the last integral is independent of the path joining (x, y) and (x + Δx, y), we can choose the path to be a 
straight line joining these points (see Figure 10.13) so that dy = 0. Then, by the mean value theorem for inte-
grals,

x x y

x y

x x y x y
P dx P x x y

x x

( , )

( , )

( , ) ( , ) 1
( , ) 0 1

φ φ θ θ
+ Δ+ Δ − = = + Δ < <

Δ Δ ∫
Taking the limit as Δx → 0, we have ∂φ/∂x = P.

Similarly, we can show that ∂φ/∂y = Q.

Thus, it follows that P dx Q dy dx dy d
x y

.
φ φ φ∂ ∂+ = + =

∂ ∂

Figure 10.13

(b) Let A = (x1, y1) and B = (x2, y2). From (a),
x y

a b
x y P dx Q dy

( , )

( , )
( , ) .φ = +∫

Then, omitting the integrand P dx + Q dy, we have
B x y x y x y

A x y a b a b
x y x y B A

2 2 2 2 1 1

1 1

( , ) ( , ) ( , )

2 2 1 1( , ) ( , ) ( , )
( , ) ( , ) ( ) ( )φ φ φ φ= = − = − = −∫ ∫ ∫ ∫

10.14. (a) Prove that xy y dx x y xy dy
(3, 4) 2 3 2 2

(1,2)
(6 ) (6 3 )− + −∫ dy is independent of the path joining (1, 2) and 

(3, 4). (b) Evaluate the integral in (a).

(a) P = 6xy2 – y3, Q = 6x2 y – 3xy2. Then ∂P/∂y = 12xy – 3y2 = ∂Q/∂x and, by Problem 10.12, the line in-
tegral is independent of the path.

(b) Method 1: Since the line integral is independent of the path, choose any path joining (1, 2) and (3, 4), 
for example, that consisting of lines from (1, 2) to (3, 2) (along which y = 2, dy = 0) and then (3, 2) to 
(3, 4) (along which x = 3, dx = 0). Then the required integral equals

x y
x dx y y dy

3 4 2

1 2
(24 8) (54 9 ) 80 156 236

= =
− + − = + =∫ ∫

 Method 2: Since 
P Q

y x
,

∂ ∂=
∂ ∂

 we must have 

x y xy
y

2 26 3
φ∂ = −

∂
 (1)

x y xy
y

2 26 3
φ∂ = −

∂
(2)

From Equation (1), φ = 3x2y2 – xy3 + f (y). From Equation (2), φ = 3x2y2 – xy3 + g(x). The only way in 
which these two expressions for φ are equal is if f (y) = g(x) = c, a constant. Hence, φ = 3x2y2 – xy3 + c. Then, 
by Problem 10.13.
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xy y dx x y xy dy d x y xy c

x y xy c

(3.4) (3.4)2 3 2 2 2 2 3

(1.2) (1.2)

(3,4)2 2 3

(1,2)

(6 ) (6 3 ) (3 )

3 236

− + − = − +

= − + =

∫ ∫

Note that in this evaluation the arbitrary constant c can be omitted. See also Problem 6.16.
We could also have noted by inspection that

xy y dx x y xy dy xy dx x y dy y dx xy dy

d x y d xy d x y xy

2 3 2 2 2 2 3 2

2 2 3 2 2 3

(6 ) (6 3 ) (6 6 ) ( 3 )

(3 ) ( ) (3 )

− + − = + − +
= − = −

from which it is clear that φ = 3x2y2 – xy3 + c.

10.15. Evaluate x y x xy2 cos 2+
C∫�( x xx y e dx x x ye dy2 2sin ) ( sin 2 )− + − around the hypocycloid x2/3 + 

y2/3 = a2/3.

P = x2y cos x + 2xy sin x – y2ex, Q = x2 sin x – 2 yex

Then ∂P/∂y = x2 cos x + 2x sin x – 2yex = ∂Q/∂x, so that, by Problem 10.11, the line integral around any 
closed path—in particular, x2/3 + y2/3 = a2/3—is zero.

Surface integrals

10.16. If γ is the angle between the normal line to any point (x, y, z) of a surface S and the positive z axis, prove that

x y z

x y
z

F F F
z z

F

2 2 2

2 2|sec | 1
| |

γ
+ +

= + + =

according as the equation for S is z = f (x, y) or F(x, y, z) = 0.
If the equation for S is F(x, y, z) = 0, a normal to S at (x, y, z) is ∇F = Fxi + Fyj + Fzk. Then

z x y zF F F F F F2 2 2K | ||k| cos or cosγ γ∇ ⋅ = ∇ = + +

from which 
x y z

z

F F F

F

2 2 2

|sec | as required.
| |

γ
+ +

=  as required.

In case the equation is z = f (x, y), we can write F(x, y) = 0, from which Fx = –zx, Fy – zy, Fz = 1 and we 

find x yz z2 2|sec | 1 .γ = + +

10.17. Evaluate 
S

U x y z dS( , , )∫∫ , where S is the surface of the paraboloid z = 2 – (x2 + y2) above the xy plane 

and U(x, y, z) is equal to (a) 1, (b) x2 + y2, y2, and (c) 3z. Give a physical interpretation in each case. (See 
Figure 10.14.)

The required integral is equal to

x yU x y z z z dx dy2 2( , , ) 1 .
ℜ

+ +∫∫  (1)

where ℜ is the projection of S on the xy plane given 
by x2 + y2 = 2, z = 0.

Since zx = –2x, zy = –2y, (1) can be written

U x y z x y dx dy2 2( , , ) 1 4 4
ℜ

+ +∫∫  (2)

(a) If U(x, y, z) = 1, (2) becomes

x y dx dy2 21 4 4
ℜ

+ +∫∫
Figure 10.14
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To evaluate this, transform to polar coordinates (ρ, φ). Then the integral becomes

d
2 2 2

0 0
1 4

π

φ ρ
ρ ρ

= =
+∫ ∫ d d

2
2 2 3 / 2

0
0

1 13
(1 4 )

12 3

π

φ
ρ

πρ φ ρ φ
=

=

= + =∫
Physically, this could represent the surface area of S or the mass of S assuming unit density.

(b) If U(x, y, z) = x2 + y2, (2) becomes x y x y dx dy2 2 2 2( ) 1 4 4
ℜ

+ + +∫∫  or, in polar coordinates,

d d
2 2 3 2

0 0

149
1 4

30

π

φ ρ

πρ ρ ρ φ
= =

+ =∫ ∫
where the integration with respect to ρ is accomplished by the substitution u21 4 .ρ+ =

Physically, this could represent the moment of inertia of S about the z axis assuming unit density, or the 
mass of S assuming a density = x2 + y2.
(c) If U(x, y, z) = 3z, (2) becomes

z x y dx dy x y x y dx dy2 2 2 2 2 23 1 4 4 3{2 ( )} 1 4 4
ℜ ℜ

+ + = − + + +∫∫ ∫∫
or, in polar coordinates,

d d
2 2 2 2

0 0

111
3 (2 ) 1 4

10

π

φ ρ

πρ ρ ρ ρ φ
= =

− + =∫ ∫
Physically, this could represent the mass of S assuming a density = 3z, or three times the first moment of 

S about the xy plane.

10.18. Find the surface area of a hemisphere of radius a cut off by a cylinder having this radius as diameter.

Equations for the hemisphere and cylinder (see Figure 10.15) are given, respectively, by x2 + y2 + z2 = a2

(or z a x y2 2 2 )− −  and (x – a/2)2 + y2 = a2/4 (or x2 + y2 = ax).
Since

x y

x y
z z

a x y a x y2 2 2 2 2 2
and

− −= =
− − − −

we have

x y

a
z z dx dy dx dy

a x y

2 2

2 2 2
Required surface area 2 1 2

ℜ ℜ

= + + =
− −

∫∫ ∫∫
Two methods of evaluation are possible.

Figure 10.15
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Method 1: Using polar coordinates.
Since x2 + y2 = ax in polar coordinates is ρ = a cos φ, the integral becomes

aa a
d d a a d

a

cos/ 2 cos / 2 2 2

0 0 02 2 0
2 2

φπ φ π

φ ρ φ ρ
ρ ρ φ ρ φ

ρ= = = =
= − −

−
∫ ∫ ∫

a d a
/ 22 2

0
2 (1 sin ) ( 2)

π
φ φ π= − = −∫

Method 2: The integral is equal to

ax x

a ax x a

x y x

y

a y
dx dy a dx

a x y ax x

2

2
1

0 0 02 2 2 2

0

2 2 sin

−
− −

= = =
=

=
− − −

∫ ∫ ∫

a x
a dx

a x
1

0
2 sin−=

+∫
Letting x = a tan2 θ, this integral becomes

4 4
1

2

1

2
2 2 2 2

0
4

0

4
a d aθ θ θ θ θ θ ππ

tan sec tan | /
/

= ⎧
⎨
⎩

−∫ ttan

tan | (sec )

/

/

2

0

4

2 2
0

4 22 1

θ θ

θ θ θ θ

π

π

d

a d= − −

∫

00

4

2
0

4 22 4 2

π

ππ θ θ π

/

// (tan ) | ( )

∫
= − − = −a a

⎧
⎨
⎩
⎧
⎨
⎩

⎧
⎨
⎩

⎧
⎨
⎩
⎧
⎨
⎩


 
 
 
 
 
 
 









 


Note that these integrals are actually improper and should be treated by appropriate limiting procedures 
(see Problem 5.74 and Chapter 12).

10.19. Find the centroid of the surface in Problem 10.17.

S

S

zdS z x y dx dy

x y
zdS x y dx dy

2 2

2 2

1 4 4

By symmetry, 0 and z
1 4 4

ℜ

ℜ

+ +
= = = =

+ +

∫∫ ∫∫
∫∫ ∫∫

The numerator and denominator can be obtained from the results of Problems 10.17(c) and 10.17(a), 

respectively, and we thus have z
37 /10 111

.
13 /3 130

π
π

= =

10.20. Evalute ∫∫S A · n dS, where A = xyi – x2j + (x + z)k, S is that portion of the plane 2x + 2y + z = 6 included in 
the first octant, and n is a unit normal to S. (See Figure 10.16.)

S x y zA normal to is (2 2 6)∇ + + − = 2i + 2j + k, and so

n
2 2 2 32 2 1

= =
+ +

2i + 2j + k 2i + 2j + k

Then

A · n = {xyi – x 2j + (x + z)k} ·
2i + 2j + k

3
⎛
⎜⎝

⎞
⎟⎠

xy x x z

xy x x x y

xy x x y

2

2

2

2 2 ( )

3

2 2 ( 6 2 2 )

3

2 2 2 6

3

− + +=

− + + − −=

− − − +=

Figure 10.16
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The required surface integral is, therefore,

x y

S

x

x y

x

x

xy x x y xy x x y
dS z z dx dy

xy x x y
dx dy

xy x x y dy dx

xy x y xy y y dx

2 2
2 2

2
2 2 2

3 3 2

0 0

33 2 2 2

0 0

2 2 2 6 2 2 2 6
1

3 3

2 2 2 6
1 2 2

3

(2 2 2 6)

( 2 6 ) 27/4

ℜ

ℜ

−

= =

−

=

⎛ ⎞ ⎛ ⎞− − − + − − − += + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞− − − += + +⎜ ⎟
⎝ ⎠

= − − − +

= − − − + =

∫∫ ∫∫

∫∫

∫ ∫

∫

10.21. In dealing with surface integrals we have restricted ourselves to surface which are two-sided. Give an 
example of a surface which is not two-sided.

A

AD

BC

B

P

Q

n

n

C

D

Figure 10.17

Take a strip of paper such as ABCD, as shown in Figure 10.17. Twist the strip so that points A and B fall 
on D and C, respectively, as in the figure. If n is the positive normal at point P of the surface, we find that as 
n moves around the surface, it reverses its original direction when it reaches P again. If we tried to color only 
one side of the surface, we would find the whole thing colored. This surface, called a Möbius strip, is an 
example of a one-sided surface. This is sometimes called a nonorientable surface. A two-sided surface is 
orientable.

The divergence theorem

10.22. Prove the divergence theorem. (See Figure 10.18.)

Figure 10.18

Let S be a closed surface which is such that any line parallel to the coordinate axes cuts S in, at most, two 
points. Assume the equations of the lower and upper portions S1 and S2 to be z = f1(x, y) and z = f2(x, y) respec-
tively. Denote the projection of the surface on the xy plane by ℜ. Consider
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f x y

z f x y
V V

f

z f

A A A
dV dz dy dx dz dy dx

z z z

A x y z dy dx A x y f A x y f dy dx

2

1

2

1

( , )
3 3 3

( , )

3 3 2 3 1( , , ) [ ( , , ) ( , , )]

ℜ

ℜ ℜ

=

=

∂ ∂ ∂⎡ ⎤= = ⎢ ⎥∂ ∂ ∂⎣ ⎦

= = −

∫∫∫ ∫∫∫ ∫∫ ∫

∫∫ ∫∫
For the upper portion S2, dy dx = cos γ2 dS2 = k · n2 dS2 since the normal n2 to S2 makes an acute angle γ2

with k.
For the lower portion S1, dy dx = – cos γ1 dS1 = –k · n1 dS1 since the normal n1 to S1 makes an obtuse angle 

γ1 with k.
Then

S

A x y f dy dx
2

3 2( , , )
ℜ

=∫∫ ∫∫ A3k · n2 dS2

S

A x y f dy dx
1

3 1( , , )
ℜ

= −∫∫ ∫∫ A3k · n1 dS1

and

S S

S

A x y f dy dx A x y f dy dx A dS A dS

A dS

2 1

3 2 3 1 3 2 2 3 1 1

3

( , , ) ( , , ) k n k n

k n

ℜ ℜ

− = ⋅ + ⋅

= ⋅

∫∫ ∫∫ ∫∫ ∫∫

∫∫

A3k · n2dS2

A3k · n dS

A3k · n1dS1

so that

V S

A
dV

z
3∂

=
∂∫∫∫ ∫∫ A3k · n dS (1)

Similarly, by projecting S on the other coordinate planes,

V S

A
dV A

x
1∂

=
∂∫∫∫ ∫∫ A3i · n dS (2)

V S

A
dV

y
2∂

=
∂∫∫∫ ∫∫ A3j · n dS (3)

Adding Equations (1), (2), and (3),

V S

AA A
dV

x y z
31 2 ∂∂ ∂⎛ ⎞+ + =⎜ ⎟∂ ∂ ∂⎝ ⎠∫∫∫ ∫∫(A1i + A2j + A3k) n dS

or

V S

dV dSA A n∇ ⋅ = ⋅∫∫∫ ∫∫A dV A · n dS

The theorem can be extended to surfaces which are such that lines parallel to the coordinate axes meet 
them in more than two points. To establish this extension, subdivide the region bounded by S into subregions 
whose surfaces do satisfy this condition. The procedure is analogous to that used in Green’s theorem for the 
plane.

10.23. Verify the divergence theorem for A = (2x – z)i + x2yj – xz2k taken over the region bounded by x = 0, x = 1, y
= 0, y = 1, z = 0, z = 1.

We first evaluate 
S

⋅∫∫ A ndS, where S is the surface of the cube in Figure 10.19.

Face DEFG: n = i, x = 1. Then

DEFG

dS z z dy dz

z dy dz

1 1 2

0 0

1 1

0 0

A n {(2 )i j k} i

(2 ) 3/2

⋅ = − + − ⋅

= − =

∫∫ ∫ ∫

∫ ∫

A · n dS i j k i
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Face ABCO: n = –i, x = 0. Then

ABCO

dS z dy dz

z dy dz

1 1

0 0

1 1

0 0

A n ( i) ( i)

1/2

⋅ = − ⋅ −

= =

∫∫ ∫ ∫

∫ ∫

A · n i i

Face ABEF: n = j, y = 1. Then

ABEF

dS z x xz dx dz x dx dz
1 1 1 12 2 2

0 0 0 0
A n {(2 )i j k} j 1/3⋅ = − + − ⋅ = =∫∫ ∫ ∫ ∫ ∫A · n i j k j

Face OGDC: n = –j, y = 0. Then

OGDC

dS x z xz dx dz
1 1 2

0 0
A n {(2 )i k} ( j) 0⋅ = − − ⋅ − =∫∫ ∫ ∫A · n i jk

Figure 10.19

Face BCDE: n = k, z = 1. Then

BCDE

dS x x x dx dy x dx dy
1 1 1 12

0 0 0 0
A n {(2 1)i yj k} k 1/2⋅ = − + − ⋅ = − −∫∫ ∫ ∫ ∫ ∫A · n i yj k k

Face AFGO: n = – k, z = 0. Then

AFGO

dS x x dx dy
1 1 2

0 0
A n {2 i yj} ( k) 0⋅ = − ⋅ − =∫∫ ∫ ∫A · n i yj k

Adding,
S

dS
3 1 1 1 11

A n 0 0 . Since
2 2 3 2 6

⋅ = + + + − + =∫∫A · n

V

dV x xz dx dy dz
1 1 1 2

0 0 0

11
A (2 2 )

6
∇ ⋅ = + − =∫∫∫ ∫ ∫ ∫A

the divergence theorem is verified in this case.

10.24. Evaluate
S

ds,⋅∫∫ A n  where S is a closed surface.

By the divergence theorem,

S V

dS dVr n r⋅ = ∇ ⋅∫∫ ∫∫∫ rr · n

V

V V

x y z dV
x y z

x y z
dV dV V

x y z

i j k ( i j k)

i j k 3 3

⎛ ⎞∂ ∂ ∂= + + ⋅ + +⎜ ⎟∂ ∂ ∂⎝ ⎠
⎛ ⎞∂ ∂ ∂= + + = =⎜ ⎟∂ ∂ ∂⎝ ⎠

∫∫∫

∫∫∫ ∫∫∫

i

i

j

j

k

k

yjxi zk

where V is the volume enclosed by S.
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10.25. Evaluate 
S

xz dy dz x y z dz dx xy y z dx dy2 2 3 2( ) (2 ) ,+ − + +∫∫  where S is the entire surface of the 

hemispherical region bounded by z a x y z2 2 2 and 0= − − =  (a) by the divergence theorem (Green’s 
theorem in space) and (b) directly.

(a) Since dy dz = dS cos α, dz dx = dS dS cos β, and dx dy = dS cos γ, the integral can be written

S

xz2{ cos∫∫ x y z xy y z2 3 2( ) cos (2 )cosα β+ − + +
S

dS}γ = ∫∫A · n dS

where A = xz2i + (x2y – z3) j + (2xy + y2z)k and n = cos αi + cos βj + cos γk, the outward drawn unit normal.
Then, by the divergence theorem the integral equals

V V V

A dV xz x y z xy y z dV x y z dV
x y z

2 2 3 2 2 2 2( ) ( ) (2 ) ( )
⎧ ⎫∂ ∂ ∂∇ ⋅ = + − + + = + +⎨ ⎬∂ ∂ ∂⎩ ⎭∫∫∫ ∫∫∫ ∫∫∫A

where V is the region bounded by the hemisphere and the xy plane.
By use of spherical coordinates, as in Problem 9.19, this integral is equal to

r
r r

/ 2 / 2 2 2

0 0 0
4

π π α

φ θ= = =
⋅∫ ∫ ∫ sinθ

a
dr d d

52

5

πθ φ =

(b) If S1 is the convex surface of the hemispherical region and S2 is the base (z = 0), then

a a y a a x

y a z y a z
S

a a x

x a x
S

a a x

x a z

y
S

xz dy dz z a y z dz dy z a y z dz dx

x y z dy dx x a y z z dz dx

x a x z z dz dx

xy y z dx dy xy y a y z dy dx

2 2 2 2

1

2 2

1

2 2

1

2 2 2 2 2 2 2 2 2

0 0

2 3 2 2 2 2 3

0

2 2 2 2 3

0

2 2 2 2 2

( ) { }

{ }

(2 ) {2 }

− −

=− = =− =

−

=− =

−

=− =

=−

= − − − − − −

− = − − −

− − − − −

− = + − −

∫∫ ∫ ∫ ∫ ∫

∫∫ ∫ ∫

∫ ∫

∫∫
a a x

x a a x

S S

a a x

x a y a x
S S

xz dy dz x y z dz dx

xy y z dx dy xy y dx dy xy dy dx

2 2

2 2

2 2

2 2

2 2

2 2

2 2 3

2 2

0, ( ) 0,

(2 ) {2 (0)} 2 0

−

=− −

−

=− =− −

= − =

− = − = =

∫ ∫

∫∫ ∫∫

∫∫ ∫∫ ∫ ∫
By addition of the preceding, we obtain

a a y a a x

y x x z

a a x

x y

z a y z dz dy x a x z dz dx

y a x y dy dx

2 2 2 2

2 2

2 2 2 2 2 2 2 2

0 0 0 0

2 2 2 2

0 0

4 4

4

− −

= = = =

−

= =

− − + − −

+ − −

∫ ∫ ∫ ∫

∫ ∫
Since by symmetry all these integrals are equal, the result, on using polar coordinates, is

a a x a

x y

a
y a x y dy dx a d d

2 2 5
/ 22 2 2 2 2 2 2 2

0 0 0 0

2
12 12 sin

5

π

φ ρ

πρ φ ρ ρ ρ φ
−

= = = =
− − = − =∫ ∫ ∫ ∫

Stokes’s theorem

10.26. Prove Stokes’s theorem.

Let S be a surface which is such that its projections on the xy, yz, and xz planes are are regions bounded 
by simple closed curves, as indicated in Figure 10.20. Assume S to have representation z = f (x, y) or x = 
g(y, z) or y = h(x, z), where f, g, and h are single-valued, continuous, and differentiable functions. We must 
show that
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S S

dS A A A dS1 2 3( A) n [ ( i j k )] n∇× ⋅ = ∇× + + ⋅∫∫ ∫∫A n i j k n

c
dA r= ⋅∫C A · dr

where C is the boundary of S.

S

A dS

A A
A

x y z z y

A

1

1 1
1

1

Consider first [ ( i)] n .

i j k

Since ( i) = j k,

0 0

∇× ⋅

∂ ∂∂ ∂ ∂∇× = −
∂ ∂ ∂ ∂ ∂

∫∫
j k

kj

i

i n

i

Figure 10.20

[ ( )]∇ × ⋅ = ∂
∂

⋅
⎛
⎝⎜

A dS
A

z1
1i n n j − ∂

∂
⋅

⎞
⎠⎟

A

y
dS1 n k  (1)

If z = f (x, y) is taken as the equation of S, then the position vector to any point of S is r = xi + yj + zk = xi + 

yj + f (x, y)k so that 
y

r∂
∂

r
 = j +

z

y

∂
∂

k = j + 
f

y

∂
∂

k. But 
y

r∂
∂

r
 is a vector tangent to S and thus perpendicular to n,

so that

n
r

n j⋅ ∂
∂

= ⋅
y

n k or n j+ ∂
∂

⋅ = ⋅z

y
0 k− ∂

∂
⋅z

y
n=

Substitute in Equation (1) to obtain

∂
∂

⋅
⎛
⎝⎜

A

z
1 n j − ∂

∂
⋅

⎞
⎠⎟

= ∂
∂

∂
∂

⋅ − ∂
∂

A

y
dS

A

z

z

y

A1 1 1n k n k
yy

dSn k⋅
⎛
⎝⎜

⎞
⎠⎟

or

[ ( )]∇ × ⋅ = − ∂
∂

+ ∂
∂

∂
∂

⎛
⎝⎜

⎞
⎠⎟

⋅A dS
A

z

A

y

z

y
dS1

1 1i n n k  (2)

Now on S, A1 (x, y, z) = A1 [x, y, f (x, y)] = F(x, y); hence, 
A A z F

y z y y
1 1∂ ∂ ∂ ∂+ =

∂ ∂ ∂ ∂
 and Equation (2) becomes

[ ( )]∇ × ⋅ = − ∂
∂

⋅ = − ∂
∂

A dS
F

y
dS

F

y
dx dy1i n n k
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Then

[ ( )]∇ × ⋅ = − ∂
∂∫∫ ∫∫A dS
F

y
dx dy

S

1i n
ℜ

where ℜ is the projection of S on the xy plane. By Green’s theorem for the plane, the last integral equals 

r
F dx∫ÑC∫�

�  where Γ is the boundary of ℜ. Since at each point (x, y) of Γ the value of F is the same as the value 

of A1 at each point (x, y, z) of C, and since dx is the same for both curves, we must have

c
F dx A dx1= ∫ÑC∫�C∫�

�

or

[ (∇ × ⋅ =∫∫ ∫A dS A dx
S

c1 1i)] n
C∫�

Similarly, by projections on the other coordinate planes,

[ ( , [ (∇ × ⋅ = ∇ × ⋅ =∫∫ ∫ ∫∫A dS A dy A dS A
S

c
S

3j)] n k)] n 33 dz
c∫2 2

C∫� C∫�

Thus, by addition,

(∇ × ⋅ = ⋅∫∫ ∫A) n rdS A d
S

cC∫�
The theorem is also valid for surfaces S which may not satisfy these imposed restrictions. Assume that S

can be subdivided into surfaces S1, S2, . . . Sk with boundaries C1, C2, . . . , Ck, which do satisfy the restrictions. 
Then Stokes’s theorem holds for each such surface. Adding these surface integrals, the total surface integral 
over S is obtained. Adding the corresponding line integrals over C1, C2 . . . , Ck, the line integral over C is ob-
tained.

10.27. Verify Stokes’s theorem for A = 3y i – xzj + yz2k, where S is the surface of the paraboloid 2z = x2 + y2

bounded by z = 2 and C is its boundary. See Figure 10.21.

The boundary C of S is a circle with equations x2 + y2 = 4, z = 2 and parametric equations x = 2 cos t, y = 
2 sin t, z = 2, where 0 < t < 2π. Then

Figure 10.21

A r⋅ = − +

= −

∫∫ d y dx xz dy yz dz

t t

CC
3

3 2 2

2

( sin )( sin )ddt t t dt

t t

−

= +

∫ ( cos )( )( )

( sin cos

2 2 2

12 8

2

0

2 2

cos
π

))dt =∫ 20
0

2
π

π

C∫� C∫�
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Also,

∇ × ∂
∂

∂
∂

∂
∂

−

= − +A =

i j k

+ i k
x y z

y xz yz

z x z

3

3

2

2( ) ( )

and

= ∇
n

(xx y z

x y z

x y

x y

2 2

2 2 2 2

2

2 1

+ −
∇ + −

= + −
+ +

)

| ( )|
.

i j k

Then

( ) ( )
|

( )∇ × ⋅ = ∇ ⋅ ⋅
⋅

= + + +∫∫A n n
n k|

dS A
dx dy

xz x z d2 2 3
ℜ

xx dy

x
x y

x
x y

S ℜ

2 2

∫∫∫∫

= +⎛
⎝⎜

⎞
⎠⎟

+ + + +
⎧
⎨
⎪

⎩⎪

⎫2 2 2

2
2 2

3⎬⎬
⎪

⎭⎪
∫∫
ℜ

dx dy

In polar coordinates this becomes

d d
2 2 4 2 2 2

0 0
{( cos )( /2) cos /2 3} 20

π

φ ρ
ρ φ ρ ρ φ ρ ρ ρ φ π

= =
+ + + =∫ ∫

10.28. Prove that a necessary and sufficient condition that 
C∫ÑC∫� A · dr = 0 for every closed curve C is that ∇ × A = 0 

identically.

Sufficiency. Suppose ∇ × A = 0. Then, by Stokes’s theorem,

A r A n⋅ = ∇ × ⋅ =∫∫∫ d dS
S

C
( ) 0

C∫�

Necessity. Suppose 
C∫ÑC∫� A · dr = 0 around every closed path C, and assume ∇ × A � 0 at some point P. Then, 

assuming ∇ × A is continuous, there will be a region with P as an interior point, where ∇ × A � 0. Let S be a 
surface contained in this region whose normal n at each point has the same direction as ∇ × A; i.e., ∇ × A = 
αn where α is a positive constant. Let C be the boundary of S. Then, by Stokes’s theorem,

A r A n n n⋅ = ∇ × ⋅ = ⋅ >∫∫∫ ∫∫d dS dS
S

C
S

( ) α 0
C∫�

which contradicts the hypothesis that 
C∫ÑC∫� A · dr = 0 and shows that ∇ × A = 0.

It follows that ∇ × A = 0 is also a necessary and sufficient condition for a line integral 
P

P
d

2

1

⋅∫ A r  to be 
independent of the path joining points P1 and P2.

10.29. Prove that a necessary and sufficient condition that ∇ × A = 0 is that A = ∇φ.

Sufficiency. If A = ∇φ, then ∇ × A = ∇ × ∇φ = 0 by Problem 7.80.

Necessity. If ∇ × A = 0, then by Problem 10.28, 
C∫ÑC∫� A · dr = 0 around every closed path and 

P

P
d

2

1

⋅∫ A r  is 

independent of the path joining two points, which we take as (a, b, c) and (x, y, z). Let us define

φ( , , )
( , , )

( , , )
x y z A dr A dx A dy A dz

a b c

x y z
= ⋅ = + +∫ 1 2 3(( , , )

( , , )

a b c

x y z

∫
Then

x x y z

x y z
x x y z x y z A dx A dy A dz

( , , )

1 2 3( , , )
( , , ) ( , , )φ φ

+Δ
+ Δ − = + +∫

Since the last integral is independent of the path joining (x, y, z) and (x + Δ x, y, z), we can choose the path 
to be a straight line joining these points so that dy and dz are zero. Then

x x y z

x y z

x x y z x y z
A dx A x x y z

x x

( , , )

1 1( , , )

( , , ) ( , , ) 1
( , , ) 0 1

φ φ θ θ
+Δ+ Δ − = = + Δ < <

Δ Δ ∫
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where we have applied the law of the mean for integrals.
Taking the limit of both sides as Δx → 0 gives ∂φ/∂x = A1.
Similarly, we can show that ∂φ/∂y = A2, ∂φ/∂z = A3. Thus, 

A i j k = i j k = .= + + ∂
∂

+ ∂
∂

+ ∂
∂

∇A A A
x y z1 2 3

φ φ φ φ

10.30. (a) Prove that a necessary and sufficient condition that A1 dx + A2 dy + A3 dz = dφ, an exact differential, is 
that ∇ × A = 0 where A = A1i + A2j + A3k. (b) Show that in such case,

x y z x y z

x y z x y z
A dx A dy A dz d x y z x y z

2 2 2 2 2 2

1 1 1 1 1 1

( , , ) ( , , )

1 2 3 2 2 2 1 1 1( , , ) ( , , )
( , , ) ( , , )φ φ φ+ + = = −∫ ∫

(a) Necessity. A dx A dy A dz d dx dy dz
x y z1 2 3If , then
φ φ φφ ∂ ∂ ∂+ + = = + +

∂ ∂ ∂

A
x 1

φ∂ =
∂

 (1)

A
y 2

φ∂ =
∂

 (2)

A
z 3

φ∂ =
∂

 (3)

Then, by differentiating, and assuming continuity of the partial derivatives, we have

A AA A A A

y x z y z x
3 31 2 2 1, ,

∂ ∂∂ ∂ ∂ ∂
= = =

∂ ∂ ∂ ∂ ∂ ∂
which is precisely the condition ∇ × A = 0.

Another method: If A1 dx + A2 dy + A3 dz = dφ, then

A i j k = i j k == + + ∂
∂

+ ∂
∂

+ ∂
∂

∇A A A
x y z1 2 3

φ φ φ φ.

from which ∇ × A = ∇ × ∇φ = 0.

Sufficiency. If ∇ × A = 0, then by Problem 10.29, A = ∇φ and

A dx A dy A dz dr dr dx dy dz d
x y z1 2 3 A
φ φ φφ φ∂ ∂ ∂+ + = ⋅ = ∇ ⋅ = + + =

∂ ∂ ∂
(b) From (a),

x y z

a b c
x y z A dx A dy A dz

( , , )

1 2 3( , , )
( , , )φ = + +∫

Then, omitting the integrand A1 dx + A2 dy + A3 dz, we have

=∫( , , )

( , , )

x y z

x y z

1 1 1

2 2 2 −∫( , , )

( , , )

a b c

x y z2 2 2

−∫∫ = φ
( , , )

( , , )

a b c

x y z1 1 1

∫∫ −φ( , , )x y z2 2 2 −∫∫φ( , , )x y z1 1 1

10.31. (a) Prove that F = (2xz3 + 6y)i + (6x – 2yz)j + (3x2z2 – y2) k is a conservative force field. (b) Evaluate
C∫ÑC∫ F · 

dr where C is any path from (1, –1, 1) to (2, 1, –1). (c) Give a physical interpretation of the results.

(a) A force field F is conservative if the line integral
C∫ÑC∫ F · dr is independent of the path C joining any two 

points. A necessary and sufficient condition that F be conservative is that ∇ × F = 0.

Since here F =

i j k

∇ × ∂
∂

∂
∂

∂
∂

+ −
x y z

xz y x yz x z2 6 6 2 33 2 2 −−

=

y2

0, F is conservative
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(b) Method 1: By Problem 10.30, F · dr = (2xz3 + 6y)dx + (6x – 2yz)dy + (3x2z2 – y2)dz is an exact differ-
ential dφ, where φ is such that

xz y
x

32 6
φ∂ = +

∂
 (1)

x yz
y

6 2
φ∂ = −

∂
 (2)

x z y
z

2 2 23
φ∂ = −

∂
 (3)

From these we obtain, respectively,

φ = x2z3 + 6xy + f1(y, z)

φ = 6xy – y2z + f2(x, z)

φ = x2y2 – y2z + f3 (x, y)

These are consistent if f1(y, z) = – y2z + c, f2(x, z) = x2z3 + c, and f3 (x, y) = 6xy + c, in which case φ = x2z3

+ 6xy – y2z + c. Thus, by Problem 10.30,

d x z xy y z c
(2,1, 1) 2 3 2 (2,1, 1)

(1, 1,1)(1, 1,1)
F r 6 | 15

− −
−−

⋅ = + − + =∫
Alternatively, we may notice by inspection that

F · dr = (2xz3 dx + 3x2z2 dz) + (6y dx + 6x dy) – (2yz dy + y2 dz)

 = d(x2z3) + d(6xy) – d(y2z) = d(x2z3 + 6xy – y2z + c) from which φ is determined.

Method 2: Since the integral is independent of the path, we can choose any path to evaluate it; in particular, 
we can choose the path consisting of straight lines from (1, –1, 1) to (2, –1, 1), then to (2, 1, 1) and then to 
(2, 1, –1). The result is

x y z
x dx y dy z dz

2 1 1 2

1 1 1
(2 6) (12 2 ) (12 1) 15

−

= = =
− + − + − =∫ ∫ ∫

where the first integral is obtained from the line integral by placing y = –1, z = 1, dy = 0, dz = 0; the second 
integral, by placing x = 2, z = 1, dx = 0, dz = 0; and the third integral, by placing x = 2, y = 1, dx = 0, dy = 0.
(c) Physically, ∫C F · dr represents the work done in moving an object from (1, –1, 1) to (2, 1, –1) along C. In 

a conservative force field, the work done is independent of the path C joining these points.

Miscellaneous problems

10.32. (a) If x = f (u, υ), y = g(u, υ) defines a transformation which maps a region ℜ of the xy plane into a region ℜ�

of the uυ plane, prove that

x y
dx dy du d

u

( , )

( , )ℜ ℜ

υ
υ′

∂=
∂∫∫ ∫∫

(b) Interpret geometrically the result in (a).

(a) If C (assumed to be a simple closed curve) is the boundary of ℜ, then by Problem 10.8,

C
dx dy x dy y dx

1

2ℜ

= −∫∫ ∫ÑC∫�  (1)

Under the given transformation, the integral on the right of Equation (1) becomes

C

y y
x du d

u

1

2
υ

υ′

∂ ∂⎛ ⎞+⎜ ⎟∂ ∂⎝ ⎠∫ÑC∫� C

y x y x y x
y du d x y du x y d

u u u

1

2
υ υ

υ υ υ′

∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞− + = − + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠∫  (2)
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where C� is the mapping of C in the uυ plane (we suppose the mapping to be such that C� is a simple closed 
curve also).

By Green’s theorem, if ℜ� is the region in the uυ plane bounded by C�, the right side of Equation (2) 
equals

y x y x x y x y
x y x y du d du d

u u u u u

x y
du d

u

1

2

( , )

( , )

ℜ ℜ

ℜ

υ υ
υ υ υ υ υ

υ
υ

′ ′

′

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞− − − = −⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
∂=
∂

∫∫ ∫∫

∫∫
where we have inserted absolute value signs so as to ensure that the result is nonnegative, as is ∫ ∫ℜ dx dy.

In general, we can show (see Problem 10.83) that

x y
F x y dx dy F f u g u du d

u

( , )
( , ) { ( , ), ( , )}

( , )ℜ ℜ

υ υ υ
υ′

∂=
∂∫∫ ∫∫  (3)

(b)
x y

dx dy du d
u

( , )
and

( , )ℜ ℜ

υ
υ′

∂
∂∫∫ ∫∫ represent the area of region R, the first expressed in rectangular co-

ordinates, the second in curvilinear coordinates. See Page 225, and the introduction of the differential 
element of surface area for an alternative to (a).

10.33. Let 
y x

x y2 2
.

− +=
+

i j
F  (a) Calculate ∇ × F. (b) Evaluate 

C∫�F · dr around any closed path and explain the results.

(a) ∇ × ∂
∂

∂
∂

∂
∂

−
+ +

=F =

i j k

in any region
x y z

y

x y

x

x y2 2 2 2 0

0 eexcluding ( , )0 0 .

(b)
C∫�

y dx x dy
d

x y2 2
.

− =⋅ =
+∫F r ÑC∫�F ·dr  Let x = ρ cos φ, y = ρ sin φ, where (ρ, φ) are polar coordinates. Then

sin cos , cos sindx d d dy d dρ φ φ ρ φ ρ φ φ ρ φ= − + = +
and so 

y dx x dy y
d d

xx y2 2
are tanφ− = ⎛ ⎞= = ⎜ ⎟+ ⎝ ⎠

For a closed curve ABCDA [see Figure 10.22 (a)] surrounding the origin, φ = 0 at A and φ = 2π after a 
complete circuit back to A. In this case the line integral equals ∫2π

0 dφ = 2π.

Figure 10.22
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For a closed curve PQRSP [see Figure 10.22(b)] not surrounding the origin, φ = φ0 at P and φ = φ0 after 

a complete circuit back to P. In this case the line integral equals d
φ

φ
φ

0

0

= 0.∫
Since F = Pi + Qj, ∇ × F = 0 is equivalent to ∂P/∂y = ∂Q/∂x, the results would seem to contradict those 

of Problem 10.11. However, no contradiction exists, since 
y x

P Q
x y x y2 2 2 2

and
−= =
+ +

 do not have con-

tinuous derivatives throughout any region including (0, 0), and this was assumed in Problem 10.11.

10.34. If div A denotes the divergence of a vector field A at a point P, show that

div A

A n

=
⋅

ΔΔ →

Δ
∫∫

lim
V

S

dS

V0

n

where ΔV is the volume enclosed by the surface ΔS and the limit is obtained by shrinking ΔV to the point P.
By the divergence theorem, 

div A A n
Δ Δ
∫∫∫ ∫∫= ⋅

V S

dV dS

By the mean value theorem for integrals, the left side can be written

div A div AdV V
VΔ

∫∫∫ = Δ

where div A is some value intermediate between the maximum and minimum of div A throughout ΔV. Then

div A

A n

=
⋅

Δ
Δ
∫∫ dS

V
S

Taking the limit as ΔV → 0 such that P is always interior to ΔV, div A approaches the value div A at point 
P: hence,

S

V

dS

V0

A n

div A lim Δ

Δ →

⋅
=

Δ

∫∫

This result can be taken as a starting point for defining the divergence of A, and from it all the properties 
may be derived, including proof of the divergence theorem. We can also use this to extend the concept of di-
vergence to coordinate systems other than rectangular (see Page 170).

Physically, 
S

dS VA n /
Δ

⎛ ⎞
⋅ Δ⎜ ⎟

⎝ ⎠
∫∫∫  represents the flux or net outflow per unit volume of the vector A from 

the surface ΔS. If div A is positive in the neighborhood of a point P, it means that the outflow from P is posi-
tive, and we call P a source. Similarly, if div A is negative in the neighborhood of P, the outflow is really an 
inflow, and P is called a sink. If in a region there are no sources or sinks, then div A = 0, and we call A a sole-
noidal vector field.

SUPPLEMENTARY PROBLEMS

Line Integrals

10.35. Evaluate x y dx y x dy
(4,2)

(1,1)
( ) ( )+ + −∫  along (a) the parabola y2 = x, (b) a straight line, (c) straight lines from 

(1, 1) to (1, 2) and then to (4, 2), and (d) the curve x = 2t2 + t + 1, y = t2 + 1.

Ans. (a) 34/3 (b) 11 (c) 14 (d) 32/3
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10.36. Evaluate 
C∫�( x y dx y x dy2 4) (5 3 6)− + + + −  around a triangle in the xy plane with vertices at (0, 0), (3, 0), 

(3, 2) traversed in a counterclockwise direction.

Ans. 12

10.37. Evaluate the line integral in Problem 10.36 around a circle of radius 4 with center at (0, 0).

Ans. 64π

10.38. (a) If F = (x2 – y2)i + 2xyj, evaluate
C∫ F · dr along the curve C in the xy plane given by y = x2 – x from 

the point (1, 0) to (2, 2). (b) Interpret physically the result obtained.

Ans. (a) 124/15

10.39. Evaluate 
C

x y ds(2 ) ,+∫  where C is the curve in the xy plane given by x2 + y2 = 25 and s is the are length 

parameter, from the point (3, 4) to (4, 3) along the shortest path.

Ans. 15

10.40. If F = (3x – 2y)i + (y + 2z)j – x2k, evaluate 
C∫ F · dr from (0, 0, 0) to (1, 1, 1), where C is a path consisting 

of (a) the curve x = t, y = t2, z = t3, (b) a straight line joining these points, (c) the straight lines from (0, 0, 0) 
to (0, 1, 0), then to (0, 1, 1) and then to (1, 1, 1), and (d) the curve x = z2, z = y2.

Ans. (a) 23/15 (b) 5/3 (c) 0 (d) 13/15

10.41. If T is the unit tangent vector to a curve C (plane or space curve) and F is a given force field, prove that 

under appropriate conditions 
C∫ F · dr = 

C∫ F · T ds, where s is the arc length parameter. Interpret the result 

physically and geometrically.

Green’s theorem in the plane, independence of the path

10.42. Verify Green’s theorem in the plane for 
C∫� x xy dx y xy dy2 3 2( ) ( 2 )− + − , where C is a square with vertices 

at (0, 0), (2, 0), (2, 2), (0, 2) and counterclockwise orientation.

Ans. Common value = 8

10.43. Evaluate the line integrals of (a) Problem 10.36 and (b) Problem 10.37 by Green’s theorem.

10.44. (a) Let C be any simple closed curve bounding a region having area A. Prove that if a1, a2, a3, b1, b2, b3 are 

constants,
C∫� a x a y a dx b x b y b dy b a A1 2 3 1 2 3 1 2( ) ( ) ( )+ + + + + = −  (b) Under what conditions will the line 

integral around any path C be zero?

Ans. (b) a2 = b1

10.45. Find the area bounded by the hypocycloid x2/3 + y2/3 = a2/3. (Hint: Parametric equations are x = a cos3 t,
y = a sin3 t, 0 < t <  2π.)

Ans. 3πa2/8

10.46. If x = ρ cos φ, y = ρ sin φ, prove that x dy y dx d21 1
and interpret.

2 2
ρ φ− =∫ ∫ÑC∫� x

10.47. Verify Green’s theorem in the plane for 
C∫� x x y dx xy dy3 2 2( ) ,− +  where C is the boundary of the region 

enclosed by the circles x2 + y2 = 4 and x2 + y2 = 16.

Ans. Common value = 120π
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10.48. (a) Prove that xy y dx x xy dy
(2,1) 4 2 3

(1,0)
(2 3) ( _ 4 )− + +∫ –  is independent of the path joining (1, 0) and (2, 1). 

(b) Evaluate the integral in (a).

Ans. (b) 5

10.49. Evaluate 
C

xy y x dx y3 2(2 cos ) (1 2− + −∫ x x y dy2 2sin 3 )+ along the parabola 2x = πy2 from (0, 0) to 

(π/2, 1).

Ans. π2/4

10.50. Evaluate the line integral in Problem 10.49 around a parallelogram with vertices at (0, 0), (3, 0), (5, 2), (2, 2).

Ans. 0

10.51. (a) Prove that G = (2x2 + xy – 2y2) dx + (3x2 + 2xy) dy is not an exact differential. (b) Prove that ey/x G/x is an exact 
differential of φ and find φ. (c) Find a solution of the differential equation (2x2 + xy – 2y2) dx + (3x2 + 2xy) dy = 0.

Ans. (b) φ = ey/x (x2 + 2xy) + c (c) x2 + 2xy + ce–y/x = 0

Surface integrals

10.52. (a) Evaluate 
S

x y dS2 2( ) ,+∫∫  where S is the surface of the cone z2 = 3(x2 + y2) bounded by z = 0 and z = 3. 

(b) Interpret physically the result in (a).

Ans. (a) 9π

10.53. Determine the surface area of the plane 2x + y + 2z = 16 cut off by (a) x = 0, y = 0, x = 2, y = 3 and 
(b) x = 0, y = 0, and x2 + y2 = 64.

Ans. (a) 9 (b) 24π

10.54. Find the surface area of the paraboloid 2z = x2 + y2 which is outside the cone z x y2 2 .= +

Ans.
2

1)
3

π (5 5 −

10.55. Find the area of the surface of the cone z2 = 3(x2 + y2) cut out by the paraboloid z = x2 + y y2.

Ans. 6π

10.56. Find the surface area of the region common to the intersecting cylinders x2 + y2 = a2 and x2 + z2 = a2.

Ans. 16a2

10.57. (a) Obtain the surface area of the sphere x2 + y2 + z2 = a2 contained within the cone z tan x y2 2α = + ,
0 < α < π/2. (b) Use the result in (a) to find the surface area of a hemisphere. (c) Explain why formally 
placing α = π in the result of (a) yields the total surface area of a sphere.

Ans. (a) 2πa2(1 – cos α) (b) 2πa2 (consider the limit as α → π/2)

10.58. Determine the moment of inertia of the surface of a sphere of radius a about a point on the surface. Assume 
a constant density σ.

Ans. 2Ma2, where mass M = 4πa2 σ
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10.59. (a) Find the centroid of the surface of the sphere x2 + y2 + z2 = a2 contained within the cone z tan 

x y2 2α = + , 0 < α < π/2. (b) From the result in (a) obtain the centroid of the surface of a hemisphere.

Ans. (a) 1/2a(1 + cos α) (b) a/2

The divergence theorem

10.60. Verify the divergence theorem for A = (2xy + z)i + y2j – (x + 3y)k taken over the region bounded by 2x + 2y
+ z = 6, x = 0, y = 0, z = 0.

Ans. common value = 27

10.61. Evaluate 
S

n dSF .⋅∫∫  where F = (z2 – x)i – xyj + 3zk and S is the surface of the region bounded by z = 4 – y2,

x = 0, x = 3 and the xy plane.

Ans. 16

10.62. Evaluate 
S

n dSA .⋅∫∫  where A = (2x + 3z)i – (xz + y)j + (y2 + 2z)k and S is the surface of the sphere having 

center at (3, –1, 2) and radius 3.

Ans. 108π

10.63. Determine the value of 
S

x dy dz y dz dx z dx dy,+ +∫∫  where S is the surface of the region bounded by the 

cylinder x2 + y2 = 9 and the planes z = 0 and z = 3, (a) by using the divergence theorem and (b) directly.

Ans. 81π

10.64. Evaluate 
S

xz dy dz y dz dx yz dx dy24 ,− +∫∫  where S is the surface of the cube bounded by x = 0, y = 0, 

z = 0, x = 1, y = 1, z = 1, (a) directly and (b) By Green’s theorem in space (divergence theorem).

Ans. 3/2

10.65. Prove that 
S

(∇×∫∫ A) · n dS for any closed surface S.

10.66. Prove that 
S
∫∫ n dS = 0. where n is the outward drawn normal to any closed surface S. (Hint: Let A = Θc,

where c is an arbitrary vector constant.) Express the divergence theorem in this special case. Use the 
arbitrary property of c.

10.67. If n is the unit outward drawn normal to any closed surface S bounding the region V, prove that

V

dV Sdiv n =∫∫∫ n

Stokes’s theorem

10.68. Verify Stokes’s theorem for A = 2yi + 3xj – z2k, where S is the upper half surface of the sphere x2 + y2 + z2 = 
9 and C is its boundary.

Ans. Common value = 9π



CHAPTER 10  Line Integrals, Surface Integrals, and Integral Theorems276

10.69. Verify Stokes’s theorem for A = (y + z)i – xzj + y2k, where S is the surface of the region in the first octant 
bounded by 2x + z = 6 and y = 2 which is not included in the (a) xy plane, (b) plane y = 2, and (c) plane 2x + 
z = 6 and C is the corresponding boundary.

Ans. The common value is (a) –6, (b) –9, and (c) –18.

10.70. Evaluate 
S

(∇×∫∫ A) · n dS. where A = (x – z)i + (x3 + yz)j – 3xy2k and S is the surface of the cone 

z = 2 – x y2 2+  above the xy plane.

Ans. 12π

10.71. If V is a region bounded by a closed surface S and B = ∇ × A, prove that
S
∫∫B · n dS = 0

10.72. (a) Prove that F = (2xy + 3)i + (x2 – 4z)j – 4yk is a conservative force field. (b) Find φ such that F = ∇φ.

(c) Evaluate 
C∫ F · dr, where C is any path from (3, –1, 2) to (2, 1, –1).

Ans. (b) φ = x2y – 4yz + 3x + constant (c) 6

10.73. Let C be any path joining any point on the sphere x2 + y2 + z2 = a2 to any point on the sphere x2 + y2 + z2 = 

b2. Show that if F = 5r3r, where r = xi + yj + zk, then 
C∫ F · dr = b5 – a5.

10.74. In Problem 10.73 evaluate 
C∫ F · dr is F = f (r)r, where f (r) is assumed to be continuous.

Ans.
b

a
r f r dr( )∫

10.75. Determine whether there is a function φ such that F = ∇φ, where (a) F = (xz – y)i + (x2y + z3)j + (3xz2 – xy)
k, and (b) F = 2xe–yi + (cos z – x2 e–y)j – y sin zk. If so, find it.

Ans. (a) φ does not exist (b) φ = x2e–y + y cos z + constant

10.76. Solve the differential equation (z3 – 4xy) dx + (6y – 2x2) dy + (3xz2 + 1) dz = 0.

Ans. xz3 – 2x2y + 3y2 + z = constant

Miscellaneous problems

10.77. Prove that a necessary and sufficient condition that 
C∫�

U U
dy dx

x y

∂ ∂−
∂ ∂

 be zero around every simple closed 

path C in a region ℜ (where U is continuous and has continuous partial derivatives of order two, at least) is 

that
U U

x y

2 2

2 2
0.

∂ ∂+ =
∂ ∂

10.78. Verify Green’s theorem for a multiply connected region containing two “holes” (see Problem 10.10).

10.79. If P dx + Q dy is not an exact differential but μ(P dx + Q dy) is an exact differential where μ is some 
function of x and y, then μ is called an integrating factor. (a) Prove that if F and G are functions of x alone 
then (Fy + G) dx + dy has an integrating factor μ which is a function of x alone, and find μ. What must be 
assumed about F and G? (b) Use (a) to find solutions of the differential equation xy´ = 2x + 3y.

Ans. (a) μ = e∫F(x) dx (b) y = cx3 – x, where c is any constant
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10.80. Find the surface area of the sphere x2 + y2 + (z – a)2 = a2 contained within the paraboloid z = x2 + y2.

Ans. 2πa

10.81. If f (r) is a continuously differentiable function of r x y z2 2 2 .= + +  prove that

f r dS
f r

r
dV

VS

( )
( )

n r= ′
∫∫∫∫∫

10.82. Prove that 
S

(φ∇×∫∫ n)dS = 0, where φ is any continuously differentiable scalar function of position and n is 
a unit outward drawn normal to a closed surface S. (See Problem 10.66.)

10.83. Establish Equation (3). Problem 10.32, by using Green’s theorem in the plane. [Hint: Let the closed region ℜ
in the xy plane have boundary C and suppose that under the transformation x = f (u, υ), y = g(u, υ), these are

transformed into ℜ´ and C´ in the uυ plane, respectively.] First prove that 
C

F x y dxdy Q x y dy( , ) ( , )
ℜ

=∫∫ ∫
where Q y F x y/ ( , ).∂ ∂ =  Then show that, apart from sign, this last integral is equal to 

C

g g
Q f u g u du d

u
[ ( , ), ( , )] .υ υ υ

υ
∂ ∂+
∂ ∂∫  Finally, use Green’s theorem to transform this into 

x y
F f u g u dud

u

( , )
[ ( , ), ( , )] .

( , )ℜ

υ υ υ
υ′

∂
∂∫∫

10.84. If x = f (u, υ, w), y = g(u, υ, w), z = h(u, υ, w) defines a transformation which maps a region ℜ of xyz space 
into a region ℜ´ of uυw space, prove, using Stokes’s theorem, that

x y z
F x y z dxdydz G u w dud dw

u w

( , , )
( , , ) ( , , )

( , , )ℜ ℜ

υ υ
υ′

∂=
∂∫∫∫ ∫∫∫

where G(u, υ, w) ≡ F[ f (u, υ, w), g(u, υ, w), h(u, υ, w)]. State sufficient conditions under which the result is 

valid. See Problem 10.83. Alternatively, employ the differential element of volume dV du d dw
u w

υ
υ

∂ ∂ ∂= ⋅ ×
∂ ∂ ∂
r r r

(recall the geometric meaning).

10.85. (a) Show that, in general, the equation r = r(u, υ) geometrically represents a surface. (b) Discuss the 
geometric significance of u = c1, υ = c2, where c1 and c2 are constants. (c) Prove that the element of arc 
length on this surface is given by

ds2 = E du2 + 2F du dυ + G dυ2

where E
u u

F
u

= ∂
∂

⋅ ∂
∂

= ∂
∂

⋅ ∂
∂

r r r r
, ,

υ
and G = ∂

∂
⋅ ∂
∂

r r
.

υ υ

10.86. (a) Referring to Problem 10.85, show that the element of surface area is given by dS = EG F 2− du dυ. (b) 

Deduce from (a) that the area of a surface r = r(u, υ) is
S

EG F dud2 .υ−∫∫  [Hint: Use the fact that 

u u u

r r r r r r

υ υ υ
∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞× = × ⋅ ×⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 and then use the identity (A × B) · (C × D) = (A · C)(B · D) – 

(A · D)(B · C).]

10.87. (a) Prove that r = a sin u cos υi + a sin u sin υj + a cos u, 0 < u < π, 0 < υ < 2π represents a sphere of 
radius a. (b) Use Problem 10.86 to show that the surface area of this sphere is 4πa2.

10.88. Use the result of Problem 10.34 to obtain div A in (a) cylindrical and (b) spherical coordinates. 
See Page 173.
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CHAPTER 11

Infinite Series

The early developers of the calculus, including Newton and Leibniz, were well aware of the importance of 
infinite series. The values of many functions such as sine and cosine were geometrically obtainable only in 
special cases. Infinite series provided a way of developing extensive tables of values for them.

This chapter begins with a statement of what is meant by infinite series, then the question of when these 
sums can be assigned values is addressed. Much information can be obtained by exploring infinite sums of 
constant terms; however, the eventual objective in analysis is to introduce series that depend on variables. 
This presents the possibility of representing functions by series. Afterward, the question of how continuity, 
differentiability, and integrability play a role can be examined.

The question of dividing a line segment into infinitesimal parts has stimulated the imaginations of phi-
losophers for a very long time. In a corruption of a paradox introduced by Zeno of Elea (in the fifth century 
B.C.) a dimensionless frog sits on the end of a one-dimensional log of unit length. The frog jumps halfway, 
and then halfway and halfway ad infinitum. The question is whether the frog ever reaches the other end. 
Mathematically, an unending sum,

1 1

2 4
+ + . . . 1

2n
+ + . . .

is suggested. Common sense tells us that the sum must approach 1 even though that value is never attained. 
We can form sequences of partial sums

1 2
1 1 1

, ,
2 2 4

S S= = +  . . . 
1 1

,
2 4nS = + + . . . 1

2n
+ Sn+1

. . .

and then examine the limit. This returns us to Chapter 2 and the modern manner of thinking about the in-
finitesimal.

In this chapter, consideration of such sums launches us on the road to the theory of infinite series.

Definitions of Infinite Series and Their Convergence and Divergence

Definition The sum

1 2
1

n
n

S u u u
∞

=

= = + +∑ . . .
nu+ + . . . (1)

is an infinite series. Its value, if one exists, is the limit of the sequence of partial sums {Sn}

lim n
n

S S
→∞

=  (2)

If there is a unique value, the series is said to converge to that sum S. If there is not a unique sum, the 
series is said to diverge.

Sometimes the character of a series is obvious. For example, the series 
1

1

2n
n

∞

=
∑  generated by the frog on the 

log surely converges, while 
1n

n
∞

=
∑  is divergent. On the other hand, the variable series 1 – x + x2 – x3 + x4 – x5 + . . .

raises questions.
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This series may be obtained by carrying out the division 
1

.
1 x−

 If –1 < x < 1, the sum Sn yields an ap-

proximation to 
1

1 x−
 and Equation (2) is the exact value. The indecision arises for x = –1. Some very great 

mathematicians, including Leonhard Euler, thought that S should be equal to 
1

,
2

 as is obtained by substitut-

ing – 1 into 
1

.
1 x−

 The problem with this conclusion arises with examination of 1 – 1 + 1 – 1 + 1 – 1 + . . . and

observation that appropriate associations can produce values of 1 or 0. Imposition of the condition of unique-
ness for convergence puts this series in the category of divergent and eliminates such possibility of ambigu-
ity in other cases.

Fundamental Facts Concerning Infinite Series

1. If Σun converges, then lim
n→∞

un = 0 (see Problem 2.26). The converse, however, is not necessarily true; 

i.e., if lim
n→∞

un = 0, Σun may or may not converge. It follows that if the nth term of a series does not ap-

proach zero, the series is divergent.

2. Multiplication of each term of a series by a constant different from zero does not affect the convergence 
or divergence.

3. Removal (or addition) of a finite number of terms from (or to) a series does not affect the convergence 
or divergence.

Special Series

1. Geometric series 1 2

1

n

n

ar a ar ar
∞

−

=

= + + +∑ . . . , where a and r are constants, converges to 

if 1
1

a
S r

r
= <

−
 and diverges if r >  1. The sum of the first n terms is 

(1 )

1

n

n
a r

S
r

−=
−

 (see 

Problem 2.25).

2. The p series
1

1 1 1 1

1 2 3p p p p
n n

∞

=

= + + +∑ . . . ,where p is a constant, converges for p > 1 and diverges for 

p <  1. The series with p = 1 is called the harmonic series.

Tests for Convergence and Divergence of Series of Constants

More often than not, exact values of infinite series cannot be obtained. Thus, the search turns toward informa-
tion about the series. In particular, its convergence or divergence comes into question. The following tests 
aid in discovering this information.

1. The comparison test for series of nonnegative terms.
(a) Convergence. Let υn >  0 for all n > N and suppose that Συn converges. Then if 0 < un < υn for all 

n > N, Σun also converges. Note that n > N means from some term onward. Often, N = 1.

EXAMPLE. Since 
1 1

2 1 2n n
≤

+
 and 

1

2n∑  converges, 
1

1

2n +∑  also converges.
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(b) Divergence. Let υn >  0 for all n > N and suppose that Συn diverges. Then if un > υn for all n > N, Σun

also diverges.

EXAMPLE. Since 
1 1

ln n n
>  and 

2

1

n
n

∞

=
∑  diverges, 

2

1

ln
n

n

∞

=
∑  also diverges.

2. The limit-comparison or quotient test for series of nonnegative terms.

(a) If un >  0 and υn >  0 and if lim n

n n

u

υ→∞
 = A � 0 or �, then Σun and Συn either both converge or both di-

verge.

(b) If A = 0 in (a) and Συn converges, then Σun converges.

(c) If A = � in (a) and Συn diverges, then Σun diverges.

This test is related to the comparison test and is often a very useful alternative to it. In particular, taking 
υn = 1 /np, we have the following theorems from known facts about the p series.

Theorem 1 Let lim
n→∞

np un = A. Then

(i) Σun conyerges if p > 1 and A is finite.

(ii) Σun diverges if p <  1 and A � 0 (A may be infinite).

EXAMPLES 1.
34 2

n

n −∑  converges since 2
3

1
lim .

44 2n

n
n

n→∞
⋅ =

−

 2.
In

1

n

n +∑  diverges since 1/ 2
1/2

In
lim .

( 1)n

n
n

n→∞
⋅ = ∞

+

3. Integral test for series of non-negative terms.
If f (x) is positive, continuous, and monotonic decreasing for x > N and is such that f (n) = un, n = 

N, N + 1, N + 2, . . . , then Σun converges or diverges according as ( ) lim ( )
M

MN n
f x dx f x dx

∞

→∞
=∫ ∫  con-

verges or diverges. In particular, we may have N = 1, as is often true in practice.

This theorem borrows from Chapter 12, since the integral has an unbounded upper limit. (It is an 
improper integral. The convergence or divergence of these integrals is defined in much the same way 
as for infinite series.)

EXAMPLE:
2

1

1

n n

∞

=
∑  converges since 

21

1
lim lim 1

M

M M

dx

Mx→∞ →∞

⎛ ⎞= −⎜ ⎟⎝ ⎠∫  exists.

4. Alternating series test. An alternating series is one whose successive terms are alternately positive 
and negative.

An alternating series converges if the following two conditions are satisfied (see Problem 11.15).
(a) ⏐un + 1⏐ < ⏐un⏐ for n > N. (Since a fixed number of terms does not affect the convergence or divergence 

of a series, N may be any positive integer. Frequently it is chosen to be 1.)

(b) lim lim
n

n
n

nu u
→∞ →∞

= =( )0 0or

EXAMPLE. For the series 
1 1 1 1

1
2 3 4 5

− + − + − =LL
1

1

( 1)
,

n

n
n

∞ −

=

−∑  we have 
1( 1)

,
n

nu
n

−−= 1
,nu

n
=

1
1

.
1nu

n+ =
+

 Then for n >  1, ⏐un + 1⏐ < ⏐un⏐. Also lim
n→∞

⏐un⏐ = 0. Hence, the series converges.

Theorem 2 The numerical error made in stopping at any particular term of a convergent alternating series 
which satisfies conditions (a) and (b) is less than the absolute value of the next term.

EXAMPLE. If we stop at the fourth term of the series 
1 1 1 1

1
2 3 4 5

− + − + − . . . , the error made is less than 
1

5
 = 0.2.
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5. Absolute and conditional convergence. The series Σun is called absolutely convergent if Σ⏐un⏐ con-
verges. If Σun converges but Σ⏐un⏐ diverges, then Σun is called conditionally convergent.

Theorem 3 If Σ⏐un⏐ converges, then Σun converges. In words, an absolutely convergent series is conver-
gent (see Problem 11.17).

EXAMPLE 1.
2 2 2 2 2 2

1 1 1 1 1 1

1 2 3 4 5 6
+ − − + + − . . . is absolutely convergent and thus convergent, since the 

series of absolute values 
2 2 2 2

1 1 1 1

1 2 3 4
+ + + + . . . converges.

EXAMPLE 2.
1 1 1

1
2 3 4

− + − + . . . converges, but 
1 1 1

1
2 3 4

+ + + + . . . diverges. Thus, 
1 1 1

1
2 3 4

− + − + . . . 

is conditionally convergent.

Any of the tests used for series with nonnegative terms can be used to test for absolute convergence. Also, 
tests that compare successive terms are common. Tests 6, 8, and 9 are of this type.

6. Ratio test. Let 1lim .n

n n

u
L

u
−

→∞
=  Then the series Σun

(a) converges (absolutely) if L < 1.

(b) diverges if L > 1.

If L = 1 the test fails.

7. The nth root test. Let lim .n
n

n
u L

→∞
=  Then the series Σun

(a) converges (absolutely) if L < 1

(b) diverges if L > 1.

If L = 1 the test fails.

8. Raabe’s test. Let 
1

lim 1 .n

n n

u
n L

u→∞

⎛ ⎞+
− =⎜ ⎟⎜ ⎟⎝ ⎠

 Then the series Σun

(a) converges (absolutely) if L > 1.

(b) diverges or converges conditionally if L < 1.

If L = 1 the test fails.

This test is often used when the ratio tests fails.

9. Gauss’s test.
2

1
If 1 ,n n

n

u cL

u n n

+
= − + q  where ⏐cn⏐ < P for all n > N the sequence cn is bounded, then the

series Σun

(a) converges (absolutely) if L > 1.

(b) diverges or converges conditionally if L <  1.

This test is often used when Raabe’s test fails.

Theorems on Absolutely Convergent Series

Theorem 4 (Rearrangement of terms.) The terms of an absolutely convergent series can be rearranged in any 
order, and all such rearranged series will converge to the same sum. However, if the terms of a conditionally 
convergent series are suitably rearranged, the resulting series may diverge or converge to any desired sum (see 
Problem 11.80).

Theorem 5 (Sums, differences, and products.) The sum, difference, and product of two absolutely conver-
gent series is absolutely convergent. The operations can be performed as for finite series.
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Infinite Sequences and Series of Functions, Uniform Convergence

We opened this chapter with the thought that functions could be expressed in series form. Such representation 
is illustrated by

3 3 2 1
1sin ( 1)

3! 5! (2 )!

n
nx x x

x x
n

−
−= − + − + + − +

−
L LL L

where
3 2 1

1
1 2

1

sin lim . with S , , ( 1)
3! (2 1)!

n k
k

n n
n

k

x x
x S x S x S

k

−
−

→∞
=

= = = − = −
−∑KL

Observe that until this section the sequences and series depended on one element, n. Now there is variation 
with respect to x as well. This complexity requires the introduction of a new concept called uniform conver-
gence, which, in turn, is fundamental in exploring the continuity, differentiation, and integrability of series.

Let {un(x)}, n = 1, 2, 3, . . . be a sequence of functions defined in [a, b]. The sequence is said to converge to 
F(x), or to have the limit F(x) in [a, b], if for each � > 0 and each x in [a, b] we can find N > 0 such that 
⏐un(x) – F(x)⏐ < � for all n > N. In such case we write lim

n→∞
un(x) = F(x). The number N may depend on x as 

well as �. If it depends only on � and not on x, the sequence is said to converge to F(x) uniformly in [a, b] or to 
be uniformly convergent in [a, b].

The infinite series of functions

1 2 3( ) ( ) ( ) ( )n
n

u x u x u x u x
∞

= + + +∑ . . . (3)

is said to be convergent in [a, b] if the sequence of partial sums {Sn(x)}, n = 1, 2, 3, . . . , where Sn(x) = u1(x)
+ u2(x) + . . . + un(x), is convergent in [a, b]. In such case we write lim

n→∞
Sn(x) = S(x) and call S(x) the sum of 

the series.
It follows that Σun(x) converges to S(x) in [a, b] if for each � > 0 and each x in [a, b] we can find N > 0 

such that ⏐Sn(x) – S(x)⏐ < � for all n > N. If N depends only on � and not on x, the series is called uniformly
convergent in [a, b].

Since S(x) – Sn(x) = Rn(x), the remainder after n terms, we can equivalently say that Σun(x) is uniformly 
convergent in [a, b] if for each � > 0 we can find N depending on � but not on x such that ⏐Rn(x)⏐ < � for all 
n > N and all x in [a, b].

These definitions can be modified to include other intervals besides a < x < b, such as a < x < b, and so on.
The domain of convergence (absolute or uniform) of a series is the set of values of x for which the series 

of functions converges (absolutely or uniformly).

EXAMPLE 1. Suppose un = xn/n and – 1/2 < x <  1. Now think of the constant function F(x) = 0 on this in-

terval. For any � > 0 and any x in the interval, there is N such that for all n > N⏐un – F(x)⏐ < �, i.e., ⏐xn/n⏐ < �.
Since the limit does not depend on x, the sequence is uniformly convergent.

EXAMPLE 2. If un = xn and 0 < x <  1, the sequence is not uniformly convergent because [think of the func-

tion F(x) = 0, 0 < x < 1, F(1) = 1]

0 whenn nx xε ε− < <
thus

n ln x < ln ε

On the interval 0 < x < 1, and for 0 < � < 1, both members of the inequality are negative; therefore, 
ln

.
ln

n
x

ε>  Since 
ln ln 1 ln ln (/ )

,
ln ln 1 ln (1 / )x nn x x

ε ε ε−= =
− ln

 it follows that we must choose N such that

ln 1/

ln 1/
n N

x

ε> >

From this expression we see that � → 0, then ln 
1

ln
ε

→ �, and also as x → 1 from the left 
1

ln
x

→ 0 

from the right; thus, in either case, N must increase without bound. This dependency on both � and x dem-
onstrates that the sequence is not uniformly convergent. For a pictorial view of this example, see Figure 11.1.
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Figure 11.1

Special Tests for Uniform Convergence of Series

1. Weierstrass M test. If a sequence of positive constants M1, M2, M3, . . . can be found such that in some 
interval

(a) ⏐un(x)⏐ < Mn n = 1, 2, 3, . . . 

(b) ΣMn converges

then Σun(x) is uniformly and absolutely convergent in the interval.

EXAMPLE.
2

1

cos

n

nx

n

∞

=
∑  is uniformly and absolutely convergent in [0, 2π] since 

2 2 2

cos 1 1
and

nx

n n n
≤ ∑

converges.

This test supplies a sufficient but not a necessary condition for uniform convergence, i.e., a series 
may be uniformly convergent even when the test cannot be made to apply.

Because of this test, we may be led to believe that uniformly convergent series must be absolutely 
convergent, and conversely. However, the two properties are independent; i.e., a series can be uniformly 
convergent without being absolutely convergent, and conversely. See Problems 11.30 and 11.127.

2. Dirichlet’s test. Suppose that
(a) the sequence {an} is a monotonic decreasing sequence of positive constants having limit zero.

(b) there exists a constant P such that for a < x < b⏐u1(x) + u2(x) + . . . + un(x)⏐ < P,   for all n > N.

Then the series 1 1a u 2 2( ) ( )x a u x+ +. . .
1

n n
n

a u
∞

=

= ∑ (x) is uniformly convergent in a < x < b.

Theorems on Uniformly Convergent Series

If an infinite series of functions is uniformly convergent, it has many of the properties possessed by sums of 
finite series of functions, as indicated in the following theorems.

Theorem 6 If {un(x)}, n = 1, 2, 3, . . . are continuous in [a, b] and if Σun(x) converges uniformly to the sum 
S(x) in [a, b], then S(x) is continuous in [a, b].

Briefly, this states that a uniformly convergent series of continuous functions is a continuous function. 
This result is often used to demonstrate that a given series is not uniformly convergent by showing that the 
sum function S(x) is discontinuous at some point (see Problem 11.30).



CHAPTER 11  Infinite Series 285

In particular, if x0 is in [a, b], then the theorem states that

0 0
0

1 1 1

lim ( ) lim ( ) ( )n n n
x x x x

n n n

u x u x u x
∞ ∞ ∞

→ →
= = =

= =∑ ∑ ∑
where we use right- or left-hand limits in case x0 is an endpoint of [a, b].

Theorem 7 If {un(x)}, n = 1, 2, 3, . . . are continuous in [a, b] and if Σun(x) converges uniformly to the sum 
S(x) in [a, b], then

1

( ) ( )
b b

n
a a

n

S x dx u x dx
∞

=

= ∑∫ ∫  (4)

or

1 1

( ) ( )
b b

n n
a a

n n

u x dx u x dx
∞ ∞

= =

⎧ ⎫⎪ ⎪ =⎨ ⎬
⎪ ⎪⎩ ⎭
∑ ∑∫ ∫  (5)

Briefly, a uniformly convergent series of continuous functions can be integrated term by term.

Theorem 8 If {un(x)}, n = 1, 2, 3, . . . are continuous and have continuous derivatives in [a, b] and if Σun(x)
converges to S(x) while Σu�n(x) is uniformly convergent in [a, b], then in [a, b]

1

( ) ( )n
n

S x u x
∞

′

=

′ = ∑  (6)

or

1 1

( ) ( )n n
n n

d d
u x u x

dx dx

∞ ∞

= =

⎧ ⎫⎪ ⎪ =⎨ ⎬
⎪ ⎪⎩ ⎭
∑ ∑  (7)

This shows conditions under which a series can be differentiated term by term.
Theorems similar to these can be formulated for sequences. For example, if {un(x)}, n = 1, 2, 3, . . . is 

uniformly convergent in [a, b], then

lim ( ) lim ( )
b b

n n
n na a

u x dx u x dx
→∞ →∞

=∫ ∫  (8)

which is the analog of Theorem 7.

Power Series

A series having the form
2

0 1 2a a x a x+ + + . . .
0

n
n

n

a x
∞

=

= ∑  (9)

where a0, a1, a2, . . . are constants, is called a power series in x. It is often convenient to abbreviate the series 
(9) as Σanx

n.
In general, a power series converges for ⏐x⏐ < R and diverges for ⏐x⏐ > R, where the constant R is called 

the radius of convergence of the series. For ⏐x⏐ = R, the series may or may not converge.
The interval ⏐x⏐ < R or – R < x < R, with possible inclusion of endpoints, is called the interval of conver-

gence of the series. Although the ratio test is often successful in obtaining this interval, it may fail, and in 
such cases, other tests may be used (see Problem 11.22).

The two special cases R = 0 and R = � can arise. In the first case the series converges only for x = 0; in 
the second case it converges for all x, sometimes written –� < x < � (see Problem 11.25). When we speak of 
a convergent power series, we shall assume, unless otherwise indicated, that R > 0.

Similar remarks hold for a power series of the form (9), where x is replaced by (x – a).
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Theorems on Power Series

Theorem 9 A power series converges uniformly and absolutely in any interval which lies entirely within
its interval of convergence.

Theorem 10 A power series can be differentiated or integrated term by term over any interval lying entirely 
within the interval of convergence. Also, the sum of a convergent power series is continuous in any interval 
lying entirely within its interval of convergence.

This follows at once from Theorem 9 and the theorem on uniformly convergent series on Pages 284 and 
285. The results can be extended to include endpoints of the interval of convergence by the following theo-
rems.

Theorem 11 Abel’s theorem. When a power series converges up to and including an endpoint of its interval 
of convergence, the interval of uniform convergence also extends so far as to include this endpoint. See 
Problem 11.42.

Theorem 12 Abel’s limit theorem. If 
0

n
n

n

a x
∞

=
∑  converges at x = x0, which may be an interior point or an 

endpoint of the interval of convergence, then

0

0 00 0 0

lim limn n n
n n n

x x x x
n n n

a x a x a x
∞ ∞ ∞

→ →
= = =

⎧ ⎫⎪ ⎪ ⎧ ⎫= =⎨ ⎬ ⎨ ⎬
⎩ ⎭⎪ ⎪⎩ ⎭

∑ ∑ ∑  (10)

If x0 is an endpoint, we must use x → x0 + or x → x0 – in Equation (10) according as x0 is a left- or a right-
hand endpoint.

This follows at once from Theorem 11 and Theorem 6 on the continuity of sums of uniformly convergent 
series.

Operations With Power Series

In the following theorems we assume that all power series are convergent in some interval.

Theorem 13 Two power series can be added or subtracted term by term for each value of x common to 
their intervals of convergence.

Theorem 14 Two power series, for example, 
0 0

andn n
n n

n n

a x b x
∞ ∞

= =
∑ ∑ , can be multiplied to obtain 

0

n
n

n

c x
∞

=
∑

where

0 1 1 2 2n n n nc a b a b a b− −= + + + . . . 
0na b+  (11) 

the result being valid for each x within the common interval of convergence.

Theorem 15 If the power series 
0

n
n

n

a x
∞

=
∑  is divided by the power series Σbnx

n where b0 � 0, the quotient 

can be written as a power series which converges for sufficiently small values of x.

Theorem 16 If 
0

,n
n

n

y a x
∞

=

= ∑  then by substituting 
0

,n
n

n

x b y
∞

=

= ∑  we can obtain the coefficients bn in terms 

of an. This process is often called reversion of series.

Expansion of Functions in Power Series

This section gets at the heart of the use of infinite series in analysis. Functions are represented through them. 
Certain forms bear the names of mathematicians of the eighteenth and early nineteenth centuries who did so 
much to develop these ideas.
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A simple way (and one often used to gain information in mathematics) to explore series representation of 
functions is to assume such a representation exists and then discover the details. Of course, whatever is found 
must be confirmed in a rigorous manner. Therefore, assume

2
0 1 2( ) ( ) ( )f x A A x c A x c= + − + − + . . . ( )n

nA x c+ − + . . .

Notice that the coefficients An can be identified with derivatives of f. In particular,

0 1 2
1

( ), ( ), ( ),
2!

A f c A f c A f c= = ′ = ′′ . . . , ( )1

!
n

nA f
n

= ( ),c . . .

This suggests that a series representation of f is

21
( ) ( ) ( )( ) ( )

2!
f x f c f c x c f x c= + ′ − + ′′ − + . . . ( )1

!
nf

n
+ ( )( )nc x c− . . .

A first step in formalizing series representation of a function f, for which the first n derivatives exist, is 
accomplished by introducing Taylor polynomials of the function.

0 1

2
2

( ) ( ) ( ) ( ) ( )( ),

1
( ) ( ) ( )( ) ( )( ) ,

2!

P x f c P x f c f c x c

P x f c f c x c f c x c

= = + ′ −

= + ′ − + ′′ −

( )1
( ) ( ) ( )( )

!
n

nP x f c f c x c f
n

= + ′ − + LL ( )( )nc x c−  (12)

Taylor’s Theorem

Let f and its derivatives f ′, f ″, . . . , f (n) exist and be continuous in a closed interval a ≤ x ≤ b and suppose that 
f (n + 1) exists in the open interval a < x < b. Then for c in [a, b],

f (x) = Pn(x) + Rn(x)

where the remainder Rn(x) may be represented in any of the three following ways.
For each n there exists ξ such that

( 1) 11
( ) ( )( ) (Lagrange form)

( 1)!
n n

nR x f x c
n

ξ+ += −
+

 (13)

(ξ is between c and x.)
(The theorem with this remainder is a mean value theorem. Also, it is called Taylor’s formula.)
For each n there exists ξ such that

( 1)1
( ) ( )( ) ( ) (Cauchy form)

!
n n

nR x f x x c
n

ξ ξ+= − −  (14)

( 1)1
( ) ( ) ( ) (Integral form)

!

x
n n

n
c

R x x t f t dt
n

+= −∫  (15)

If all the derivatives of f exist, then the following form, without remainder, may be explored:

( )

0

1
( ) ( )( )

!
n n

n

f x f c x c
n

∞

=

= −∑  (16)

This infinite series is called a Taylor series, although when c = 0, it can also be referred to as a MacLaurin 
series or expansion.

We might be tempted to believe that if all derivatives of f (x) exist at x = c, the expansion shown here would be 
valid. This, however, is not necessarily the case, for although one can then formally obtain the series on the right 
of the expansion, the resulting series may not converge to f (x). For an example of this see Problem 11.108.
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Precise conditions under which the series converges to f (x) are best obtained by means of the theory of 
functions of a complex variable. (See Chapter 16.)

The determination of values of functions at desired arguments is conveniently approached through Taylor 
polynomials.

EXAMPLE. The value of sin x may be determined geometrically for 0, ,
π
6

 and an infinite number of other 

arguments. To obtain values for other real number arguments, a Taylor series may be expanded about any of 
these points. For example, let c = 0 and evaluate several derivatives there; i.e., f (0) = sin 0 = 0, f ′(0) = cos 0 = 1, 
f ″(0) = – sin 0 = 0, f ″′(0) = –cos 0 = –1, f lv(0) = sin 0 = 0, f v(0) = cos 0 = 1.

Thus, the MacLaurin expansion to five terms is

3 51 1
sin 0 0 0

3! 51
x x x x= + − − + − + . . .

Since the fourth term is 0, the Taylor polynomials P3 and P4 are equal, i.e.,
3

3 4( ) ( )
3!

x
P x p x x= = −

and the Lagrange remainder is

5
4

1
( ) cos

5!
R x xξ=

Suppose an approximation of the value of sin .3 is required. Then

3
4

1
(.3) .3 (.3) .2945.

6
P = − ≈

The accuracy of this approximation can be determined from examination of the remainder. In particular 
(remember ⏐cos ξ⏐ ≤ 1),

5
4 5

1 1 243
cos (.3) .000021

5! 120 10
R ξ= ≤ <

Thus, the approximation P4(.3) for sin .3 is correct to four decimal places.
Additional insight into the process of approximation of functional values results by constructing a graph 

of P4(x) and comparing it to y = sin x. (See Figure 11.2.)

3

4 ( )
6

x
P x x= −

Figure 11.2

The roots of the equation are 0, ± 6 . Examination of the first and second derivatives reveals a relative 
maximum at x = 2  and a relative minimum at x = 2− . The graph is a local approximation of the sin curve. 
The reader can show that P6(x) produces an even better approximation.

(For an example of series approximation of an integral, see the example that follows.)
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Some Important Power Series

The following series, convergent to the given function in the indicated intervals, are frequently employed 
in practice:

1. sin x
3 5 7

3! 5! 7!

x x x
x= − + − + . . .

2 1
1( 1)

(2 1)!

n
n x

n

−
−− +

−
. . . x− ∞ < < ∞

2. cos x
2 4 6

1
2! 4! 6!

x x x= − + − + . . .
2 2

1( 1)
(2 2)!

n
n x

n

−
−− +

−
. . . x− ∞ < < ∞

3. xe
2 3

1
2! 3!

x x
x= + + + + . . .

1

( 1)!

nx

n

−
+ +

−
. . . x− ∞ < < ∞

4. ln 1 + x
2 3 4

2 3 4

x x x
x= − + − + . . . 1( 1)

n
n x

n
−− + . . . –1 1x< ≤

5.
3 5 71 +1

ln
2 1 3 5 7

x x x x
x

x
= + + + +

−
. . .

2 1

2 1

nx

n

−
+ +

−
. . . –1 1x< <

6. 1tan x−
3 5 7

3 5 7

x x x
x= − + − + . . .

2 1
1( 1)

2 1

n
n x

n

−
−− +

−
. . . –1 1x≤ ≤

7. (1 )px+ 2( 1)
1

2!

P p
px x

−= + + + . . . ( 1) ( 1)

!
nP p p n

x
n

− − ++ +KK . . .

This is the binomial series.
(a) If p is a positive integer or zero, the series terminates.

(b) If p > 0 but is not an integer, the series converges (absolutely) for – 1 < x <  1.

(c) If –1 < p < 0, the series converges for –1 < x <  1.

(d) If p <  –1, the series converges for – 1 < x < 1.

For all p, the series certainly converges if –1 < x < 1.

EXAMPLE. Taylor’s theorem applied to the series for ex enables us to estimate the value of the integral 
21

0
.xe dx∫ Substituting x2 for x, we obtain

2
4 6 81 1

10

0 0
1

2! 3! 4! 5!
x x x x e

e dx x x dx
ξ⎛ ⎞

= + + + + +⎜ ⎟⎜ ⎟⎝ ⎠
∫ ∫

where

4 6 8
4

1 1 1
( ) 1

2! 3! 4!
p x x x x x= + + + +

and

10
4 ( ) , 0

5!

e
R x x x

ξ
ξ= < <

Then
1

4
0

1 1 1 1
( ) 1 1.4618

3 5(2!) 7(3!) 9(4!)
P x dx = + + + + ≈∫

101 1 1
10

4
0 0 0

( ) .0021
5! 5! 11.5

e x e
R x dx x dx e dx

ξ
≤ ≤ = <∫ ∫ ∫

Thus, the maximum error is less than .0021 and the value of the integral is accurate to two decimal places.
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Special Topics

1. Functions defined by series are often useful in applications and frequently arise as solutions of dif-
ferential equations. For example, the function defined by

4

2

0

2
( ) 1

2(2 2) 2 .4(2 2)(2 4)2 !

( 1) ( / 2)

!( )!

p

p p

n p n

n

x x
J x

p p pp

x

n n p

∞ +

=

⎧ ⎫⎪ ⎪= − + −⎨ ⎬+ + +⎪ ⎪⎩ ⎭

−=
+∑

LL

 (16)

is a solution of Bessel’s differential equation x2y� + xy� + (x2 – p2)y = 0 and is thus called a Bessel func-
tion of order p. See Problems 11.46 and 11.110 through 11.113.

Similarly, the hypergeometric function

2( 1) ( 1)
( , ; ; ) 1

1 1 2 ( 1)

a B a a b b
F a b c x x x

c c c

⋅ + += + + +
⋅ ⋅ ⋅ +

b . . . (17)

is a solution of Gauss’s differential equation x(1 – x)y� + {c – (a + b + 1)x}y� – aby = 0.

These functions have many important properties.

2. Infinite series of complex terms, in particular, power series of the form 
0

, where = +n
n

n

a z z x iy
∞

=
∑

and an may be complex and can be handled in a manner similar to real series.
Such power series converge for ⏐z⏐ < R; i.e., interior to a circle of convergence x2 + y2 = R2, where R

is the radius of convergence (if the series converges only for z = 0, we say that the radius of convergence 
R is zero; if it converges for all z, we say that the radius of convergence is infinite). On the boundary of 
this circle, i.e., ⏐z⏐ = R, the series may or may not converge, depending on the particular z.

Note that for y = 0 the circle of convergence reduces to the interval of convergence for real power 
series. Greater insight into the behavior of power series is obtained by use of the theory of functions 
of a complex variable (see Chapter 16).

3. Infinite series of functions of two (or more) variables, such as 
0

( , )n
n

u x y
∞

=
∑ , can be treated in a manner 

analogous to series in one variable. In particular, we can discuss power series in x and y having the form

a00 + (a10x + a01y) + (a20x
2 + a11xy + a02y

2) + . . .

using double subscripts for the constants. As for one variable, we can expand suitable functions of x
and y in such power series. In particular, the Taylor theroem may be extended as follows.

Taylor’s Theorem (For Two Variables)

Let f be a function of two variables x and y. If all partial derivatives of order n are continuous in a closed 
region and if all the (n + 1) partial derivatives exist in the open region, then

2

0 0 0 0 0 0 0 0

0 0

1
( , ) ( , ) ( , ) ( , )

2!

1
( , )

!

n

n

f x h y k f x y h k f x y h k f x y
x y x y

h k f x y R
n x y

⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂+ + = + + + + +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

⎛ ⎞∂ ∂+ + +⎜ ⎟∂ ∂⎝ ⎠

 . . .

 (18)

where
1

0 0
1

( , ), 0 1
( 1)!

n

nR h k f x h y k
n x y

θ θ θ
+⎛ ⎞∂ ∂= + + + < <⎜ ⎟+ ∂ ∂⎝ ⎠
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and where the meaning of the operator notation is as follows:

2
2 2

,

2

x y

xx xy yy

h k f hf kf
x y

h k h f hkf k f
x y

⎛ ⎞∂ ∂+ = +⎜ ⎟∂ ∂⎝ ⎠

⎛ ⎞∂ ∂+ = + +⎜ ⎟∂ ∂⎝ ⎠

and we formally expand 
n

h k
x y

⎛ ⎞∂ ∂+⎜ ⎟∂ ∂⎝ ⎠
 by the binomial theorem.

Note: In alternate notation h = Δx = x – x0, k = Δy = y – y0.
If Rn → 0 as n → � then an unending continuation of terms produces the Taylor series for f(x, y).
Multivariable Taylor series have a similar pattern.

4. Double series. Consider the array of numbers (or functions)

11 12 13

21 22 23

31 32 33

u u u

u u u

u u u

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟⎝ ⎠

K
K
K

M M M

L

L

L

M M M

Let
1 1

m n

mn pq
p q

S u
= =

= ∑∑  be the sum of the numbers in the first m rows and first n columns of this array. 

If there exists a number S such that lim ,mn
m
n

S S
→∞
→∞

=  we say that the double series 
1 1

pq
p q

u
∞ ∞

= =
∑∑ converges

to the sum S; otherwise, it diverges.

Definitions and theorems for double series are very similar to those for series already considered.

5. Infinite products. Let Pn = (1 + u1)(1 + u1)(1 + u2)(1 + u3) . . . (1 + un) denoted by 
1

(1 ),
n

k
k

u
=

+∏  where 

we suppose that uk � –1, k = 1, 2, 3, . . . . If there exists a number P � 0 such that limn→� Pn = P, we 

say that the infinite product 1 2 3((1 )(1 )(1 )u u u+ + +  . . . 
1

(1 ),k
k

u
∞

=

= +∏  or, briefly, Π(1 + uk), converges 

to P; otherwise, it diverges.
If Π(1 + ⏐uk⏐) converges, we call the infinite product Π(1 + uk) absolutely convergent. It can be 

shown that an absolutely convergent infinite product converges and that factors can in such cases be 
rearranged without affecting the result.

Theorems about infinite products can (by taking logarithms) often be made to depend on theorems 
for infinite series. Thus, for example, we have the following theorem.

Theorem A necessary and sufficient condition that Π(1 + uk) converge absolutely is that Σuk converge 
absolutely.

6. Summability. Let S1, S2, S3, . . . be the partial sums of a divergent series Σun. If the sequence 
1 2 31 2

1, ,
2 3

S S SS S
S

+ ++  . . . (formed by taking arithmetic means of the first n terms of S1, S2, S3, . . .) 

converges to S, we say that the series Σun is summable in the Césaro sense, or C-1 summable to S (see 
Problem 11.51).

If Σun converges to S, the Césaro method also yields the result S. For this reason, the Césaro method 
is said to be a regular method of summability.

In case the Césaro limit does not exist, we can apply the same technique to the sequence 
1 2 31 2

1, , ,
3 3

S S SS S
S

+ ++  . . . If the C-1 limit for this sequence exists and equals S, we say that Σuk

converges to S in the C-2 sense. The process can be continued indefinitely.
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SOLVED PROBLEMS

Convergence And Divergence Of Series Of Constants

11.1. (a) Prove that 
1 1 1

1 3 3 5 5 7
+ + +

⋅ ⋅ ⋅
. . .

1

1

(2 1) (2 1)
n

n n

∞

=

=
− +∑  converges and (b) find its sum. 

1 1 1 1

(2 1) (2 1) 2 2 1 2 1nu
n n n n

⎛ ⎞
= = −⎜ ⎟− + − +⎝ ⎠

Then

1 2nS u u= + + . . . 1 1 1 1 1 1

2 1 3 2 3 5nu
⎛ ⎞ ⎛ ⎞+ = − + − +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

. . . 1 1 1

2 2 1 2 1n n

⎛ ⎞
+ −⎜ ⎟− +⎝ ⎠

1 1 1 1 1 1

2 1 3 3 5 5

⎛
= − + − + −⎜

⎝
. . . 1 1 1 1

1
2 1 2 1 2 2 1n n n

⎞ ⎛ ⎞
+ − = −⎟ ⎜ ⎟− + +⎠ ⎝ ⎠

Since
1 1 1

lim lim 1 ,
2 2 1 2n

n n
S

n→∞ →∞

⎛ ⎞
= − =⎜ ⎟+⎝ ⎠

 the series converges and its sum is 1/2.

The series is sometimes called a telescoping series, since the terms of Sn, other than the first and last, 
cancel out in pairs.

11.2. (a) Prove that 
2 3

2 2 2

3 3 3
⎛ ⎞ ⎛ ⎞+ + +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

 . . . 
1

2

3

n

n

∞

=

⎛ ⎞= ⎜ ⎟⎝ ⎠∑ converges and (b) find its sum.

This is a geometric series; therefore, the partial sums are of the form 
(1 )

.
1

n

n
a r

S
r

−=
−

 Since ⏐r⏐ < 1 
2 2

lim and in particular with and , we obtain 2.
1 3 3n

n

a
S S r a S

r→∞
= = = = =

−

11.3. Prove that the series 
1 2 3 4

2 3 4 5
+ + + +  . . . 

1
1

n

n

n

∞

=

=
+∑ diverges.

lim lim 1.
1n

n n

n
u

n→∞ →∞
= =

+
 Hence, by Problem 2.26, the series is divergent.

11.4. Show that the series whose nth term is 1nu n n= + − diverges although lim
x→∞

un = 0.

It is a fact that lim
x→∞

un = 0 follows from Problem 2.14(c).

Now Sn = u1 + u2 + . . . + un = ( 2  – 1 ) + ( 3  – 2 ) + . . . + ( ( 1 ) 1 1.n n n+ − = + −
The Sn increases without bound and the series diverges.
This problem shows that lim

x→∞
 = 0 is a necessary but not sufficient condition for the convergence of Σun.

See also Problem 11.6.

Comparison test and quotient test

11.5. If 0 < un < υn, n = 1, 2, 3, . . . and if Συn converges, prove that Σun also converges (i.e., establish the 
comparison test for convergence).

Let Sn = u1 + u2 + . . . + un, Tn = υ1 + υ2 + . . . + υn.
Since Συn converges, limn→� Tn exists and equals T, say. Also, since υn >  0, Tn < T.
Then Sn = u1 + u2 + . . . + un < υ1 + υ2 + . . . + υn < T or 0 < Sn < T.
Thus Sn is a bounded monotonic increasing sequence and must have a limit (see Chapter 2); i.e., Σun

converges.
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11.6. Using the comparison test, prove that 
1 1

1
2 3

+ + + . . . 
1

1

n
n

∞

=

= ∑ diverges.

We have 

1
1

2
1 1 1 1 1

2 3 4 4 2
1 1 1 1 1 1 1 1 1

4 5 6 7 8 8 8 8 2

≥

+ ≥ + =

+ + + ≥ + + + =

1 1 1

8 9 10
+ + + . . . 1 1 1 1

15 16 16 16
+ ≥ + + +  . . . 1 1

(8 terms) =
16 2

+

and soon. Thus, to any desired number of terms.
1 1 1 1 1 1

1
2 3 4 5 6 7

⎛ ⎞ ⎛ ⎞+ + + + + + +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
 . . . 1 1 1

2 2 2
≥ + + + . . .

Since the right-hand side can be made larger than any positive number by choosing enough terms, the given 
series diverges.

By methods analogous to that used here, we can show that 
1

1
,

p
n n

∞

=
∑  where p is a constant, diverges if p

<  1 and converges if p > 1. This can also be shown in other ways [see Problem 11.13(a)].

11.7. Test for convergence or divergence 
3

1

ln
.

2 1n

n

n

∞

= −∑

3 3 3 3 2

1 1 In 1
Since In and , we have .

2n 1 2 1

n n
n n

n n n n
< ≤ ≤ =

− −

Then the given series converges, since 
2

1

1

n n

∞

=
∑  converges.

11.8. Let un and υn be positive. If lim n

n n

u

υ→∞
 = constant A � 0, prove that Σun converges or diverges according as 

Συn converges or diverges.

By hypothesis, given � > 0, we can choose an integer N such that for all .n

n

u
A n Nε

υ
− < >  Then for 

n = N + 1, N + 2, . . . 

ƒ or ( ) ( )n
n n n

n

u
A A u Aε ε ε υ ε υ

υ
− < − < − < +  (1)

Summing from N + 1 to � (more precisely, from N + 1 to M and then letting M → �),

1 1 1

( ) ( )n n n
N N N

A u Aε υ ε υ
∞ ∞ ∞

+ + +

− ≤ ≤ +∑ ∑ ∑  (2)

There is no loss in generality in assuming A – � > 0. Then from the right-hand inequality of Equation (2),
Σun converges when Συn does. From the left-hand inequality of Equation (2), Σun diverges when Συn does. For 
the cases A = 0 or A = �, see Problem 11.66.

11.9. Test for convergence: (a) 
2

3
1

4 3
,

2n

n n

n n

∞

=

− +
+∑  (b) 

3
1

,
2 1n

n n

n

∞

=

+
−∑  and (c) 

2
1

ln
.

3n

n

n

∞

= +∑

(a) For large n,
2

3

4 3

2

n n

n n

− +
+

 is approximately 
2

3

4 4
.

n

nn
=  Taking 

2

3

4 3

2
n

n n
u

n n

− +=
+

 and 
4

,n n
υ =  we have 

lim 1.n

n n

u

υ→∞
= =
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Since Συn = 4Σ1/n diverges, Σun also diverges, by Problem 11.8.
Note that the purpose of considering the behavior of un for large n is to obtain an appropriate comparison 

series υn. In this case we could just as well have taken υn = 1/n.

Another method:
2

3

4 3
lim 4.

2n

n n
n

n n→∞

⎛ ⎞− + =⎜ ⎟⎜ ⎟+⎝ ⎠
 Then by Theorem 1, Page 281, the series converges.

(b) For large 
3

,
2 1

n
n n

n u
n

+=
−

 is approximately 
3 2

1

2 2
n

n

n n
υ = = .

Since lim 1n

n n

u

υ→∞
=  and 

2

1 1

2n
n

υ =∑ ∑  converges (p series with p = 2), the given series converges.

Another method: 2
3

1
lim .

22 1n

n n
n

n→∞

⎛ ⎞+ =⎜ ⎟⎜ ⎟−⎝ ⎠
 Then by Theorem 1, Page 281, the series converges.

(c) 3/ 2 3/ 2
2 2

In In In
lim lim lim 0

3n n n

n n n
n n

n n n→∞ →∞ →∞

⎛ ⎞ ⎛ ⎞≤ = =⎜ ⎟ ⎜ ⎟⎜ ⎟+ ⎝ ⎠⎝ ⎠

l l l
 (by L’Hospital’s rule or otherwise). Then by 

Theorem 1 with p = 3/2. the series converges.

Note that the method of Problem 11.6(a) yields 
2 2

ln 1

3

n n

nn n
< =

+
, but nothing can be deduced, since 

Σ1/n diverges.

11.10. Examine for convergence: (a) 
2

1

n

n

e
∞

−

=
∑  and (b) 3

1

1
sin .

n
n

∞

=

⎛ ⎞
⎜ ⎟⎝ ⎠∑

(a)
22lim 0n

n
n e−

→∞
=  (by L’Hospital’s rule or otherwise). Then by Theorem 1 with p = 2, the series con-

verges.

(b) For large n, sin(1/n) is approximately 1/n. This leads to consideration of
3

3 3 1 sin(1 /
lim sin lim 1

1/n n

n
n

n n→∞ →∞

⎛ ⎞ ⎧ ⎫= =⎨ ⎬⎜ ⎟⎝ ⎠ ⎩ ⎭
from which we deduce, by Theorem 1 with p = 3, that the given series converges.

Integral test

11.11. Establish the integral test (see Page 281).

We perform the proof taking N = 1. Modifications are easily made if N > 1.
From the monotonicity of f(x), we have

1 ( 1) ( ) ( ) 1, 2, 3,n nu f n f x f n u n+ = + ≤ ≤ = = . . .

Integrating from x = n to x = n + 1, using Property 7, Page 98,
1

1 ( ) 1, 2, 3
n

n n
n

u f x dx u n
+

+ ≤ ≤ =∫ . . .

Summing from n = 1 to M – 1,

2 3u u+ + . . . 
1 2

1
( )

M

Mu f x dx u u+ ≤ ≤ + +∫ . . . 
1Mu −  (1)

If f(x) is strictly decreasing, the equality signs in Equation (1) can be omitted.
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If
1

lim ( )
M

M
f x dx

→∞ ∫  exists and is equal to S, we see from the left-hand inequality in Equation (1) that 

u2 + u3 + . . . + uM is monotonic increasing and bounded above by S, so that Σun converges.

If
1

lim ( )
M

M
f x dx

→∞ ∫  is unbounded, we see from right-hand inequality in Equation (1) that σun di-

verges.
Thus, the proof is complete.

11.12. Illustrate geometrically the proof in Problem 11.11.

Geometrically, u2 + u3 + . . . + uM is the total area of the rectangles shown shaded in Figure 11.3, while 
u1 + u2 + . . . + uM – 1 is the total area of the rectangles which are shaded and nonshaded.

The area under the curve y = f (x) from x = 1 to x = M is intermediate in value between the two areas given 
above, thus illustrating the result (1) of Problem 11.11.

Figure 11.3

11.13. Test for convergence:

(a)
1

1
, constant

p
p

n

∞

=∑

(b)
2

1 1

n

n

∞

+∑

(c)
2

1

Inn n

∞

∑ l

(d)
2

1

nne
∞

−∑

(a) Consider 
1 1

1 1
1

1 1

Mp pM M
p

p

dx x M
x dx

p px

− −
−= = =

− −∫ ∫ , where 1.p ≠

If
1 1

1, lim ,
1

p

M

M
p

p

−

→∞

−< = ∞
−

 so that integral, and thus the series, diverges.

If
1 1 1

1, lim ,
1 1

p

M

M
p

p p

−

→∞

−> =
− −

 so that the integral, and thus the series, converges.

If
1 1

1, In and lim In ,
M M

p M

dx dx
p M M

xx →∞
= = = = ∞∫ ∫ l l  so that the integral, and thus the series, di-

verges. Thus, the series converges if p > 1 and diverges if p <  1.
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(b) 2 2
2 11

1 1 1
lim lim In ( 1) lim In ( 1)

2 2 21

M M

M M M

x dx
x M

x→∞ →∞ →∞

⎧ ⎫= + = + − = ∞⎨ ⎬
+ ⎩ ⎭∫ l l  and the series diverges.

(c) { }21
lim lim In (In ) lim In(In ) In(In 2)

In

M M

M M M

dx
x M

x x→∞ →∞ →∞
= = − = ∞∫ l

l l l l ll  and the series diverges.

(d)
2 22 1 1

1 1

1 1 1 1
lim lim lim

2 2 2 2

MM
x x M

M M M
xe dx e e e e− − − − −

→∞ →∞ →∞

⎧ ⎫= − = − =⎨ ⎬
⎩ ⎭∫  and the series converges.

Note that when the series converges, the value of the corresponding integral is not (in general) the same 
as the sum of the series. However, the approximate sum of a series can often be obtained quite accurately by 
using integrals. See Problem 11.74.

11.14. Prove that 
2

1

1 1
Prove that .

4 2 41n n

π π∞

=

< < +
+∑

From Problem 11.11 it follows that
1

2 2 21
2 1

1 1
lim lim lim

1 1 1

MM M

M M M
n n

dx

n x n

−

→∞ →∞ →∞
= =

< <
+ + +∑ ∑∫

i.e.,
2 2

2 1

1 1
,

41 1n nn n

π∞ ∞

= =

< <
+ +∑ ∑  from which 

2
1

1

4 1n n

π ∞

=

<
+∑  as required.

Since
2

2

1
,

41n n

π∞

=

<
+∑  we obtain, on adding 

1

2
 to each side, 

2
1

1 1
.

2 41n n

π∞

=

< +
+∑

The required result is therefore proved.

Alternating series

11.15. Given the alternating series a1 – a2 + a3 – a4 + . . . , where 0 < an + 1 < an and where limn→ � an = 0, prove 
that (a) the series converges and (b) the error made in stopping at any term is not greater than the absolute 
value of the next term.

(a) The sum of the series to 2M terms is

S2M = (a1 – a2) + (a3 – (a4) + . . . + (a2M–1 – a2M)

= a1 – (a2 – a3) – (a4 – a5) – . . . – (a2M – 2 – a2M – 1) – a2M

Since the quantities in parentheses are nonnegative, we have

S2M >  0,   S2 < S4 < S6 < S8 < . . . < S2M < a1

Therefore, {S2M} is a bounded monotonic increasing sequence and thus has limit S.
Also, S2M + 1 = S2M + a2M + 1. Since limM→ � S2M = S and limM → � a2M + 1 = 0 (for, by hypothesis, limM→ �

an = 0), it follows that limM→ � S2M+ 1 = limM → � S2M + limM→ � a2M + 1 = S + 0 = S.
Thus, the partial sums of the series approach the limit S and the series converges.

(b) The error made in stopping after 2M terms is

(a2M+ 1 – a2M+ 2) + (a2M+ 3 – a2M + 4) + . . . = a2M+ 1 – (a2M + 2 – a2M + 3) – . . .

and is thus nonnegative and less than or equal to a2M+ 1, the first term which is omitted.
Similarly, the error made in stopping after 2M + 1 terms is

–a2M+ 2 + (a2M+ 3 – a2M+ 4) + . . . = –(a2M+ 2 – a2M+ 3) – (a2M+ 4 – a2M+ 5) – . . . 

which is nonpositive and greater than –a2M+ 2.
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11.16. (a) Prove that the series 
1

1

( 1)
.

2 1

n

n
n

∞ +

=

−
−∑  converges. (b) Find the maximum error made in approximating the 

sum by the first eight terms and the first nine terms of the series. (c)How many terms of the series are needed 
in order to obtain an error which does not exceed .001 in absolute value?

(a) The series is 
1 1 1 1

1
3 5 7 9

− + − + − . . . . If 
1( 1)

,
2 1

n

nu
n

+−=
−

 then 1 1
1

,
2 1n n n na u a u

n + += = = =
−

1
.

2 1n +
 Since 

1 1

2 1 2 1n n
≤

+ −
 and since 

1
lim 0,

2 1n n→∞ −
 it follows by Problem 11.5(a) that the series 

converges.

(b) Use the results of Problem 11.15(b). Then the first eight terms give 
1 1 1 1 1 1 1

1
3 5 7 9 11 13 15

− + − + − + − ,

and the error is positive and does not exceed 
1

17
.

Similarly, the first nine terms are 
1 1 1 1 1 1 1 1

1
3 5 7 9 11 13 15 17

− + − + − + − +  and the error is negative and 

greater than or equal to –
1

19
; i.e., the error does not exceed 

1

19
 in absolute value.

(c) The absolute value of the error made in stopping after M terms is less than 1/(2M + 1). To obtain the 
desired accuracy, we must have 1/(2M + 1) <  .001, form which M >  499.5. Thus, at least 500 terms are 
needed.

Absolute and conditional convergence

11.17. Prove that an absolutely convergent series is convergent.

Given that Σ⏐un⏐ converges, we must show that Σun converges.
Let SM = u1 + u2 + . . . + uM and TM = ⏐u1⏐ + ⏐u2⏐ + . . . + ⏐uM⏐. Then

SM + TM = (u1 + ⏐u1⏐) + (u2 + ⏐u2⏐) + . . . + (uM + ⏐uM⏐)

<  2⏐u1⏐ + 2⏐u2⏐ + . . . + 2⏐uM⏐

Since Σ⏐un⏐ converges and since un + ⏐un⏐ >  0, for n = 1, 2, 3, . . . , it follows that SM + TM is a bounded 

monotonic increasing sequence, and so lim
M→∞

 (SM + TM) exists.

Also, since lim
M→∞

TM exists (since the series is absolutely convergent by hypothesis),

lim lim ( ) lim ( ) limM M M M M M M
M M M M

S S T T S T T
→∞ →∞ →∞ →∞

= + − = + −

must also exist, and the result is proved.

11.18. Investigate the convergence of the series 
3 / 2 3/ 2 3/ 2

sin 1 sin 2 sin 3

1 2 3
− + − . . . .

Since each term is, in absolute value, less than or equal to the corresponding term of the series 

3 / 2 3/ 2 3/ 2

1 1 1

1 2 3
+ + + . . . . which converges, it follows that the given series is absolutely convergent and, 

hence, convergent by Problem 11.17.

11.19. Examine for convergence and absolute convergence:

(a)
1

2
1

( 1)

1

n

n n

∞ −

=

−
+∑
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(b)
1

2
2

( 1)

In

n

n n n

∞ −

=

−∑

(c)
1

2
1

( 1) 2n n

n n

∞ −

=

−∑
(a) The series of absolute values is 

2

2
1 1n

n

n

∞

= +∑ , which is divergent by Problem 11.13(b). Hence, the given 

series is not absolutely convergent

However, if 
2 1

n n
n

a u
n

= =
+

 and 1 1 2

1
,

( 1) 1
n n

n
a u

n
+ +

+= =
+ +

 then an+1 < an for all n >  1, and

also
2

lim lim 0.
1

n
n n

n
a

n→∞ →∞
= =

+
 Hence, by Problem 11.15 the series converges.

Since the series converges but is not absolutely convergent, it is conditionally convergent.

(b) The series of absolute values is 
2

2

1
.

Inn n n

∞

=
∑ l

By the integral test, this series converges or diverges according as 
22

lim
In

M

M

dx

x x→∞ ∫ l
 exists or does not 

exist.
If

2 2

1 1
ln , .

lnln

dx du
u x c c

u xx x u
= = = − + = − +∫ ∫

Hence,
22

1 1 1
lim lim

In 2 In In 2In

M

M M

dx

Mx x→∞ →∞

⎛ ⎞
= − =⎜ ⎟

⎝ ⎠∫ l l l l
, and the integral exists. Thus, the series con-

verges.

Then
1

2
2

( 1)

In

n

n n n

∞ −

=

−∑ l
 converges absolutely and thus converges.

Another method: Since
2 2

1 1

( 1) ln ( 1) lnn n n n
≤

+ +
 and 

2

1
lim 0,

lnn n n→∞
=  it follows by Problem 

11.15(a), that the given alternating series converges. To examine its absolute convergence, we must proceed as 
before.
(c) Since lim 0n

n
u

→∞
≠  where 

1

2

( 1) 2
,

n n

nu
n

−−=  the given series cannot be convergent. To show that 

lim 0,n
n

u
→∞

≠  it suffices to show that
2

2
lim lim 0.n
n n

n
u

n→∞ →∞
= ≠  This can be accomplished by L’Hospital’s 

rule or other methods [see Problem 11.21(b)].

Ratio test

11.20. Establish the ratio test for convergence.

Consider first the series u1 + u2 + u3 + . . . where each term is nonnegative. We must prove that if 
1lim 1,n

n n

u
L

u
+

→∞
<  then necessarily Σun converges.

By hypothesis, we can choose an integer N so large that for all n > N, (un+ 1/un) < r where L < r < 1.
Then

1

2
2 1

3
3 2

N N

N N N

N N N

u r u

u r u r u

u r u r u

+

+ +

+ +

<

< <

< <

and so on. By addition,

uN + 1 + uN + 2 + . . . < uN(r + r2 + r3 + . . .)

and so the given series converges by the comparison test, since 0 < r < 1.
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In case the series has terms with mixed signs, we consider ⏐u1⏐ + ⏐u2⏐ ⏐u3⏐ + . . . . By the preceding 

proof and Problem 11.17, it follows that if 
1lim 1,n

n n

u
L

u
+

→∞
= <  then Σun converges (absolutely).

Similarly, we can prove that if 
1lim 1n

n n

u
L

u
+

→∞
= >  the series Σun diverges, while if 

1lim 1n

n n

u
L

u
+

→∞
= =

the ratio test fails [see Problem 11.21(c)].

11.21. Investigate the convergence of 

(a)
24

1

n

n

n e
∞

−

=
∑

(b)
1

2
1

( 1) 2n n

n n

∞ −

=

−∑

(c)
1

2
1

( 1)

1

n

n

n

n

∞ −

=

−
+∑

(a) Here un = e–n2
. Then

2 2

2 2

4 ( 1) 4 ( 2 1)
1

4 4

4 4
2 1 2 1

( 1) ( 1)
lim lim lim

1 1
lim lim lim 1 0

n n n
n

n nn n nn

n n

n n n

u n e n e

u n e n e

n n
e e

n n

− + + +
+

− −→∞ →∞ →∞

− − − −

→∞ →∞ →∞

+ + −= =

+ +⎛ ⎞ ⎛ ⎞= = = ⋅⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
= 0

Since 0 < 1, the series converges.

(b)
1

2

( 1) 2
Here . Then

n n

nu
n

−−=

1 2 2
1

2 1 2

( 1) 2 2
lim lim lim 2

( 1) ( 1) 2 ( 1)

n n
n

n nn n nn

u n n

u n n

+
+

−→∞ →∞ →∞

−= ⋅ = =
+ − +

Since s > 1, the series diverges. Compare Problem 11.19(c).

(c)
1

2

( 1)
Here . Then

1

n

n
n

u
n

−−=
+

2 2
1

2 1 2

( 1) ( 1) 1 ( 1) ( 1)
lim lim lim 1

( 1) 1 ( 1) ( 2 2)

n
n

n nn n nn

u n n n n

u n n n n

+
−→∞ →∞ →∞

− + + + += ⋅ = =
+ + − + +

and the ratio test fails. By using other tests [see Problem 11.19(a)], the series is seen to be convergent.

Miscellaneous tests

11.22. Test for convergence 1 + 2r + r2 + 2r3 + r4 + 2r5 + . . . where (a) r = 2/3, (b) r = –2/3, (c) r = 4/3.

Here the ratio test is inapplicable, since 
1 1

2 or
2

n

n

u
r r

u
+ = , depending on whether n is odd or even.

However, using the nth root test, we have

2 2 if is odd

if is even

n nn

n
n

nn

r r n
u

r r n

⎧ =⎪
= ⎨

⎪ =
⎩
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Then 1/lim (since lim 2 1).nn
n

n n
u r

→∞ →∞
= =

Thus, if ⏐r⏐ < 1 the series converges, and if ⏐r⏐ > 1 the series diverges.
Hence, the series converges for cases (a) and (b), and diverges in case (c).

11.23. Test for convergence 

2 2 22
1 1 4 1 4 7 1 4 7 (3 2)

.
3 3 6 3 6 9 3 6 9 (3 )

n

n

⎛ ⎞ ⎛ ⎞ ⎛ ⎞⋅ ⋅ ⋅ ⋅ ⋅ −⎛ ⎞ + + + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⋅ ⋅ ⋅ ⋅ ⋅⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

L
L L

L
K K

L
K

The ratio test fails, since 

2
1 3 1

lim lim 1.
3 3

n

n nn

u n

u n
+

→∞ →∞

⎛ ⎞+= =⎜ ⎟+⎝ ⎠
 However, by Raabe’s test,

2
1 3 1 4

lim 1 lim 1 1
3 3 3

n

n nn

u n
n n

u n
+

→∞ →∞

⎧ ⎫⎛ ⎞ ⎛ ⎞+⎪ ⎪− = − = >⎜ ⎟ ⎨ ⎬⎜ ⎟⎜ ⎟ +⎝ ⎠⎪ ⎪⎝ ⎠ ⎩ ⎭
and so the series converges.

11.24. Test for convergence 
2

1

2
⎛ ⎞ +⎜ ⎟⎝ ⎠

2
1 3

2 4

⎛ ⎞⋅ +⎜ ⎟⋅⎝ ⎠

2
1 3 5

24t

⋅ ⋅⎛ ⎞ +⎜ ⎟⎝ ⎠
+LK

21 3 5 (2 1)

2 4 6 (2 )

n

n

⎛ ⎞⋅ ⋅ −
⎜ ⎟⎜ ⎟⋅ ⋅⎝ ⎠

L
L
K
K

.+ LK

The ratio test fails, since 

2
1 2 1

lim lim 1.
2 2

n

n nn

u n

u n
+

→∞ →∞

⎛ ⎞+= =⎜ ⎟+⎝ ⎠
 Also, Raabe’s test fails since

2
1 2 1

lim 1 lim 1 1
2 2

n

n nn

u n
n n

u n
+

→∞ →∞

⎧ ⎫⎛ ⎞ ⎛ ⎞+⎪ ⎪− = − =⎜ ⎟ ⎨ ⎬⎜ ⎟⎜ ⎟ +⎝ ⎠⎪ ⎪⎝ ⎠ ⎩ ⎭
However, using long division,

2
1

2 2

2 1 1 5 4 / 1
1 1 where

2 2 4 8 4

n n
n

n

u cn n
c P

u n n nn n n

+ ⎛ ⎞+ −= = − + = − + <⎜ ⎟+ + +⎝ ⎠
so that the series diverges by Gauss’s test.

Series of functions

11.25. For what values of x do the following series converge?

(a)
1

1 3

n

n
n

x

n

∞ −

= ⋅∑

(b)
1 2 1

1

( 1)

(2 1)!

n n

n

x

n

∞ − −

=

−
−∑

(c)
1

! ( )n

n

n x a
∞

=

−∑

(d)
1

( 1)

2 (3 1)

n

n
n

n x

n

∞

=

−
−∑

(a)
1

.
3

n

n n

x
u

n

−
=

⋅
 Assuming x � 0 (if x = 0 the series converges), we have

1

1 1

3
lim lim lim

3 ( 1) 3( 1) 3

n n
n

n nn n nn

u xx n n
x

u nn x

+
+ −→∞ →∞ →∞

⋅= ⋅ = =
++ ⋅

Then the series converges if 1, and diverges if 1. If 1. i.e., 3,
3 3 3

x x x
x< > = = ±  the test fails.
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If x = 3 the series becomes 
1 1

1 1 1
,

3 3
n n

n n

∞ ∞

= =

=∑ ∑  which diverges.

If x = –3 the series becomes 
1 1

1 1

( 1) 1 ( 1)
,

3 3

n n

n n
n n

∞ ∞− −

= =

− −=∑ ∑  which converges.

Then the interval of convergence is – 3 < x < 3. The series diverges outside this interval.

Note that the series converges absolutely for –3 < x < 3. At x = –3 the series converges conditionally.

(b) Proceed as in (a) with 
1 2 1( 1)

.
(2 1)!

n n

n
x

u
n

− −−=
−

 Then

2 1
1 2

1 2 1

2
2

( 1) (2 1)! (2 1)!
lim lim lim

(2 1)! (2 1)!( 1)

(2 1)!
lim lim 0

(2 1) (2 ) (2 1)! (2 1) (2 )

n n
n

n nn n nn

n n

u x n n
x

u n nx

n x
x

n n n n n

+
+

− −→∞ →∞ →∞

→∞ →∞

− − −= ⋅ =
+ +−

−= = =
+ − +

Then the series converges (absolutely) for all x, i.e., the interval of (absolute) convergence is –� < x < �.

(c)
1

1 ( 1)! ( )
! ( ) , lim lim lim ( 1) .

! ( )

n
nn

n nn n nn

u n x a
u n x a n x a

u n x a

+
+

→∞ →∞ →∞

+ −= − = = + −
−

This limit is infinite if x � a. Then the series converges only for x = a.

(d)
1

1 1

( 1) ( 1) ( 1)
, .

2 (3 1) 2 (3 2)

n n

n nn n

n x n x
u u

n n

+

+ +
− + −= =

− +
 Then

1 1( 1) (3 1) ( 1) 1
lim lim

2 (3 2) 2 2
n

n nn

u xn n x x

u n n
+

→∞ →∞

−+ − − −= = =
+

Thus, the series converges for ⏐x – 1⏐ < 2 and diverges for ⏐x – 1⏐ > 2.
The test fails for ⏐x – 1⏐ = 2; i.e., x – 1 = ±2 or x = 3 and x = –1.

For x = 3 the series becomes 
1

,
3 1

n

n

n

∞

= −∑  which diverges, since the nth term does not approach zero.

For x = –1 the series becomes 
1

( 1)
,

3 1

n

n

n

n

∞

=

−
−∑  which also diverges, since the nthe term does not approach 

zero.

Then the series converges only for ⏐x – 1⏐ < 2; i.e., –2 < x – 1 < 2 or – 1 < x < 3.

11.26. For what values of x does (a) 
1

1 2

2 1 1

n

n

x

n x

∞

=

⎛ ⎞+
⎜ ⎟− −⎝ ⎠

∑  and (b) 
1

1
converge?

( ) ( 1)
n

x n x n

∞

= + + −∑

(a)
1 2

.
2 1 1

n

n
x

u
n x

⎛ ⎞+= ⎜ ⎟− −⎝ ⎠
 Then 

1 2 1 2 2
lim lim if 1, 2.

2 1 1 1
n

n nn

u n x x
x

u n x x
+

→∞ →∞

− + += = ≠ −
+ − −

Then the series converges if 
2

1,
1

x

x

+ <
−

 it diverges if 
2

1,
1

x

x

+ >
−

 and the test fails if 
2

1, i.e.,
1

x

x

+ =
−1

= .
2

x −

If x = 1, the series diverges.
If x = –2, the series converges.

If x – 
1

2
, the series is 

1

( 1)

2 1

n

n
n

∞

=

−
−∑ , which converges.

Thus, the series converges for 
2 1

1,
1 2

x
x

x

+ < = −
−

,
1

and 2, i.e., for .
2

x x= − ≤ −
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(b) The ratio test fails, since 
1lim 1,n

n n

u

u
+

→∞
=  where 

1
.

( ) ( 1)nu
x n x n

=
+ + −

 However, noting that

1 1 1

( ) ( 1) 1x n x n x n x n
= −

+ + − + − +
we see that if x � 0, –1, –2, . . . , –n,

1 2
1 1 1 1 1 1

1 1 2 1

1 1

n nS u u u
x x x x x n x n

x x n

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= + + + = − + − + + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟+ + + + − +⎝ ⎠ ⎝ ⎠ ⎝ ⎠

= −
+

L LL L

and lim
n→∞

Sn = 1/x, provided x � 0, –1, –2, –3, . . . .

Then the series converges for all x except x = 0, –1, –2, –3, . . . , and its sum is 1/x.

Uniform convergence

11.27. Find the domain of convergence of (1 – x) + x(1 – x) + x2(1 – x) + . . . .

Method 1:

2Sum of first terms ( ) (1 ) (1 ) (1 )nn S x x x x x x= − + − + − + . . . 1 (1 )nx x−+ −
2 21

1 n

x x x x

x

= − + − + +

= −

. . . 1n nx x−+ −

If ⏐x⏐ < 1, lim
n→∞

Sn(x) = limn→ �(1 – xn) = 1.

If ⏐x⏐ > 1. lim
n→∞

Sn(x) does not exist.

If x = 1, Sn(x) = 0 and lim
n→∞

Sn(x) = 0.

If x = –1, Sn(x) = 1 – (–1)n and lim
n→∞

Sn(x) does not exist.

Thus, the series converges for ⏐x⏐ < 1 and x = 1, i.e., for –1 < x <  1.

Method 2, using the ratio test: The series converges if x = 1. If 11 and (1 ), thenn
nx u x x−≠ = −

1lim lim .n

n nn

u
x

u
+

→∞ →∞
=

Thus, the series converges if ⏐x⏐ < 1 and diverges if ⏐x⏐ > 1. The test fails if ⏐x⏐ = 1. If x = 1, the series 
converges; if x = –1, the series diverges. Then the series converges for –1 < x <  1.

11.28. Investigate the uniform convergence of the series of Problem 11.27 in the interval (a) –
1

2
 < x < 

1

2
,

(b) –
1

2
< x < 1

2
, (c) –.99 < x <  .99, (d) –1 < x < 1, and (e) 0 < x < 2.

(a) By Problem 11.27, 
1 1

( ) 1 , ( ) lim ( ) 1 if ;
2 2

n
n n

n
S x x S x S x x

→∞
= − = = − < <  thus, the series converges in 

this interval. We have

Remainder after n terms = Rn(x) = S(x) = Sn(x) = 1 – (1 – xn) = xn

The series is uniformly convergent in the interval if given any � > 0 we can find N dependent on �, but not 
on x, such that ⏐Rn(x)⏐ < � for all n > N. Now

ln
( ) when ln ln or

ln
nn

nR x x x n x n
x

εε ε= = < < >

since division by ln ⏐x⏐ (which is negative, since ⏐x⏐ < 
1

2
) reverses the sense of the inequality.
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But if 
1 1 ln ln

, ln ln , and .
12 2 ln

ln
2

x x n N
x

ε ε⎛ ⎞< < > > =⎜ ⎟ ⎛ ⎞⎝ ⎠
⎜ ⎟⎝ ⎠

 Thus, since N is independent of x, the 

series is uniformly convergent in the interval.

(b) In this case 
1 1 ln ln

ln ln , and ,
12 2 ln

ln
2

x x n N
x

ε ε⎛ ⎞≤ ⋅ ≤ > ≥ =⎜ ⎟ ⎛ ⎞⎝ ⎠
⎜ ⎟⎝ ⎠

 so that the series is also uniformly 

convergent in 
1 1

.
2 2

x− ≤ ≤

(c) Reasoning similarly, with 
1

2
 replaced by .99, shows that the series is uniformly convergent in –.99 

<

x <  .99.

(d) The arguments used here break down in this case, since 
ln

ln x

ε
 can be made larger than any positive 

number by choosing ⏐x⏐ sufficiently close to 1. Thus, no N exists and it follows that the series is not 
uniformly convergent in –1 < x < 1.

(e) Since the series does not even converge at all points in this interval, it cannot converge uniformly in the 
interval.

11.29. Discuss the continuity of the sum function ( ) lim ( )n
n

S x S x
→∞

=  of Problem 11.27 for the interval 0 < x <  1.

If 0 1, ( ) lim ( ) lim (1 ) 1.

If 1, ( ) 0 and S( ) = 0.

n
n

n n

n

x S x S x x

x S x x

→∞ →∞
≤ < = = − =

= =

Thus,
1 0 1

( )
0 1

if x
S x

if x

≤ <⎧
= ⎨ =⎩

 and S(x) is discontinuous at x = 1 but continuous at all other points in 
0 < x < 1.

In Problem 11.34 it is shown that if a series is uniformly convergent in an interval, the sum function S(x)
must be continuous in the interval. It follows that if the sum function is not continuous in an interval, the series 
cannot be uniformly convergent. This fact is often used to demonstrate the nonuniform convergence of a series 
(or sequence).

11.30. Investigate the uniform convergence of 
2 2 2

2
2 2 2 2

.
1 (1 ) (1 )n

x x x
x

x x x
+ + + + +

+ + +
L LL L

Suppose x � 0. Then the series is a geometric series with ratio 1/(1 + x2) whose sum is (see Problem 2.25).
2

2
2

( ) 1
1 1/(1 )

x
S x x

x
= = +

− +
If x = 0, the sum of the first n terms is Sn(0) = 0; hence, S(0) = lim

n→∞
Sn(0) = 0.

Since
0

lim ( ) 1 (0), ( )
x

S x S S x
→

= ≠  is discontinuous at x = 0. Then, by Problem 11.34, the series cannot be 

uniformly convergent in any interval which includes x = 0, although it is (absolutely) convergent in any interval. 
However, it is uniformly convergent in any interval which excludes x = 0.

This can also be shown directly (see Problem 11.93).

Weierstrass M test

11.31. Prove the Weierstrass M test; i.e., if ⏐un(x)⏐ < Mn, n = 1, 2, 3, . . . , where Mn are positive constants such 
that ΣMn converges, then Σun(x) is uniformly (and absolutely) convergent.

The remainder of the series Σun(x) after n terms is Rn(x) = un + 1(x) + un+ 2 x) + . . . . Now
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⏐Rn(x)⏐ = ⏐un+ 1(x) + un+ 2(x) + . . . ⏐ < ⏐un+ 1(x)⏐ + ⏐un+ 2(x)⏐ + . . . < Mn+ 1 + Mn+ 2 + . . . 

But Mn+ 1 + Mn+ 2 + . . . can be made less than � by choosing n > N, since ΣMn converges. Since N is clearly 
independent of x, we have ⏐Rn(x)⏐ < � for n > N, and the series is uniformly convergent. The absolute conver-
gence follows at once from the comparison test.

11.32. Test for uniform convergence: (a) 
4

1

cos
,

n

nx

n

∞

=
∑  (b) 

3 / 2
1

,
n

n

x

n

∞

=
∑  (c) 

1

sin
,

n

n

x

n

∞

=
∑  and (d) 

2 2
1

1
,

n n x

∞

= +∑
(a)

4 4

cos 1
.n

nx
M

n n
≤ =  Then, since ΣMn converges (p series with p = 4 > 1), the series is uniformly (and 

absolutely) convergent for all x by the M test.

(b) By the ratio test, the series converges in the interval –1 < x <  1; i.e., ⏐x⏐ <  1.

For all x in this interval, 
3 / 2 3 / 2 3/ 2

1
.

nn xx

n n n
= ≤  Choosing 

3/ 2

1
,nM

n
=  we see that ΣMn converges. Thus, 

the given series converges uniformly for –1 < x <  1 by the M test.

(c)
4

sin 1
.

nx

nn
≤  However, ΣMn where 

1
nM

n
=  does not converge. The M test cannot be used in this case 

and we cannot conclude anything about the uniform convergence by this test (see, however, Problem 
11.125).

(d)
2 2 2 2

1 1 1
, and converges.

n x n n
≤

+ ∑  Then, by the M test, the given series converges uniformly for 

all x.

11.33. If a power series Σanx
n converges for x = x0, Prove that it converges. (a) absolutely in the interval ⏐x⏐ <

⏐x0⏐ and (b) uniformly in the interval ⏐x⏐ < ⏐x 1⏐, where ⏐x1⏐ < ⏐x0⏐.

(a) Since Σanx
n
0 converges, 0lim 0n

n
n

a x
→∞

= , and so we can make 0 1n
na x <  by choosing n large enough; i.e., 

⏐an⏐ < 

0

1
for > .n n

a n N
x

<  Then

1 1 1 0

n
nn

n n n
N N N

x
a x a x

x

∞ ∞ ∞

+ + +

= <∑ ∑ ∑  (1)

Since the last series in Equation (1) converges for ⏐x⏐ < ⏐x0⏐, it follows by the comparison test that the 
first series converges; i.e., the given series is absolutely convergent.

(b) Let 1

0

.
n

n n

x
M

x
=  Then ΣMn converges, since ⏐x1⏐ < ⏐x0⏐. As in (a), ⏐anx

n⏐ < Mn for ⏐x⏐ < ⏐x1⏐, so 

that by the Weierstrass M test, Σanx
n is uniformly convergent.

It follows that a power series is uniformly convergent in any interval within its interval of convergence.

Theorems on uniform convergence

11.34. Prove Theorem 6, Page 284.

We must show that S(x) is continuous in [a, b].
Now S(x) = Sn(x) + Rn(x), so that S(x + h) = Sn(x + h) + Rn(x + h) and thus,

S(x + h) – S(x) = Sn(x) + h) – Sn(x) + Rn(x + h) – Rn(x) (1)

where we choose h so that both x and x + h lie in [a, b] (if x = b, for example, this will require h < 0).
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Since Sn(x) is a sum of a finite number of continuous functions, it must also be continuous. Then, given 
� > 0, we can find δ so that

⏐Sn(x + h) – Sn(x)⏐ < �/3 whenever ⏐h⏐ < δ (2)

Since the series, by hypothesis, is uniformly convergent, we can choose N so that

( ) / 3nR x ε<  and ⏐ ( ) / 3nR x h ε+ <  for n > N (3)

Then from Equations (1), (2), and (3),

⏐S(x + h) – S(x)⏐ < ⏐Sn(x) + h) – Sn(x)⏐ + ⏐Rn(x + h)⏐ + ⏐Rn(x)⏐ < �

for ⏐h⏐ < δ, and so the continuity is established.

11.35. Prove Theorem 7, Page 285.

If a function is continuous in [a, b], its integral exists. Then, since S(x), Sn(x) and Rn(x) are continuous,

( ) ( ) ( )
a b b

n n
a a a

S x S x dx R x dx+∫ ∫ ∫
To prove the theorem we must show that

( ) ( ) ( )
b b b

n n
a a a

S x dx S x dx R x dx− =∫ ∫ ∫
can be made arbitrarily small by choosing n large enough. This, however, follows at once, since by the uniform 
convergence of the series we can make ⏐Rn(x)⏐ < �/ (b – a) for n > N independent of x in [a, b], and so

( ) ( )
b b b

n n
a a a

R x dx R x dx dx
b a

ε ε≤ < =
−∫ ∫ ∫

This is equivalent to the statements

( ) lim ( )
b b

n
na a

S x dx S x dx
→∞

=∫ ∫    or   lim ( ) lim ( )
n

n
a

b

n
n

a

b
S x dx S x dx

→ ∞ → ∞
= ⎧

⎨
⎩

⎫
⎬
⎭∫ ∫

11.36. Prove Theorem 8, Page 285.

Let
1

( ) ( ).n
n

g x u x
∞

′

=

= ∑  Since, by hypothesis, this series converges uniformly in [a, b], we can integrate 

term by term (by Problem 11.35) to obtain

1 1

1 1

( ) ( ) { ( ) ( )}

( ) ( ) ( ) ( )

x x

n n n
a a

n n

n n
n n

g x dx u x dx u x u a

u x u a S x S a

∞ ∞
′

= =

∞ ∞

= =

= = −

= − = −

∑ ∑∫ ∫

∑ ∑
because, by hypothesis, 

1

( )n
n

u x
∞

=
∑  converges to S(x) in [a, b].

Differentiating both sides of 
0

( ) ( ) ( )
x

g x dx S x S a= −∫  then shows that g(x) = S ′(x), which proves the 
theorem.

11.37. Let Sn(x) = nxe–nx2, n = 1, 2, 3, . . . , 0 < x <  1. (a) Determine whether 
1 1

0 0
lim ( ) lim ( ) .n n
n n

S x dx S x dx
→∞ →∞

=∫ ∫
(b) Explain the result in (a).

(a)
2 21 1

1
0

0 0

1 1
( ) (1 ).

2 2
nx nx n

nS x dx nxe dx e e− − −= = − = −∫ ∫  Then

1

0

1 1
lim ( ) lim (1 )

2 2
n

n
n n

S x dx e−

→∞ →∞
= − =∫
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2

( ) lim ( ) lim 0. whether 0 or < 1. Then.nx
n

n n
S x S x nxe x x−

→∞ →∞
= = = = ≤

1

0
( ) 0S x dx =∫

It follows that 
1 1

0 0
lim ( ) lim ( )n n
n n

S x dx S x dx
→∞ →∞

≠∫ ∫ ; i.e., the limit cannot be taken under the integral sign.

(b) The reason for the result in (a) is that although the sequence Sn(x) converges to 0. it does not converge 

uniformly to 0. To show this, observe that the function 
2nxnxe−  has a maximum at 1 / 2x n=  (by the 

usual rules of elementary calculus), the value of this maximum being 1/ 21
.

2
n e−  Hence, as n → �,

Sn(x) cannot be made arbitrarily small for all x and so cannot converge uniformly to 0.

11.38. Let 
3

1

sin
( ) .

n

nx
f x

n

∞

=

= ∑  Prove that 
40

1

1
( ) 2 .

(2 1)n

f x dx
n

π ∞

=

=
−∑∫

We have 
3 3

sin 1
.

nx

n n
≤  Then, by the Weierstrass M test, the series is uniformly convergent for all x, in 

particular 0 < x < π, and can be integrated term by term. Thus,

3 30 0 0
1 1

4 4 4 4 4
1 1

sin sin
( )

1 cos 1 1 1 1
2 2

1 3 5 (2 1)

n n

n n

nx nx
f x dx dx dx

n n

n

n n

π π π

π

∞ ∞

= =

∞ ∞

= =

⎛ ⎞
⎜ ⎟=
⎜ ⎟⎝ ⎠

− ⎛ ⎞= = + + + =⎜ ⎟ −⎝ ⎠

∑ ∑∫ ∫ ∫

∑ ∑LL

Power series

11.39. Prove that both the power series 
0

n
n

n

a x
∞

=
∑  and the corresponding series of derivatives 1

0

n
n

n

na x
∞

−

=
∑  have 

the same radius of convergence.

Let R > 0 be the radius of convergence of Σanx
n. Let 0 < ⏐x0⏐ < R. Then, as in Problem 11.33, we can 

choose N as that ⏐
0

1
for .n n

a n N
x

< >

Thus, the terms of the series Σ⏐nanx
n – 1⏐ = Σn⏐an⏐ ⏐x⏐n –1 can for n > N be made less than corresponding 

terms of the series 

1

0

,
n

n

x
n

x

−

∑  which converges, by the ratio test, for ⏐x⏐ < ⏐x0⏐ < R.

Hence, Σnanx
n –1 converges absolutely for all points x0 (no matter how close ⏐x0⏐ is to R).

If, however, ⏐x⏐ > R, lim
n→∞

anx
n � 0 and thus lim

n→∞
nanx

n –1 � 0, so that Σnanx
n– 1 does not converge.

Thus, R is the radius of convergence of Σnanx
n –1.

Note that the series of derivatives may or may not converge for values of x such that ⏐x⏐ = R.

11.40. Illustrate Problem 11.39 by using the series 
2

1

.
3

n

n
n

x

n

∞

= ⋅∑
1 2 2

1

2 1 2

3
lim lim lim

3( 1) 3 3( 1)

n
n

n nn n nn

u xx n n n
x

u n x n

+
+

+→∞ →∞ →∞

⋅= ⋅ = =
+ ⋅ +

so that the series converges for ⏐x⏐ < 3. At x = ±3 the series also converges, so that the interval of convergence 
is –3 < x <  3.
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The series of derivatives is

1 1

2
1 1

33

n n

n n

nx x

n nn n

∞ ∞− −

= =

=
⋅⋅∑ ∑

By Problem 11.25(a), this has the interval of convergence –3 < x < 3.

The two series have the same radius of convergence, i.e., R = 3, although they do not have the same inter-
val of convergence.

Note that the result of Problem 11.39 can also be proved by the ratio test if this test is applicable. The 
proof given there, however, applies even when the test is not applicable, as in the series in Problem 11.22.

11.41. Prove that in any interval within its interval of convergence, a power series (a) represents a continuous 
function, say, f(x); (b) can be integrated term by term to yield the integral of f(x); and (c) can be 
differentiated term by term to yield the derivative of f(x).

We consider the power series Σanx
n, although analogous results hold for Σan(x – a)n.

(a) This follows from Problem 11.33 and 11.34, and the fact that each term anxn of the series is continu-
ous.

(b) This follows from Problems 11.33 and 11.35, and the fact that each term anxn of the series is continuous 
and thus integrable.

(c) From Problem 11.39, the series of derivatives of a power series always converges within the interval of 
convergence of the original power series and therefore is uniformly convergent within this interval. Thus, 
the required result follows from Problems 11.33 and 11.36.

If a power series converges at one (or both) endpoints of the interval of convergence, it is possible to es-
tablish (a) and (b) to include the endpoint (or endpoints). See Problem 11.42.

11.42. Prove Abel’s theorem that if a power series converges at an endpoint of its interval of convergence, then the 
interval of uniform convergence includes this endpoint.

For simplicity in the proof, we assume the power series to be 
0

k
k

k

a x
∞

=
∑  with the endpoint of its interval 

of convergence at x = 1, so that the series surely converges for 0 < x <  1. Then we must show that the series 
converges uniformly in this interval.

Let

Rn(x) = anx
n + an + 1x

n + 1 + an + 2 xn + 2 + . . . , Rn = an + a an + 2 + . . .

To prove the required result we must show that given any � > 0, we can find N such that ⏐Rn all n > N, where
N is independent of the particular x in 0 < x <  1.

Now
1 2

1 1 2 2 3

1 2 1
1 2

2
1 2 3

( ) ( ) ( ) ( )

( ) ( )

{ (1 ) ( )}

n n n
n n n n n n n

n n n n n
n n n

n
n n n n

R x R R x R R x R R x

R x R x x R x x

x R x R R x R x

+ +
+ + + + +

+ + +
+ +

+ + +

= − + − + − +

= + − + − +

= − − + + +

L

L

L

K

K

K)

Hence, for 0 < x < 1,

 ⏐Rn(x)⏐ < ⏐Rn⏐ + (1 – x) (⏐R n+ 1⏐ + ⏐Rn+2⏐x + ⏐Rn ⏐Rn+3⏐ x2 + . . .) (1)

Since Σak converges by hypothesis, it follows that given � > 0, we can choose N such that ⏐Rk⏐ < �/2 for 
all k > n. Then for n > N we have, from Equation (1),

2| ( ) | (1 )
2 2 2 2nR x x x x
∈ ∈ ∈ ∈⎛≤ + − + + +⎜⎝

 . . . 
2 2

∈ ∈⎞ = + = ∈⎟⎠
 (2)

since (1 – x) (1 + x + x2 + x3 + . . .) = 1 (if 0 < x < 1).
Also, for x = 1, ⏐Rn (x)⏐ = ⏐Rn⏐ < � for n > N.
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Thus, ⏐Rn(x)⏐ < � for all n > N, where N is independent of the value of x in 0 < x <  1, and the required 
result follows.

Extensions to other power series are easily made.

11.43. Prove Abel’s limit theorem (see Page 286).

As in Problem 11.42, assume the power series to be 
1

,k
k

k

a x
∞

=
∑  convergent for 0 < x <  1.

Then we must show that 
1

0 0

lim .k
k k

x
k k

a x a
∞ ∞

→ −
= =

=∑ ∑
This follows at once from Problem 11.42, which shows that Σakx

k is uniformly convergent for 0 < x <  1, 
and from Problem 11.34, which shows that Σak xk is continuous at x = 1.

Extensions to other power series are easily made.

11.44. (a) Prove that 
3 5 7

1tan
3 5 7

x x x
x x− = − + − + . . . where the series is uniformly convergent in –1 < x <  1. 

(b) Prove that 
1 1 1

1
4 3 5 7

π = − + − + . . . 

(a) By Problem 2.25, with r = – x2 and a = 1, we have

2 4 6
2

1
1

1
x x x

x
= − + − +

+
. . . 1 1x− < <  (1)

Integrating from 0 to x, where – 1 < x < 1, yields
3 5 7

1
20

tan
3 5 71

x dx x x x
x x

x
−= = − + − +

+∫ . . .  (2)

using Problems 11.33 and 11.35.
Since the series on the right of Equation (2) converges for x = ± 1, it follows by Problem 11.42 that the 

series is uniformly convergent in – 1 < x <  1 and represents tan–1 x in this interval
(b) By Problem 11.43 and (a), we have

3 5 7
1

1– 1

1 1 1
lim tan lim or 1

3 5 7 4 3 5 7x x

x x x
x x

π−

→ → −

⎛ ⎞
= − + − + = − + − +⎜ ⎟⎜ ⎟⎝ ⎠

L LL L

11.45. Evaluate 
21

20

1 xe
dx

x

−−∫  to three-decimal-place accuracy.

We have 
2 3 4 5

1 , .
2! 3! 4! 5!

u u u u u
e u u+ + + + + + − ∞ < < ∞LL

Then, if 
2

4 6 8 10
2 2, 1 , .

2! 3! 3! 5!
x x x x x

u x e x x−= − = − + − + = + − ∞ < < ∞LL

Thus,

2 2 4 6 8

2

1
1 .

2! 3! 4! 5!

xe x x x x

x

−− = − + − + − LL

Since the series converges for all x and so, in particular, converges uniformly for 0 < x <  1, we can in-
tegrate term by term to obtain

2 1
3 5 7 91

20
0

1

3 2! 5 3! 7 4! 9 5!

xe x x x x
dx x

x

−− = − + − + −
⋅ ⋅ ⋅ ⋅∫ L

1 1 1 1
1

3 2! 5 3! 7 4! 9 5!

1 0.16666 0.03333 0.00595 0.00092 0.862

= − + − + −
⋅ ⋅ ⋅ ⋅

= − + − + − =

L

L

K

K

K

Note that the error made in adding the first four terms of the alternating series is less than the fifth term, 
i.e., less than 0.001 (see Problem 11.15).
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Miscellaneous problems

11.46. Prove that y = Jp (x) defined by Equation (16), Page 287, satisfies Bessel’s differential equation:

x2y · + xy� + (x2 – p2) y = 0.

The series for Jp (x) converges for all x [see Problem 11.10 (a)]. Since a power series can be differentiated 
term by term within its interval of convergence, we have for all x,

2

2
0

2 1

2
0

2 2

2
0

( 1)

2 !( )!

( 1) ( 2 )

2 !( )!

( 1) ( 2 ) ( 2 1)

2 !( )!

n p n

p n
n

n p n

p n
n

n p n

p n
n

x
y

n n p

p n x
y

n n p

p n p n x
y

n n p

∞ +

+
=

∞ + −

+
=

∞ + −

+
=

−=
+

− +′ =
+

− + + −′′ =
+

∑

∑

∑
Then,

2 2 2 2
2 2

2 2
0 0

2

2
0

2

2
0

( 1) ( 1)
( )

2 !( )! 2 !( )!

( 1) ( 2 )

2 !( )!

( 1) ( 2 ) ( 2 1)

2 !( )!

n p n n p n

p n p n
n n

n p n

p n
n

n p n

p n
n

x p x
x p y

n n p n n p

p n x
xy

n n p

p n p n x
y

n n p

∞ ∞+ + +

+ +
= =

∞ +

+
=

∞ +

+
=

− −− = −
+ +

− +′ =
+

− + + −′′ =
+

∑ ∑

∑

∑

Adding,

2 2
2 2 2

2
0

2 2

2
0

2 2 2

2 2
0 0

2

2 2

( 1)
( )

2 !( )!

( 1) [ ( 2 ) ( 2 ) ( 2 1)]

2 ! ( )!

( 1) ( 1) [4 ( )]

2 ! ( )! 2 ! ( )!

( 1) 4

2 ( 1) ! (

n p n

p n
n

n p n

p n
n

n p n n p n

p n p n
n n

n p n

p n

x
x y xy x p y

n n p

p p n p n p n x

n n p

x n n p x

n n p n n p

x

n

∞ + +

+
=

∞ +

+
=

∞ ∞+ + +

+ +
= =

+

+ −

−′′ + ′ + − =
+

− − + + + + + −+
+

− − += +
+ +

−=
−

∑

∑

∑ ∑
2

2
1 1

2 2

2 2
1 1

( 1) 4

1 )! 2 ( 1) ! ( 1)!

( 1) 4 ( 1) 4
–

2 ( 1) ! ( 1 )! 2 ( 1) ! ( 1)!

0

n p n

p n
n n

n p n n p n

p n p n
n n

x

n p n n p

x x

n n p n n p

∞ ∞ +

+
= =

∞ ∞+ +

+ +
= =

−+
− + − + −

− −= +
− + − − + −

=

∑ ∑

∑ ∑

11.47. Test for convergence the complex power series 
1

3 1
1

.
3

n

n
n

z

n

∞ −

−
= ⋅∑

Since
3 1 3

1

3 1 3

3
lim lim lim ,

3( 1) 3 3( 1)

n
n n

n nn n nn

u zz n n
z

u n z n

−
+

−→∞ →∞ →∞

⋅= ⋅ = =
+ ⋅ +

 the series converges for 

3

z
 < 1, i.e., ⏐z⏐ < 3, and diverges for ⏐z⏐ > 3.
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For ⏐z⏐ = 3, the series of absolute values is 

1

3 1 3
1 1

1
,

3

n

n
n n

z

n n

−∞ ∞

−
= =

=
⋅∑ ∑  so that the series is absolutely con-

vergent and thus convergent for ⏐z⏐ = 3.
Thus, the series converges within and on the circle ⏐z⏐ = 3.

11.48. Assuming the power series for ex holds for complex numbers, show that eix = cos x + i sin x.

Letting
2 3

2in 1
2! 3!

z z
z ix e z= = + + + + . . . , we have

2 2 3 3

1
2! 3!

cos sin

ix i x i x
e ix

x i x

= + + + +

= +

 . . . 
2 4

1
2! 4!

x x⎛
= − + −⎜⎜⎝

 . . . 
3 5

3! 5!

x x
i x

⎞ ⎛
+ − + −⎟ ⎜⎟ ⎜⎠ ⎝

 . . . x
⎞
⎟⎟⎠

Similarly, e– ix = cos x – i sin x. The results are called Euler’s identities.

11.49. Prove that 
1 1 1

lim 1
2 3 4n→∞

⎛ + + + +⎜⎝
. . . 1

In n
n

⎞+ − ⎟⎠
exists.

Letting f (x) = 1/x in Equation (1), Problem 11.11, we find

1 1 1

2 3 4
+ + +  . . . 1 1 1 1

ln 1
2 3 4

M
M

+ ≤ ≤ + + + + . . . 1

1M
+

−
from which, on replacing M by n, we have

1 1 1 1
1

2 3 4n
≤ + + + + . . . 1

In 1n
n

+ − ≤

Thus, the sequence 
1 1 1

1
2 3 4nS = + + + + . . . 1

ln n
n

+ − is bounded by 0 and 1.

Consider 1
1 1

ln .
1n n

n
S S

n n+
+⎛ ⎞− = − ⎜ ⎟+ ⎝ ⎠

 By integrating the inequality 
1 1 1

1n x n
≤ ≤

+
 with respect 

to x from n to n + 1, we have

1 1 1 1 1 1 1
ln or ln 0

1 1 1

n n

n n n n n n n

+ +⎛ ⎞ ⎛ ⎞≤ ≤ − ≤ − ≤⎜ ⎟ ⎜ ⎟+ + +⎝ ⎠ ⎝ ⎠

i.e., Sn + 1 – Sn <  0, so that Sn is monotonic decreasing.
Since Sn is bounded and monotonic decreasing, it has a limit. This limit, denoted by γ, is equal to 

0.577215 . . . and is called Euler’s constant. It is not yet known whether γ is rational or not.

11.50. Prove that the infinite product 
1

(1 ),k
k

u
∞

=

+∏  converges 
1

k
k

u
∞

=
∑  converges.

According to the Taylor series for ex (Page 289), 1 + x < ex for x > 0, so that

1 2
1

(1 ) (1 ) (1 )
n

n k
k

P u u u
=

= + = + +∏  . . . 1 2(1 ) .u u
nu e e+ ≤  . . . 1 2nu u ue e + +=  . . . 

nu

Since u1 + u2 + . . . converges, it follows that Pn is a bounded monotonic increasing sequence and so has 
a limit, thus proving the required result.

11.51. Prove that the series 1 – 1 + 1 – 1 + 1 – 1 + . . . is C – 1 summable to 1/2.

The sequence of partial sums is 1, 0, 1, 0, 1, 0, . . . 

Then 1 2 31 2
1

1 0 1 1 0 1 2
1, , ,

2 2 2 3 3 3

S S SS S
S

+ ++ + + += = = = = . . . .
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Continuing in this manner, we obtain the sequence 
1 2 1 3 1

1. , , , , ,
2 3 2 5 2

. . . , the nth term being 
1 / 2 if is even 1

. Thus, lim
/(2 1) if is odd 2n n

n

n
T T

n n n →∞

⎧
= =⎨ −⎩

 and the required result follows.

11.52. (a) If f (n + 1) (x) is continuous in [a, b] prove that for c in [a, b], ( ) ( ) ( ) ( )f x f c f c x c= + ′ − +

21
( ) ( )

2!
f c x c′′ − + . . . ( )1

!
nf

n
+ ( 1)1

( ) ( ) ( 1) ( ) .
!

x
n n n

c
c x c x f t dt

n
+− + −∫  (b) Obtain the Lagrange 

and Cauchy forms of the remainder in Taylor’s formula. (See Page 290.)

The proof of (a) is made using mathematical induction. (See Chapter 1.) The result holds for n = 0, 
since

( ) ( ) ( ) ( ) ( ) ( )
x

c
f x f c f t dt f c f x f c= + ′ = + −∫

We make the induction assumption that it holds for n = k and then use integration by parts with

1( )
and ( )

!

k
kx t

d dt u f t
k

υ +−= =

Then
1( )

( 1)!

kx t

k
υ

+−= −
+

 and 2 ( )kdu f t dt+=

Thus,
1 1

( 1) 1 ( 2)

1 1
1 ( 2)

1 ( ) 1
( ) ( ) ( ) ( )

! ( 1)! ( 1)!

( ) 1
( ) ( )

( 1)! ( 1)!

k kx x
k k x k k

c
C C

k k x
k k

C

f x t
x t f t dt x t f t dt

k k k

f x t
x t f t dt

k k

+ +
+ + +

+ +
+ +

−− = − + −
+ +

−= − + −
+ +

∫ ∫

∫

C
X

Having demonstrated that the result holds for k + 1, we conclude that it holds for all positive integers.
To obtain the Lagrange form of the remainder Rn, consider the form

21
( ) ( ) ( ) ( ) ( ) ( )

2!
nf x f c f c x c f c x c= + ′ − + − + . . . ( )

!
nK

x c
n

+ −

This is the Taylor polynomial 1 ( ) plus ( ) .
!

n
n

K
P x x c

n− −  Also, it could be looked upon as Pn except that in 

the last term, f (n) (c) is replaced by a number K such that for fixed c and x the representation of f(x) is exact. 
Now define a new function

1
( )

1

( ) ( )
( ) ( ) ( ) ( )

! !

n j n
j

j

x t K x t
t f t f x f t

j n

−

=

− −Φ = − + +∑
The function Φ satisfies the hypothesis of Rolle’s Theorem in that Φ(c) = Φ(x) = 0, the function is con-

tinuous on the interval bound by c and x, and Φ′ exists at each point of the interval. Therefore, there exists ξ
in the interval such that Φ′ (ξ) = 0. We proceed to compute Φ′ and set it equal to zero.

1 1 1 1
( 1) ( )

1 1

( ) ( ) ( )
( ) ( ) ( ) ( )

! ( 1)! ( 1)!

n nj j n
j j

j j

x t x t K x t
t f t f t f t

j j n

− − − −
+

= =

− − −Φ′ = ′ + − −
− −∑ ∑

This reduces to
( )

1 1( )
( ) ( ) ( )

( 1)! ( 1)!

n
n nf t K

t x t x t
n n

− −Φ′ = − − −
− −

According to hypothesis, for each n there is ξn such that

Φ (ξn) = 0
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Thus,
K = f (n)(ξn)

and the Lagrange remainder is

1

( ) ( )
( )

!n

n
nnf

R x c
n

ξ
−

= −
f (n)(ξn)

or, equivalently,

( 1) 1
1

1
( ) ( )

( 1)!
n n

n nR f x c
n

ξ+ +
+= −

+
The Cauchy form of the remainder follows immediately by applying the mean value theorem for integrals. 

(See Page 287.)

11.53. Extend Taylor’s theorem to functions of two variables x and y.

Define F(t) = f (x0 + ht, y0 + kt); then, applying Taylor’s theorem for one variable (about t = 0),

21
( ) (0) (0) (0)

2!
F t F F F t= + ′ + ′′ +  . . . ( ) ( 1) 11 1

(0) ( ) ,
! ( 1)!

n n n nF t F t
n n

θ+ ++ +
+

0 < θ < t

Now let t = 1

0 0
1

(1) ( , ) (0) (0) (0)
2!

F f x h y k F F F= + + = + ′ + ′′ + . . . ( ) ( 1)1 1
(0) ( )

! ( 1)!
n nF F

n n
θ++ +

+
When the derivatives F′ (t), . . . , F(n) (t), F(n + 1) (θ) are computed and substituted into the previous expres-

sion, the two-variable version of Taylor’s formula results. (See Page 290, where this form and notational details 
can be found.)

11.54. Expand x2 + 3y – 2 in powers of x – 1 and y + 2. Use Taylor’s formula. with h = x – x0, k = y – y0, where x0 = 
1 and y0 = – 2.

x2 + 3y – 2 = –10 – 4(x – 1) + 4(y + 2) – 2 (x – 1)2 + 2(x – 1)(y + 2) + (x – 1)2(y + 2) (Check this algebraically.)

11.55. Prove that ln 
2

, 0 1, 0, 0.
2 2 ( 2)

x y x y
x y

x y
θ

θ
+ + −= < > >

+ + −
 (Hint: Use Taylor’s formula with the linear 

term as the remainder.)

11.56. Expand f (x, y) = sin xy in powers of x – 1 and y – 
2

π
 to second-degree terms.

2
2 21

1 ( 1) ( 1)
8 2 2 2

x x y y
π π ππ ⎛ ⎞ ⎛ ⎞− − − − − − −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

SUPPLEMENTARY PROBLEMS

Convergence And Divergence Of Series Of Constants

11.57. (a) Prove that the series 
1 1 1

3 7 7 11 11 15
+ + +

⋅ ⋅ ⋅
. . . 

1

1

(4 1) (4 3)
n

n n

∞

=

=
− +∑ converges and (b) find its 

sum.

Ans. (b) 1/12
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11.58. Prove that the convergence or divergence of a series is not affected by (a) multiplying each term by the same 
nonzero constant and (b) removing (or adding) a finite number of terms.

11.59. If Σun and Συn converge to A and B, respectively, prove that Σ (un + υn) converges to A + B.

11.60. Prove that the series 
2 3

3 3 3

2 2 2
⎛ ⎞ ⎛ ⎞+ + +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

. . . 3

2

n⎛ ⎞= ⎜ ⎟⎝ ⎠∑ diverges.

11.61. Find the fallacy: Let S = 1 – 1 + 1 – 1 + 1 – 1 + . . . . Then S = 1 1 – (1 – 1) – (1 – 1) – . . . = 1 and S = (1 – 1) 
+ (1 – 1) + (1 – 1) + . . . = 0. Hence, 1 = 0.

Comparison test and quotient test

11.62. Test for convergence: (a) 
2

1

1
,

1n n

∞

= +∑  (b) 
2

1

,
4 3n

n

n

∞

= −∑  (c) 
1

2
,

( 1) 3n

n

n n

∞

=

+
+ +∑  (d) 

1

3
,

5

n

n
n n

∞

= ⋅∑

(e)
1

1
,

5 3
n

n

∞

= −∑  and (f) 
4 /3

1

2 1
.

(3 2)n

n

n n

∞

=

−
+∑

Ans. (a) convergence (b) divergence (c) divergence (d) convergence (e) divergence (f) convergence

11.63. Investigate the convergence of (a) 
2

2 3/ 2
1

4 5 2

( 1)n

n n

n n

∞

=

+ −
+∑  and (b) 

2 3
1

In
.

10n

n n

n n

∞

=

−
+∑ l

Ans. (a) convergence (b) divergence

11.64. Establish the comparison test for divergence (see Page 280).

11.65. Use the comparison test to prove that (a) 
1

1
p

n n

∞

=

≤∑  converges if p > 1 and diverges if p <  1, 

(b)
1

1

tan

n

n

n

∞ −

=
∑  diverges, and (c) 

2

1
2

n

n

n

∞

=
∑  converges.

11.66. Establish the results (b) and (c) of the quotient test, Page 280.

11.67. Test for convergence: (a) 
2

2
1

(ln )
,

n

n

n

∞

=
∑  (b) 1 3

1

tan (1 / ),
n

n n
∞

−

=
∑  (c) 

1

3 sin
,

(1 )n
n

n

n e

∞

−
=

+
+∑  and 

(d) 2

1

sin (1 / ).
n

n n
∞

=
∑
Ans. (a) convergence (b) divergence (c) divergence (d) divergence

11.68. If Σun converges, where un >  0 for n > N, and if lim
n→∞

nun exists, prove that lim
n→∞

nun = 0.

11.69. (a) Test for convergence 
1 1/

1

1
.

n
n n

∞

+
=

∑  (b) Does your answer to (a) contradict the statement about the p series 

made on Page 266 that Σ1/np converges for p > 1?

Ans. (a) divergence
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Integral test

11.70. Test for convergence: (a) 
2

3
1

,
2 1n

n

n

∞

= −∑  (b) 
3

2

1
,

(In )n n n

∞

=
∑ l

 (c) 
1

2
n

n

n

∞

=
∑ , (d) 

1

,
n

n

e

n

∞ −

=
∑  (e) 

2

ln
,

n

n

n

∞

=
∑  and 

(f)
ln(ln )

10

2
.

ln

n

n
n n

∞

=
∑
Ans. (a) divergence (b) convergence (c) convergence (d) convergence (e) divergence (f) divergence

11.71. Prove that 
2

1
,

(ln )p
n n n

∞

=
∑  where p is a constant, (a) converges if p > 1 and  (b) diverges if p <  1.

11.72. Prove that 
3

1

9 1 5
.

8 4
n n

∞

=

< <∑

11.73. Investigate the convergence of 

1tan

2
1

.
1

n

n

e

n

−∞

= +∑
Ans. convergence

11.74. (a) Prove that 3 / 22 1
1 2 3

3 3
n + ≤ + + +  . . . 3 / 2 1/ 22 2

.
3 3

n n n+ ≤ + − (b) Use (a) to estimate the 

value of 1 2 3+ + + . . . 100,+ giving the maximum error. (c) Show how the accuracy in (b) can be 

improved by estimating, for example, 10 11+ + . . . 100+ and adding on the value of 

1 2+ + . . . 9+  computed to some desired degree of accuracy.

Ans. (b) 671.5 ± 4.5

Alternating series

11.75. Test for convergence: (a) 
1

1

( 1)
,

2

n

n
n

∞ +

=

−∑  (b) 
2

1

( 1)
,

2 2

n

n n n

∞

=

−
+ +∑  (c) 

1

1

( 1)
,

3 1

n

n

n

n

∞ +

=

−
−∑  (d) 1

1

1
( 1) sin ,n

n
n

∞
−

=

−∑
and (e) 

2

( 1)
.

ln

n

n

n

n

∞

=

−∑
Ans. (a) convergence, (b) convergence, (c) divergence, (d) convergence, (e) divergence

11.76. (a) What is the largest absolute error made in approximating the sum of the series 
1

( 1)

2 ( 1)

n

n
n n

∞

=

−
+∑  by the sum 

of the first five terms? (b) What is the least number of terms which must be taken in order that three-
decimal-place accuracy will result?

Ans. (a) 1/192 (b) eight terms

11.77. (a) Prove that 
3 3 3

1 1 1

1 2 3
S + + + . . .

3 3 3

4 1 1 1

3 1 2 3

⎛= + + −⎜⎝
 . . . .

⎞
⎟⎠

(b) How many terms of the series on the 

right are needed in order to calculate S to six-decimal-place accuracy?

Ans. (b) at least 100 terms
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Absolute and conditional convergence

11.78. Test for absolute or conditional convergence:

(a)
1

2
1

( 1)

1

n

n n

∞ −

=

−
+∑  (c) 

2

( 1)

ln

n

n
n n

∞

=

−∑  (e) 
1

( 1) 1
sin

2 1

n

n
n n

∞

=

−
−∑

(b)
1

2
1

( 1)

1

n

n

n

n

∞ −

=

−
+∑  (d) 

3

2 4 /3
1

( 1)

( 1)

n

n

n

n

∞

=

−
+∑  (f) 

1 3

1

( 1)

2 1

n

n

n

n

∞ −

=

−
−∑

Ans. (a) absolute convergence, (b) conditional convergence, (c) conditional convergence, (d) divergence, 
(e) absolute convergence, (f) absolute convergence

11.79. Prove that 
2 2

1

cos

n

n a

x n

π∞

= +∑  converges absolutely for all real x and a.

11.80. If 
1 1 1

1
2 3 4

− + + +  . . . converges to S, prove that the rearranged series 
1 1 1 1

1
3 2 5 7

+ − + + 1 1 1

4 9 11
− + +

1

6
− +  . . . 3

.
2

S= Explain. (Hint: Take 
1

2
 of the first series and write it as 

1 1 1
1 0 0

2 4 6
+ + − + + +  . . .;

then add term by term to the first series. Note that S = ln 2, as shown in Problem 11.100.)

11.81. Prove that the terms of an absolutely convergent series can always be rearranged without altering the sum.

Ratio test

11.82. Test for convergence: (a) 
1

( 1)

( 1)

n

n
n

n

n e

∞

=

−
+∑  (b) 

1

10
,

(2 1)!

n

n

n

n

∞

= +∑  (c) 
3

1

3
,

n

n n

∞

=
∑  (d) 

3

2
1

( 1) 2
,

3

n n

n
n

∞

=

−∑  and 

(e)
2

1

( 5 1)
.

1

n

n n

∞

=

−
+∑

Ans. (a) convergence (absolute) (b) convergence (c) divergence (d) convergence (absolute) (e) divergence

11.83. Show that the ratio test cannot be used to establish the conditional convergence of a series.

11.84. Prove that (a) 
1

!
n

n

n

n

∞

=
∑  converges and (b) 

!
lim 0.

nn

n

n→∞
=

Miscellaneous tests

11.85. Establish the validity of the nth root test on Page 282.

11.86. Apply the nth root test to work Problems 11.82(a), (c), (d), and (e).

11.87. Prove that 
2 3 4 5 6

1 2 1 2 1 2

3 3 3 3 3 3
⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ + + + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 . . . converges.

11.88. Test for convergence: (a) 
1 1 4 1 4 7

3 3 6 3 6 9

⋅ ⋅ ⋅+ + +
⋅ ⋅ ⋅

 . . . and (b) 
2 2 5 2 5 8

9 9 12 9 12 15

⋅ ⋅ ⋅+ + +
⋅ ⋅ ⋅

 . . . .

Ans. (a) divergence (b) convergence
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11.89. If a, b, and d are positive numbers and b > a, prove that 
( ) ( ) ( 2 )

( ) ( ) ( 2 )

a a a d a a d a d

b b b d b b d b d

+ + ++ + +
+ + +

 . . . 

converges if b – a > d, and diverges if b – a < d.

Series of functions

11.90. Find the domain of convergence of the series (a) 
3

1

,
n

n

x

n

∞

=
∑  (b) 

1

( 1) ( 1)
,

2 (3 1)

n n

n
n

x

n

∞

=

− −
−∑  (c) 

2
1

1
,

(1 )n
n n x

∞

= +∑
(d) 2

1

1
,

1

n

n

x
n

x

∞

=

⎛ ⎞−
⎜ ⎟+⎝ ⎠

∑  and (e) 
2

1 1

nx

n

e

n n

∞

= − +∑
Ans. (a) – 1 < x <  1 (b) – 1 < x <  3 (c) all x � 0 (d) x > 0 (e) x <  0

11.91. Prove that 
1

1 3 5 (2 1)

2 4 6 (2 )
n

n

n
x

n

∞

=

⋅ ⋅ −
⋅ ⋅∑ L

L

K

K
 converges for –1 < x < 1.

Uniform convergence

11.92. By use of the definition, investigate the uniform convergence of the series

1
[1 ( 1) ] [1 ]

n

x

n x nx

∞

= + − +∑

[Hint: Resolve the nth term into partial fractions and show that the nth partial sum is
1

( ) 1 .
1

nS x
nx

= −
+ ]

Ans. Not uniformly convergent in any interval which includes x = 0; uniformly convergent in any other 
interval.

11.93. Work Problem 11.30 directly by first obtaining Sn(x).

11.94. Investigate by any method the convergence and uniform convergence of the series (a) 
1

,
3

n

n

x∞

=

⎛ ⎞
⎜ ⎟⎝ ⎠∑

(b)
2

1

sin
,

2 1
n

nx

n

∞

= −∑  and (c) 
1

, 0.
(1 )n

n

x
x

x

∞

=

≥
+∑

Ans. (a) convergence for ⏐x⏐ < 3; uniform convergence for ⏐x⏐ < r < 3 (b) uniform convergence for all 
x (c) convergence for x >  0; not uniform convergence for x >  0, but uniform convergence for x > r > 0

11.95. If 
3

1

sin
( )

n

nx
F x

n

∞

=

= ∑ , prove that (a) F(x) is continuous for all x, (b) 
0

lim ( ) 0,
x

F x
→

=  and 

(c)
2

1

cos
( )

n

nx
F x

n

∞

=

′ = ∑ , is continuous everywhere.

11.96. Prove that 
0

cos2 cos 4 cos6

1 3 3 5 5 7

x x xπ ⎛
+ +⎜ ⋅ ⋅ ⋅⎝∫  . . . 0.dx

⎞
=⎟

⎠

11.97. Prove that 
1

sin
( )

sinh
n

nx
F x

nπ

∞

=

= ∑  has derivatives of all orders for any real x.

11.98. Examine the sequence 
2

1
( ) , 1, 2, 3,

1
n n

u x n
x

= =
+

 . . . , for uniform convergence.
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11.99. Prove that 
1

1

0
lim 1 .

(1 / )nn

dx
e

x n
−

→∞
= −

+∫
Power series

11.100. (a) Prove that In 
2 3 4

(1 )
3 4

x x x
x x

x
+ = − + − + . . . (b) Prove that In 

1 1 1
2 1

2 3 4
= − + − +  . . . . (Hint: Use 

the fact that 2 31
1

1
x x x

x
= − + − +

+
 . . . and integrate.)

11.101. Prove that 
3 5 7

1 1 1 3 1 3 5
sin

2 3 2 4 5 2 4 6 7

x x x
x x− ⋅ ⋅ ⋅= + + + +

⋅ ⋅ ⋅
 . . . , 1 1.x− ≤ ≤

11.102. Evaluate (a) 
21/ 2

0

xe dx−∫  and (b) 
1

0

1 cos x
dx

x

−∫  to three decimal places, justifying all steps.

Ans. (a) 0.461 (b) 0.486

11.103. Evaluate (a) sin 40º, (b) cos 65º, and (c) tan 12º correctly to three decimal places.

Ans. (a) 0.643 (b) 0.423 (c) 0.213

11.104. Verify the expansions 4, 5, and 6 on Page 289.

11.105. By multiplying the series for sin x and cos x, verify that 2 sin x cos x = sin 2x.

11.106. Show that 
2 4 6

cos 4 31
1

2! 4! 6!
x x x x

e e
⎛

= − + − +⎜⎜⎝
 . . . , .x

⎞
− ∞ < < ∞⎟⎟⎠

11.107. Obtain the expansions

(a) 1tanh x−
3 5 7

3 5 7

x x x
x= + + + + . . . 1 1x− < <

(b)
3 5 7

2 1 1 3 1 3 5
ln( 1)

2 3 2 4 5 2 4 6 7

x x x
x x x

⋅ ⋅ ⋅+ + = − + − + +
⋅ ⋅ ⋅

. . . 1 1x− < <

11.108. Let 
21/ 0( ) .

0 0

xe xf x
x

−⎧⎪ ≠= ⎨
=⎪⎩

 Prove that the formal Taylor series about x = 0 corresponding to f (x) exists but 

that it does not converge to the given function for any x � 0.

11.109. Prove that

(a) 2 3ln (1 ) 1 1 1
1 1

1 2 2 3

x
x x x

x

+ ⎛ ⎞ ⎛ ⎞= − + + + + −⎜ ⎟ ⎜ ⎟+ ⎝ ⎠ ⎝ ⎠
 . . . for 1 1x− < <

(b)
3 4

2 2 1 2 1 1 2
{ln(1 + ) } 1 1

2 3 2 3 4

x x
x x

⎛ ⎞ ⎛ ⎞= − + + + + −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
 . . . for 1 1x− < ≤

Miscellaneous problems

11.110. Prove that the series for Jp(x) converges (a) for all x and (b) absolutely and uniformly in any finite interval.
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11.111. Prove that (a) 0 1{ ( )} ( ),
d

J x J x
dx

= −  (b) 1{ ( )} ( ),p p
p p

d
x J x x J x

dx −=  and 

(c) 1 1
2

( ) ( ) ( ).p p p
p

J x J x J x
x+ −= −

11.112. Assuming that the result of Problem 11.111(c) holds for p = 0, – 1, –2, . . . , prove that (a) J–1(x) = –J1(x),
(b) J–2(x) = J2(x), and (c) J–n(x) = (–1)n Jn(x), n = 1, 2, 3, . . . .

11.113. Prove that 1/ 2 ( 1/ )x t t

p

e
∞

−

= −∞

= ∑ Jp(x)t p (Hint: Write the left side as ext/2 e–x/2t, expand, and use Problem 
11.112.)

11.114. Prove that 
2

1

( 1)

( 2)

n

n

n z

n n

∞

=

+
+∑  is absolutely and uniformly convergent at all points within and on the circle ⏐z⏐ = 1.

11.115. (a) If 
1 1

n n
n n

n n

a x b x
∞ ∞

= =

=∑ ∑  for all x in the common interval of convergence ⏐x⏐ < R where R > 0, prove 

that an = bn for n = 0, 1, 2, . . . (b) Use (a) to show that the Taylor expansion of a function exists and the 
expansion is unique.

11.116. Suppose that lim .n
nu L=  Prove that Σun converges or diverges according as L < 1 or L > 1. If L = 1, the 

test fails.

11.117. Prove that the radius of convergence of the series Σanx
n can be determined by the following limits, when 

they exist, and give examples: (a) 
1

lim ,n

n n

a

a→∞ +
 (b) 

1
lim ,
n n

na→∞
 and (c) 

1
lim .
n n

na→∞

11.118. Use Problem 11.117 to find the radius of convergence of the series in Problem 11.22.

11.119. (a) Prove that a necessary and sufficient condition that the series Σun converge is that, given any � > 0, we 
can find N > 0 depending on � such that ⏐Sp – Sq⏐ < � whenever p > N and q > N, where Sk = u1 + u2 + . . . + 

uk. (b) Use (a) to prove that the series 
1 ( 1)3n

n

n

n

∞

= +∑  converges. (c) How could you use (a) to prove that the 

series
1

1

n
n

∞

=
∑  diverges? (Hint: Use the Cauchy convergence criterion, Page 27.)

11.120. Prove that the hypergeometric series (Page 276) (a) is absolutely convergent for ⏐x⏐ < 1, (b) is divergent 
for ⏐x⏐ > 1, (c) is absolutely divergent for ⏐x⏐ = 1 if a + b – c < 0, and (d) satisfies the differential equation 
x (1 – x) y� + {c – (a + b + 1)x} y� – aby = 0.

11.121. If F(a, b; c; x) is the hypergeometric function defined by the series on Page 290, prove that (a) F(–p, 1; 1; –x) = 

(1 + x)p, (b) x F(1, 1; 2; – x) = In(1 + x), and (c) 2 11 1 3
, ; ; (sin ) / .

2 2 2
F x x x−⎛ ⎞ =⎜ ⎟⎝ ⎠

11.122. Find the sum of the series 
3 5

( )
1 3 1 3 5

x x
S x x= + + +

⋅ ⋅ ⋅
. . . . (Hint: Show that S ′(x) – 1 + xS(x) and solve.)

Ans.
2 2/ 2 / 2

0

x
x xe e dx−∫
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11.123. Prove that 
1 1 1

1
1 3 1 3 5 1 3 5 7

+ + + +
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

 . . . 
2 3 4

1 1 1 1
1 –

2 3 2 2! 5 2 3! 7 2 4! 9
e

⎛
= − + + −⎜⎜ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⎝

 . . . ⎞⎟⎟⎠
.

11.124. Establish Dirichlet’s test on Page 284.

11.125. Prove that 
1

sin

n

nx

n

∞

=
∑  is uniformly convergent in any interval which does not include 0, ±π, ±2π, . . . (Hint: 

use the Dirichlet test, Page 284, and Problem 1.94.)

11.126. Establish the results on Page 289 concerning the binomial series. (Hint: Examine the Lagrange and Cauchy 
forms of the remainder in Taylor’s theorem.)

11.127. Prove that 
1

2
1

( 1)n

n n x

∞ −

=

−
+∑  converges uniformly for all x, but not absolutely.

11.128. Prove that 
1 1 1

1
4 7 10

− + − + . . . 1
ln 2

33 3

π= + .

11.129. If x = yey, prove that 
1 1

1

( 1)
for 1/e < 1/ .

!

n n
n

n

n
y x x e

n

∞ − −

=

−= − ≤∑

11.130. Prove that the equation e–λ = λ – 1 has only one real root and show that it is given by

1 1

1

( 1)
1

!

n n n

n

n e

n
λ

∞ − − −

=

−= + ∑

11.131. Let 
32

32
11

2! 3!1x

B xB xx
B x

e
= + + + +

−
. . . . (a) Show that the numbers Bn, called the Bernoulli numbers,

satisfy the recursion formula (B + 1)n – Bn = 0 where Bk is formally replaced by Bk after expanding. 

(b) Using (a) or otherwise, determine B1 . . . , B6.

Ans. (b) 1 2 3 4 5 6
1 1 1 1

, , 0, , 0,
2 6 30 42

B B B B B B= − = = = − = =

11.132. (a) Prove that coth 1 .
2 21x

x x x

e

⎛ ⎞= −⎜ ⎟− ⎝ ⎠
 (b) Use Problem 11.127 and (a) to show that B2k+1 = 0 if k

= 1, 2, 3, . . . 

11.133. Derive the series expansions:

(a)
31

coth
3 45

x x
x

x
= + − +  . . . 

2
2 (2 )

(2 )!

n
nB x

n x
+ +  . . .

(b)
31

coth
3 45

x x
x

x
= + − +  . . .

2
2 (2 )

( 1)
(2 )!

n
n nB x

n x
− +  . . .

(c)
3 52

tan
3 15

x x
x x= + + +  . . .

2 1 2 1
1 22(2 1) (2 )

( 1)
(2 )!

n n
n nB x

n

− −
− −

− +  . . .

(d) 31 7
csc

6 360

x
x x

x
= + + + . . . 

2 1 2 1
1 22(2 1)

( 1)
(2 )!

n n
n nB x

n

− −
− −

− +  . . .

[Hint: For (a) use Problem 11.132; for (b) replace x by ix in (a); for (c) use tan x = cot x – 2 cot 2x; for (d) use 
csc x = cot x + tan x/2.]
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11.134. Prove that 
3

1

1
1

n n

∞

=

⎛ ⎞+⎜ ⎟⎝ ⎠∏  converges.

11.135. Use the definition to prove that 
1

1
1

n
n

∞

=

⎛ ⎞+⎜ ⎟⎝ ⎠∏  diverges.

11.136. (a) Prove that 
1

(1 ),n
n

u
∞

=

−∏  where 0 < un < 1, converges if and only if Σun converges.

11.137. (a)Prove that 
2

2

1
1

n n

∞

=

⎛ ⎞−⎜ ⎟⎝ ⎠∏  converges to 
1

2
. (b) Evaluate the infinite product in (a) to two decimal places 

and compare with the true value.

11.138. Prove that the series 1 + 0 – 1 + 1 + 0 – 1 + 1 + 0 – 1 + . . . is the C – 1 summable to zero.

11.139. Prove that the Cesaro method of summability is regular. (Hint: See Page 291.)

11.140. Prove that the series 1 + 2x + 3x2 + 4x3 + . . . + nxn–1 + . . . converges to 1/(1 – x)2 for ⏐x⏐ < 1.

11.141. A series 
0n

a
∞

=
∑  is called Abel summable to S if 

1
0

lim n
nx

n

S a X
∞

→ − =

= ∑  exists. Prove that 

(a)
0

( 1) ( 1)n

n

n
∞

=

− +∑  (n + 1) is Abel summable to 1
4

(b) 0

( 1) ( 1)( 2)

2

n

n

n n∞

=

− + +∑
 is Abel summable to 1

8

11.142. Prove that the double series 
2 2

0 0

1
,

( )p
m n m n

∞ ∞

= = +∑∑  where p is a constant, converges or diverges according as 

p > 1 or p <  1, respectively.

11.143. (a) Prove that 
2 3 4

1 1 2! 3!x u

x

e
du

u x x x x

−∞
= − + − +∫  . . . 

1

1

( 1) ( 1)!
( 1) ! .

n x u
n

n nx

n e
n du

x u

− −∞

+

− − + − ∫
(b) Use (a) to prove that 

2 3 4

1 1 2! 3!
~

x u

x

e
du

u x x x x

−∞
− + − +∫  . . . .
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Improper Integrals

Definition of an Improper Integral

The functions that generate the Riemann integrals of Chapter 5 are continuous on closed intervals. Thus, the 
functions are bounded and the intervals are finite. Integrals of functions with these characteristics are called 
proper integrals. When one or more of these restrictions are relaxed, the integrals are said to be improper.
Categories of improper integrals are established as follows.

The integral ( )
b

a
f x dx∫  is called an improper integral if 

1. a = – � or b = � or both; i.e., one or both integration limits is infinite.

2. f (x) is unbounded at one or more points of a < x < b. Such points are called singularities of f (x).

Integrals corresponding to (1) and (2) are called improper integrals of the first and second kinds, respec-
tively. Integrals with both conditions (1) and (2) are called improper integrals of the third kind

EXAMPLE 1. 2

0
sin x dx

∞

∫  is an improper integral of the first kind.

EXAMPLE 2.
4

0 3

dx

x −∫  is an improper integral of the second kind.

EXAMPLE 3.
0

xe
dx

x

−∞

∫  is an improper integral of the third kind.

EXAMPLE 4.
1

0

sin x
dx

x∫  is a proper integral, since 
0

sin
lim 1.
x

x

x→ +
=

Improper Integrals of the First Kind (Unbounded Intervals)

If f is integrable on the appropriate domains, then the indefinite integrals ( ) and ( )
x a

a x
f t dt f t dt∫ ∫  (with vari-

able upper and lower limits, respectively) are functions. Through them we define three forms of the improper 
integral of the first kind.

Definition
(a) If f is integrable on a ,  then ( ) lim ( ) .

x

a ax
x f x dx f t dt

∞

→∞
< < ∞ =∫ ∫

(b) If f is integrable on –� < x , then ( ) lim ( ) .
a a

xx
a f x dx f t dt

−∞ →−∞
< =∫ ∫

(c) If f is integrable on –� < x < �, then

( ) ( ) ( )

lim ( ) lim ( )
x

xx x

f x dx f x dx f x dx

f t dt f t dt

α

α

α

α

∞ ∞

−∞ −∞

→−∞ →∞

= +

= +

∫ ∫ ∫
∫ ∫

CHAPTER 12



CHAPTER 12  Improper Integrals322

In (c) it is important to observe that

lim  ( ) lim ( )
x

xx x
f t dt f t dt

α

α→−∞ →∞
+∫ ∫

and

lim ( ) ( )
x

xx
f t dt f t dt

α

α−→∞
⎡ ⎤+⎢ ⎥⎣ ⎦∫ ∫

are not necessarily equal.
This can be illustrated with f (x) = xex2

. The first expression is not defined, since neither of the improper 
integrals (i.e., limits) is defined, while the second form yields the value 0.

EXAMPLE. The function 
2( / 2)1

( )
2

xF x e
π

−=  is called the normal density function and has numerous appli-

cations in probability and statistics. In particular (see the bell-shaped curve in Figure 12.1),

∞

−∞∫
21

: 1
22

x
e dx

π
− =

(See Problem 12.31 for the trick of making this evaluation.)

Perhaps at some point in your academic career you were “graded on the curve.” The infinite region under 
the curve with the limiting area of 1 corresponds to the assurance of getting a grade. C’s are assigned to those 
whose grades fall in a designated central section, and so on. (Of course, this grading procedure is not valid 
for a small number of students, but as the number increases it takes on statistical meaning.)

In this chapter we formulate tests for convergence or divergence of improper integrals. It will be found 
that such tests and proofs of theorems bear close analogy to convergence and divergence tests and corre-
sponding theorems for infinite series (see Chapter 11).

Figure 12.1

Convergence or Divergence of Improper Integrals of the First Kind

Let f (x) be bounded and integrable in every finite interval a < x < b. Then we define

( ) lim ( )
b

a ab
f x dx f x dx

∞

→∞
=∫ ∫  (1)

where b is a variable on the positive real numbers.
The integral on the left is called convergent or divergent according as the limit on the right does or does 

not exist. Note that ( )
a

f x dx
∞

∫  bears close analogy to the infinite series 
1

,n
n

u
∞

=
∑  where un = f (n), while 

( )
b

a
f x dx∫  corresponds to the partial sums of such infinite series. We often write M in place of b in Equa-

tion (1).
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Similarly, we define

( ) lim ( )
b b

aa
f x dx f x dx

−∞ →−∞
=∫ ∫  (2)

where a is a variable on the negative real numbers. And we call the integral on the left convergent or divergent 
according as the limit on the right does or does not exist.

EXAMPLE 1.
2 2 21 1

1
lim lim 1 1 so that  converges to 1.

b

tb b

dx dx dx

bx x x

∝ ∞

→∞ →∞

⎛ ⎞= = − =⎜ ⎟⎝ ⎠∫ ∫ ∫
EXAMPLE 2. cos lim cos lim(sin sin ). Since this limit does not exit, cos

a u a

aa a
x dx x dx u a x dx

−∞ −∞→∞ →∞
= = −∫ ∫ ∫

is divergent.

In like manner, we define
0

0

( ) ( ) ( )
x

x
f x dx f x dx f x dx

∞ ∞

−∞ −∞
= +∫ ∫ ∫  (3)

where x0 is a real number, and we call the integral convergent or divergent according as the integrals on the 
right converge or not, as in definitions (1) and (2). [See the previous remarks in part (c) of the definition of 
improper integrals of the first kind.]

Special Improper Integrals of the First Kind

1. Geometric or exponential integral 1 ,t x

a
e dx

∞ −∫  where t is a constant, converges if t > 0 and diverges 

if t <  0. Note the analogy with the geometric series if r = e–t so that e–tx = rx.

2. The p integral of the first kind ,
pa

dx

x

∞

∫  where p is a constant and a > 0, converges if p > 1 and diverges 

if p <  1. Compare with the p series.

Convergence Tests for Improper Integrals of the First Kind

The following tests are given for cases where an integration limit is �. Similar tests exist where an integration 
limit is –� (a change of variable x = – y then makes the integration limit �). Unless otherwise specified, we 
assume that f (x) is continuous and thus integrable in every finite interval a < x < b.

1. Comparison test for integrals with nonnegative integrands.

(a) Convergence. Let g(x) >  0 for all x > a, and suppose that ( )
a

g x dx
∞

∫  converges. Then if 0 < f (x) <

g(x) for all x > a, ( )
a

f x dx
∞

∫  also converges.

EXAMPLE.
x0

1 1 dx
Since  and  converges,  also converges.

1 e 1
x x

x x a
e e dx

e e

∞ ∞− −≤ =
+ +∫ ∫ ex

dx

(b) Divergence. Let g(x) >  0 for all x > a, and suppose that 
a

∞

∫ g(x) dx diverges. Then if f (x) < g(x) for all 

x > a,
a

∞

∫ f (x) dx also diverges.

EXAMPLE.
2 2

1 1 dx
Since for 2 and  diverges (  integral with  = 1),  also diverges.

ln ln x

dx
x p p

x x x

∞ ∞
> > ∫ ∫

2. Quotient test for integrals with nonnegative integrands.

(a)
( )

If ( ) and ( ) 0, and if lim 0 or , then ( ) and
( ) ax

f x
f x g x A f x dx

g x

∞

→∞
≥ ≥ = ≠ ∞ ∫ ( )

a
g x dx

∞

∫ either both 
converge or both diverge.

(b) If 0A in= (a) and ( ) converges, then ( ) converges.
a a

g x dx f x dx
∞ ∞

∫ ∫
(c) If inA = ∞ (a) and ( ) diverges, then ( ) diverges.

a a
g x dx f x dx

∞ ∞

∫ ∫
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This test is related to the comparison test and is often a very useful alternative to it. In particular, taking 
g(x) = 1/xp, we have, from known facts about the p integral, the following theorem.

Theorem 1 Let lim ( ) . Thenp

x
x f x A

→∞
=

(i) ( )  converges if  > 1 and  is finite
a

f x dx p A
∞

∫ .

(ii) ( )  diverges if  < 1 and 0 (  may be infinite).
a

f x dx p A A
∞

≠∫
EXAMPLE 1.

2 2
2

4 40

1
 converges since lim . .

44 25 4 25x

x dx x
x

x x

∞

→∞
=

+ +∫
EXAMPLE 2.

0 4 2 4 2
 diverges since lim . 1.

1 1x

x dx x
x

x x x x

∞

→∞
=

+ + + +
∫

A similar test can be devised using g(x) = e–tx.

3. Series test for integrals with nonnegative integrands. ( )
a

f x dx
∞

∫  converges or diverges according as 
Σun where un = f (n), converges or diverges.

4. Absolute and conditional convergence. ( )  is called if | ( ) |
a a

f x dx absolutely convergent f x dx
∞ ∞

∫ ∫  con-

verges. If 
a

( )  converges but | ( ) |  diverges, then ( )  is called
a a

f x dx f x dx f x dx
∞ ∞ ∞

∫ ∫ ∫ conditionally con-

vergent.

Theorem 2
a

If | ( )  converges, then ( )
a

f x dx f x dx
∞ ∞

∫ ∫  converges. In words, an absolutely convergent inte-
gral converges.

EXAMPLE 1.
2

cos

1a

x
dx

x

∞

+∫  is absolutely convergent and thus convergent, since 

2 2 20 0 0

cos
 and  converges.

1 1 1

x dx dx
dx

x x x

∞ ∞ ∞
≤

+ + +∫ ∫ ∫

EXAMPLE 2.
0 0

sin sin
converges (see Problem 12.11), but 

x x
dx dx

x x

∞ ∞

∫ ∫  does not converge (see Prob-

lem 12.12). Thus, 
0

sin x
dx

x

∞

∫ dx is conditionally convergent.

Any of the tests used for integrals with nonnegative integrands can be used to test for absolute conver-
gence.

Improper Integrals of the Second Kind

If f (x) becomes unbounded only at the endpoint x = a of the interval a < x < b, then we define

0
( ) lim ( )

b b

a a
f x dx f x dx

+∈∈→ +
=∫ ∫  (4) 

and define it to be an improper integral of the second kind. If the limit on the right of Equation (4) exists, we 
call the integral on the left convergent; otherwise, it is divergent.

Similarly, if f (x) becomes unbounded only at the endpoint x = b of the interval a < x < b, then we extend 
the category of improper integrals of the second kind.

0
( ) lim ( )

b b e

a a
f x dx f x dx

−

∈→ +
=∫ ∫  (5)

Note: Be alert to the word unbounded. This is distinct from undefined. For example, 
1 1

0

sin sin
lim

a

x x
dx dx

x x∈∈→
=∫ ∫

is a proper integral, since 
0

sin
lim 1
x

x

x→
=  and, hence, is bounded as x → 0 even though the function is undefined 

at x = 0. In such case the integral on the left of Equation (5) is called convergent or divergent according as 
the limit on the right exists or does not exist.
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Finally, the category of improper integrals of the second kind also includes the case where f (x) becomes 
unbounded only at an interior point x = x0 of the interval a < x < b; then we define

0 1

0 21 20 0
( ) lim ( ) lim ( )

b x b

a a x
f x dx f x dx f x dx

−∈

+∈∈ → + ∈ → +
= +∫ ∫ ∫  (6)

The integral on the left of Equation (6) converges or diverges according as the limits on the right exist or 
do not exist.

Extensions of these definitions can be made in case f (x) becomes unbounded at two or more points of the 
interval a < x < b.

Cauchy Principal Value

It may happen that the limits on the right of Equation (6) do not exist when �1 and �2 aproach zero indepen-
dently. In such case it is possible that by choosing �1 = �2 = � in (6), i.e., writing

f x dx f x dx f x dx
a

b

x

b

a

x
( ) lim ( ) ( )= +{∈→ + +∈

−∈

∫ ∫∫0 0

0 }}  (7) 

the limit does exist. If the limit on the right of Equation (7) does exist, we call this limiting value the Cauchy 
principal value of the integral on the left. See Problem 12.14.

EXAMPLE. The natural logarithm (i.e., base e) may be defined as follows:

ln , 0
x

t

dt
x x

t
= < < ∞∫

Since
1

( )f x
x

=  is unbounded as x → 0, this is an improper integral of the second kind (see Figure 12.2). 

Also,
0

dt

t

∞

∫ is an integral of the third kind, since the interval to the right is unbounded.

Now 
1

0 0
lim lim [ln1 ln ]  as 0;

dt

t∈∈→ ∈→
= − ∈ → −∞ ∈→∫  therefore, this improper integral of the second kind is 

divergent. Also, 
1

lim lim [ln ln
x

t x x

dt dt
x

t t

∞

→∞ →∞
= = −∫ ∫ 1] ;→ ∞  this integral (which is of the first kind) also 

diverges.

Figure 12.2

Special Improper Integrals of the Second Kind

1.
( )

b

pa

dx

x a−∫  converges if p < 1 and diverges if p ≥  1.

2.  converes if  < 1 and diverges if   1.
( )

b

pa

dx
p p

b x
≥

−∫
These can be called p integrals of the second kind. Note that when p <  0 the integrals are proper.
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Convergence Tests for Improper Integrals of the Second Kind

The following tests are given for the case where f (x) is unbounded only at x = a in the interval a < x < b.
Similar tests are available if f (x) is unbounded at x = b or at x = x0 where a < x0 < b.

1. Comparison test for integrals with nonnegative integrands.
(a) Convergence. Let g(x) ε 0 for a < x < b, and suppose that ( )

b

a
g x dx∫  converges. Then if 

0 ( ) ( ) for , ( )  also converges.
b

a
f x g x a x b f x dx< < < < ∫

EXAMPLE.
4

1 1
for 1.

11
x

xx
< >

−−
 Then since 

5

1 1

dx

x −∫  converges (p integral with a = 1, p = 
1

2
),

5

1 4 1

dx

x −
∫  also converges.

(b) Divergence. Let g(x) >  0 for a < x < b, and suppose that ( )
b

a
g x dx∫  diverges. Then if 

( ) ( ) for , ( )  also diverges.
b

a
f x g x a x b f x dx> < > ∫

EXAMPLE.
4 4

ln 1
 for 3.

( 3) ( 3)

x
x

x x
> >

− −
 Then since 

43 ( 3)

b dx

x −∫  diverges (p integral with a = 3, p = 4), 

43

ln 

( 3)

b x
dx

x −∫ also diverges.

2. Quotient test for integrals with nonnegative integrands.

(a) If f (x) >  0 and g(x) >  0 for a < x < b, and if 
( )

lim 0 or ,
( )x a

f x
A

g x→
= ≠ ∞  then ( )

b

a
f x dx∫  and 

( )
b

a
g x dx∫  either both converge or both diverge.

(b) If 0 in A =  (a), and 
b

a
( )  converges, then ( )  converges.

b

a
g x dx f x dx∫ ∫

(c) If  in A = ∞  (a), 
b

a
and ( )  diverges, then ( )  diverges.

b

a
g x dx f x dx∫ ∫

This test is related to the comparison test and is a very useful alternative to it. In particular, taking g(x) = 
1/ (x – a) p we have, from known facts about the p integral, the following theorems.

Theorem 3. Let lim
x a→ +

 (x – a)p f (x) = A. Then

(i) ( )  converges if 1 and  is finite
b

a
f x dx p A<∫ .

(ii) ( )  diverges if 1 and 0 (A may be infinite).
b

a
f x dx p A> ≠∫

If f (x) becomes unbounded only at the upper limit, these conditions are replaced by those in Theorem 4.

Theorem 4. Let lim
x b→ −

 (b – x)p f (x) = B. Then

(i) ( )  converges of 1 and  is finite
b

a
f x dx p B<∫ .

(ii) ( )  diverges if 1 and 0 (  may be infinite).
b

a
f x dx p B B> ≠∫

EXAMPLE 1.
5 1/ 2

4 1/ 2 41 4 1 1

1 1 1
 converges, since lim ( 1) . lim .

2( 1) 11 x x

dx x
x

x xx → + → +

−− = =
− −−

∫

EXAMPLE 2.
3

0 2 23

1 1 .. diverges, since lim (3 )
10(3 ) 1 (3 ) 1x

dx
x

x x x x→ −
− =

− + − +
∫

3. Absolute and conditional convergence.
b

a
( )  is called   if | ( ) |

b

a
f x dx absolute convergent f x dx∫ ∫ con-

verges. If ( )  converges but | ( ) |  diverges, then ( )
b b b

a a a
f x dx f x dx f x dx∫ ∫ ∫  is called conditionally conver-

gent.
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Theorem 5. If | ( ) |
b

a
f x dx∫  converges, then ( )

b

a
f x dx∫  converges. In words, an absolutely convergent 

integral converges.

EXAMPLE.
4

3 3 3

sin 1 1
 and  converges  integral with , ,

3

x dx
p a p

x x x

π

π
π

π π π
⎛ ⎞< = =⎜ ⎟− − − ⎝ ⎠∫  it follows 

that
4

3

sin x
dx

x

π

π π−∫ converges and thus 
4

3

sin x
dx

x

π

π π−∫  converges (absolutely).

Any of the tests used for integrals with nonnegative integrands can be used to test for absolute conver-
gence.

Improper Integrals of the Third Kind

Improper integrals of the third kind can be expressed in terms of improper integrals of the first and second 
kinds, and, hence, the question of their convergence or divergence is answered by using results already es-
tablished.

Improper Integrals Containing a Parameter, Uniform Convergence

Let

( ) ( , )
a

f x dxφ α α
∞

= ∫  (8)

This integral is analogous to an infinite series of functions. In seeking conditions under which we may 
differentiate or integrate φ(α) with respect to α, it is convenient to introduce the concept of convergence for 
integrals by analogy with infinite series.

We shall suppose that the integral (8) converges for α1 < α < α2, or, briefly, [α1, α2].

Definition. The integral (8) is said to be uniformly convergent in [α1, α2] if for each � > 0 we can find a 
number N depending on � but not on α, such that

1 2( ) ( , ) for all  and all  in [ , ]
u

a
f x dx u Nφ α α α α α− < ∈ >∫

This can be restated by noting that ( ) ( , ) ( , ) ,
u

a u
f x dx f x dxφ α α α

∞
− =∫ ∫  which is analogous in an infinite 

series to the absolute value of the remainder after N terms.
This definition and the properties of uniform convergence to be developed are formulated in terms of improper 

integrals of the first kind. However, analogous results can be given for improper integrals of the second and third 
kinds.

Special Tests for Uniform Convergence of Integrals

1. Weierstrass M test. If we can find a function M(x) ε 0 such that
(a) |f (x, α)| < M(x) α1 < α < α2, x > a

(b) ( )  converges
a

M x dx
∞

∫
then ( , )

a
f x dxα

∞

∫  is uniformly and absolutely convergent in α1 < α < α2.

EXAMPLE. Since 
2 2 20

cos 1 dx
 and 

1 1 x 1

x

x x

α ∞
<

+ + +∫  converges, it follows that 
20

cos x

x 1
dx

α∞

+∫  is uniformly and 

absolutely convergent for all real values of α.
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As in the case of infinite series, it is possible for integrals to be uniformly convergent without being ab-
solutely convergent, and conversely.

2. Dirichlet’s test. Suppose that
(a) ψ(x) is a positive monotonic decreasing function which approches zero as x → �.

(b) 1 2( , )  for all  and .
u

a
f x dx P u aα α α α< > < <∫

Then the integral ( ,  ) ( )
a

f x x dxα ψ
∞

∫  is uniformly convergent for α1 < α < α2.

Theorems on Uniformly Convergent Integrals

Theorem 6. If f (x, α) is continuous for x ε a and α1 < α < α2, and if ( , )
a

f x dxα
∞

∫  is uniformly conver-

gent for α1 < α < α2, then φ(α) = ( , )
a

f x dxα
∞

∫ is continuous in α1 < α < α2. In particular, if α0 is any point 

of α1 < α < α2, we can write

lim ( ) lim ( , ) lim ( , )
a u va a

d f x f x dx
α α α α α α

φ α α α α
∞ ∞

→ → →
= =∫ ∫  (9)

If α0 is one of the endpoints, we use right- or left-hand limits.

Theorem 7. Under the conditions of Theorem 6, we can integrate φ(α) with respect to α1 to α2 to obtain

φ α α α α α α
α

α

α

α

α

α
( ) ( , ) ( , )d f x dx d f x d

a
= { }∫ ∫∫

∞

1

2

1

2

1

22

∫∫ { }∞

a
dx�(
)d
 
 
 
 
  (10) 

which corresponds to a change of the order of integration.

Theorem 8. If f (x, α) is continuous and has a continuous partial derivative with respect to α for x ε a and 

α1 < α < α2, and if
a

f
dx

α
∞ ∂

∂∫  converges uniformly in α1 < α < α2, then if a does not depend on α,

a

d f
dx

d

φ
α α

∞ ∂=
∂∫  (11)

If a depends on α, this result is easily modified (see Leibniz’s rule, Page 198).

Evaluation of Definite Integrals

Evaluation of definite integrals which are improper can be achieved by a variety of techniques. One useful 
device consists of introducing an appropriately placed parameter in the integral and then differentiating or 
integrating with respect to the parameter, employing the aforementioned properties of uniform convergence.

Laplace Transforms

Operators that transform one set of objects into another are common in mathematics. Both the derivative and 
the indefinite integral are examples. Logarithms provide an immediate arithmetic advantage by replacing 
multiplication, division, and powers, respectively, by the relatively simpler processes of addition, subtraction, 
and multiplication. After obtaining a result with logarithms, an antilogarithm procedure is necessary to find 
its image in the original framework. The Laplace transform has a role similar to that of logarithms but in the 
more sophisticated world of differential equations. (See Problems 12.34 and 12.36.)
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The Laplace transform of a function F(x) is defined as
5

0
( ) { ( )} ( )xf s L F x e F x dx

∞ −= = ∫  (12)

and is analogous to power series as seen by replacing e–s by t so that e–sx = tx. Many properties of power series 
also apply to Laplace transforms. Table 12.1, showing Laplace transforms, is useful. In each case, a is a real 
constant.

TABLE 12.1

s
s

s

s

s

s

s

s

s

s

s

s s

 F(x) �{F(x)}

Linearity

The Laplace transform is a linear operator; i.e., ζ{F(x) + G(x)} = ζ{F(x)} + ζ{G(x)}.
This property is essential for returning to the solution after having calculated in the setting of the trans-

forms. (See the example that follows and the previously cited problems.)

Convergence

The exponential e–st contributes to the convergence of the improper integral. What is required is that F(x)
does not approach infinity too rapidly as x → �. This is formally stated as follows: If there is some constant 

a such that |F(x)| < eax for all sufficiently large values of x, then 5

0
( ) ( )sf s e F x dx

∞ −= ∫  converges when s > a

and f has derivatives of all orders. (The differentiations of f can occur under the integral sign.)

Application

The feature of the Laplace transform that (when combined with linearity) establishes it as a tool for solving 

differential equations is revealed by applying integration by parts to 
0

( ) ( )
x stf s e F t dt−= ∫ . By letting u = F(t)

and dυ = e–st dt, we obtain, after letting x → �,

0 0

1 1
( ) (0) ( )

x st ste F t dt F e F t dt
s s

∞− − ′= +∫ ∫
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Conditions must be satisfied that guarantee the convergence of the integrals (for example, e–st F(t) → 0 as 
t → �).

This result of integration by parts may be put in the form
(a) ζ {F� (t)} = sζ {F(t)} – F(0).

Repetition of the procedure combined with a little algebra yields

(b) ζ {F �(t)} = s2ζ {F(t)} – sF(0) – F� (0).
The Laplace representation of derivatives of the order needed can be obtained by repeating the process.

To illustrate application, consider the differential equation
2

2
4 3sin

d y
y t

dt
+ =

where y = F(t) and F(0) = 1, F´ (0) = 0. We use

2 2 2 2

5
(sin } , {cos }at at

s a s a

αζ ζ= =
+ +

and recall that

f (s) = ζ{F(t)} ζ {F �(t)} + 4ζ{F(t)} = 3ζ{sin t}

Using (b), we obtain
2

2

3
( ) 4 ( )

1
s f s s f s

s
− + =

+
Solving for f (s) yields

2 2 2 2 2 2

3 1
( )

( 4)( 1) 4 1 4 4

s j s
f s

s s s s s s
= + = − +

+ + + + + +
(Partial fractions were employed.)

Referring to the table of Laplace transforms, we see that this last expression may be written

1
( ) {sin } {sin 2 ) {cos2 }

2
f s t t tζ ζ ζ= − +

then, using the linearity of the Laplace transform,

1
( ) sin sin 2 cos2

2
f s t t tζ ⎧ ⎫= − +⎨ ⎬

⎩ ⎭
We find that

1
( ) sin sin 2 cos2

2
F t t t t= − +

satisfies the differential equation.

Improper Multiple Integrals

The definitions and results for improper single integrals can be extended to improper multiple integrals.

SOLVED PROBLEMS

Improper integrals

12.1. Classify according to the type of improper integral:

(a)
1

31 ( 1)

dx

x x− +∫  (c) 
10

23 ( 2)

x dx

x −∫  (e) 20

1 cos x
dx

x

π −
∫
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(b)
0 1 tan

dx

x

∞

+∫  (d) 
2

4 2 1

x dx

x x

∞

−∞ + +∫
(a) Second kind (integrand is unbounded at x = 0 and x = –1).
(b) Third kind (integration limit is infinite and integrand is unbounded where tan x = –1).
(c) This is a proper integral (integrand becomes unbounded at x = 2, but this is outside the range of in-

tegration 3 < x <  10).

(d) First kind (integration limits are infinite but integrand is bounded).

(e) This is a proper integral (since 
20

1 cos 1
lim

2x

x

x→ +

− =  by applying L’ Hospital’s rule).

12.2. Show how to transform the improper integral of the second kind, 
2

,
(2 )t

dx

x x−∫  into (a) an improper 
integral of the first kind, (b) a proper integral.

(a) Consider
2

(2 )t

dx

x x

−∈

−∫ , where 0 < < 1, say.∈ 1
Let 2 .x

y
− =  Then the integral becomes 

1/

1 2 1

dy

y y

∈

−∫ . As � → 0 +, we see that consideration of the given integral is equivalent to consideration 

of
1

,
2 1

dy

y y

∞

−∫
 which is an improper integral of the first kind.

(b) Letting 2 – x = υ2 in the integral of (a), it becomes 
1

2
2 .

2

dυ

υ∈ +
∫  We are thus led to consideration of 

1

0 2
2

1

dυ

υ +
∫ , which is a proper integral.

From this, we see that an improper integral of the first kind may be transformed into an improper integral 
of the second kind, and conversely (actually this can always be done).

We also see that an improper integral may be transformed into a proper integral (this can only sometimes
be done).

Improper integrals of the first kind

12.3. Prove the comparison test (Page 326) for convergence of improper integrals of the first kind.

Since 0 < f (x) < g(x) for x ε a, we have, using Property 7, Page 98,

0 ( ) ( ) ( )
b b

a a
f x dx g x dx g x dx

α

∞
< < <∫ ∫ ∫

But, by hypothesis, the last integral exists. Thus, lim ( )  exists,
b

ab
f x dx

→∞ ∫  and, hence, ( )  convergesf x dx
α

∞

∫ .

12.4. Prove the quotient test (a) on Page 326.

By hypothesis, 
( )

lim 0.
( )x

f x
A

g x→∞
= >  Then, given any � > 0, we can find N such that 

( )

( )

f x
A

g x
− < ∈  when 

x ε N. Thus, for x ε N, we have

( )
( ) ( ) ( ) ( ) ( )

( )

f x
A A or A g x f x A g x

g x
− ∈ < < + ∈ − ∈ < < + ∈

Then

( ) ( )   ( )   ( ) ( )
b b b

N N N
A g x dx f x dx A g x dx− ∈ < < + ∈∫ ∫ ∫  (1)

There is no loss of generality in choosing A – � > 0.
If

a

∞

∫ g(x) dx converges, then by the inequality on the right of Equation (1), 

lim ( ) exists, and so ( )  converges
b

N ab
f x dx f x dx

∞

→∞ ∫ ∫ .
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If
a

∞

∫ g(x) dx diverges, then by the inequality on the left of Equation (1), lim ( )
b

Nb
f x dx

→∞
= ∞∫ ,

and so ( ) diverges
a

f x dx
∞

∫ .

For the cases where A = 0 and A = �, see Problem 12.41.
As seen in this and Problem 12.3, there is, in general, a marked similarity between proofs for infinite 

series and improper integrals.

12.5. Test for convergence: 
4 21

( )
3 5 1

x dx
a

x x

∞

+ +∫ and
2

2 6

1
( ) .

16

x
b dx

x

∞ −

+
∫

(a) Method 1: For large x, the integrand is approximately x/3x4 = 1/3x3.

4 2 3

1
Since 

3 5 1 3

x

x x x
<

+ + 3

1
 and 

3 t

dx

x

∞

∫  converges (p integral with p = 3), it follows by the compari-

son test that 
4 21 3 5 1

x dx

x x

∞

+ +∫  also converges.

Note that the purpose of examining the integrand for large x is to obtain a suitable comparison integral.

 Method 2:
4 2 3 1

1 ( )
( ) , ( ) . Since lim , and ( )  converges

33 5 1 x

x f x
Let f x g x g x dx

x x x

∞

→∞
= =

+ + ∫ ,

1
( ) also converges by the quotient test.f x dx

∞

∫
Note that in the comparison function g(x), we have discarded the factor 

1

3
. However, it could just as well 

have been included.

 Method 3: 3
4 2

1
lim .

33 5 1x

x
x

x x→∞

⎛ ⎞ =⎜ ⎟+ +⎝ ⎠
 Hence, by Theorem 1, Page 324, the required integral 

converges.

(b) Method 1: For large x, the integrand is approximately x2/ x6 = 1/x.

2 2

2 26 6

1 1 1 1 1
For 2, . . Since   diverges,  also diverges.

2 21 16

x dx x
x dx

x xx x

∞ ∞− −> >
+ +

∫ ∫

 Method 2:
2

6

1 1
Let ( ) , ( ) . Then 

x 16

x
f x g x

x

−= =
−

,
( )

since lim 1
( )x

f x

g x→∞
=

2
and ( )  diverges,g x dx

∞

∫

2
( )  also diverges.f x dx

∞

∫

 Method 3: Since 
2

6

1
lim 1

16x

x
x

x→∞

⎛ ⎞− =⎜ ⎟⎜ ⎟+⎝ ⎠
, the required integral diverges by Theorem 1, Page 324.

Note that Method 1 may (and often does) require us to obtain a suitable inequality factor (in this case, 
1

2
or any positive constant less than 

1

2
) before the comparison test can be applied. Methods 2 and 3, however, do 

not require this.

12.6. Prove that 
2

0

xe dx
∞ −∫  converges.

lim
x→∞

x2
2xe−  = 0 (by L’Hospital’s rule or otherwise). Then, by Theorem 1, with A = 0, p = 2, the given 

integral converges. Compare Problem 11.10(a).

12.7. Examine for convergence: (a) 
1

ln
,

x
dx

x a

∞

+∫  where a is a positive constant and (b) 
20

1 cos
.

x
dx

x

∞ −
∫

(a)
ln

lim . .
x

x
x

x a→∞
= ∞

+
 Hence, by Theorem 1, Page 324, with A = �, p = 1, the given integral diverges.

(b)
2 2 20 0

1 cos 1 cos 1 cosx x x
dx dx dx

x x x

π

π

∞ ∞− − −= +∫ ∫ ∫ .
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The first integral on the right converges [see Problem 12.1(e)].

Since 3 / 2
2

1 cos
lim 0,
x

x
x

x→∞

−⎛ ⎞ =⎜ ⎟⎝ ⎠
 the second integral on the right converges by Theorem 1, Page 324, with 

A = 0 and p = 3/2.
Thus, the given integral converges.

12.8. Test for convergence: 
1

( )
xe

a dx
x

−

−∞∫ and
3 2

6
( ) .

1

x x
b dx

x

∞

−∞

+
+∫

(a) Let x = – y. Then the integral becomes 
1

.
ye

dy
y

−∞
−∫

 Method 1:  for 1. Then 
y

ye
e

y

−
−< < , -y

1 1
since e  converges, 

ye
dy dy

y

−∞ ∞

∫ ∫  converges; hence, the 

given integral converges.

 Method 2: 2lim lim 0.
y

y

x y

e
y ye

y

−
−

→∞ →∞

⎛ ⎞
= =⎜ ⎟

⎝ ⎠
 Then the given integral converges by Theorem 1, Page 324, 

with A = 0 and p = 2.

(b) Write the given integral as
3 2 3 2

0

6 601 1

x x x x
dx dx

x x

∞

−∞

+ ++
+ +∫ ∫ . Letting x = –y in the first integral, it becomes 

3 2 3 2
3

6 60
. Since lim 1,

1 1y

y y y y
dy y

y y

∞

→∞

⎛ ⎞− −− =⎜ ⎟+ +⎝ ⎠
∫  this integral converges.

3 2
3

6
Since lim 1,

1x

x x
x

x→∞

⎛ ⎞+ =⎜ ⎟+⎝ ⎠
 the second integral converges.

Thus, the given integral converges.

Absolute and conditional convergence for improper integrals of the first kind

12.9. Prove that 
0

( )  converges if | ( ) |f x dx f x dx
α

∞ ∞

∫ ∫  converges; i.e., an absolutely convergent integral is 
convergent.

We have – | f (x)| < f (x) <  | f (x)|; i.e., 0 < f (x) + | f (x)| 2| f (x)|. Then

0 [ ( ) | ( )] 2 | ( ) |
b b

a a
f x f x dx f x dx< < + <∫ ∫

If
α

∞

∫ | f (x)| dx converges, it follows that 
α

∞

∫ | f (x) + | f (x)|] dx converges. Hence, by subtracting 
α

∞

∫ | f (x)| dx,

which converges, we see that 
α

∞

∫ f (x) dx converges.

12.10. Prove that
2

cos.
t

x

x

∞

∫ dx converges.

Method 1:
2 2

cos. 1
 for 1.

x
x

x x
< >  Then by the comparison test, since 

2t

dx

x

∞

∫  converges, it follows that 

2

cos.
 x converges

t

x
d

x

∞

∫ ;
2 2

cos. cos.
 x converges, i.e., 

t t

x x
d

x x

∞ ∞

∫ ∫  converges absolutely, and so converges 

by Problem 12.9.

Method 2: Since 3 / 2
2 1/ 2

cos. cos.
lim lim 0
x x

x x
x

e x→∞ →∞
= =  it follows from Theorem 1, Page 324, with A = 0 and 

p = 3/2. that 
2

cos.
t

x
dx

x

∞

∫  converges, and, hence, 
2

cos.
t

x
dx

x

∞

∫  converges (absolutely).
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12.11. Prove that 
sin

 converges.
t

x
dx

x

∞

∫
1

0 0

sin sin sin
Since  converges because  is continuous in 0 <  < 1 and  lim 1

x

x x x
dx x

x x x→ +

⎛ ⎞=⎜ ⎟⎝ ⎠∫ , we 

need
1

sin
only show that  converges.

x
dx

x

∞

∫
Method 1: Integration by parts yields

2 2
1

sin cos cos cos cos
cos1

M
M M M

t t t

x x x M x
dx dx dx

x x Mx x
= − + = − +∫ ∫ ∫  (1)

or, on taking the limit on both sides of Equation (1) as M → � and using the fact that 
cos

lim 0,
M

M

M→∞
=

21 1

sin cos
cos1

x x
dx dx

x x

∞ ∞
= +∫ ∫  (2)

Since the integral on the right of Equation (2) converges by Problem 12.10, the required result follows. 
The technique of integration by parts to establish convergence is often useful in practice.

Method 2:

2 ( 1)

0 0

( 1)

0

sin sin sin sin

sin

n

n

n

n
n

x x x x
dx dx dx dx

x x x x
x

dx
x

π π π

π π

π

π

∞ +

∞ +

=

= + +…+ +…

=

∫ ∫ ∫ ∫

∑∫
Letting x = υ + nπ, the summation becomes

0 0 0 0
0

sin sin sin sin
( 1)

2
n

n

d d d d
n n

π π π πυ υ υ υυ υ υ υ
π υ υ π υ π

∞

=

− + + −…
+ + +∑ ∫ ∫ ∫ ∫

This is an alternating series. Since 
1 1

( 1)n nυ π υ π
<

+ + +
 and sin υ >  0 in [0, π], it follows that

0 0

sin sin

( 1)
d d

n n

π πυ υυ υ
υ π υ π

<
+ + +∫ ∫

Also,

0 0

sin
lim lim 0
n n

d
d

n n

π πυ υυ
υ π π→∞ →∞

< =
+∫ ∫

Thus, each term of the alternating series is, in absolute value, less than or equal to the preceding term, and 
the nth term approaches zero as n → �. Hence, by the alternating series test (Page 281), the series and, thus, 
the integral converge.

12.12. Prove that
0

sin x
dx

x

∞

∫  converges conditionally.

Since, by Problem 12.11, the given integral converges, we must show that it is not absolutely convergent; 

i.e.,
0

sin
 diverges.

x
dx

x

∞

∫  diverges.

As in Problem 12.11, Method 2, we have

( 1)

0 0
0 0

sin sin sinn

n
n n

x x
dx dx d

x x n

π π

π

υ υ
υ π

∞ ∞∞ +

= =

= =
+∑ ∑∫ ∫ ∫  (1)

1 1
Now  for 0 <  < . Hence,

( 1)n n
υ π

υ π π
>

+ +

0 9

sin 1 2
  sin

( 1) ( 1)
d d

n n n

π πυ υ υ υ
υ π π π

> =
+ + +∫ ∫  (2)
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Since
0

2

( 1)n n π

∞

= +∑  diverges, the series on the right of Equation (1) diverges by the comparison test. 

Hence,
0

sin x
dx

x

∞

∫  diverges and the required result follows.

Improper integrals of the second kind, cauchy principal value

12.13. (a) Prove that 
7

31 1

dx

x− +∫  converges and (b) find its value.

The integrand is unbounded at x = – 1. Then we define the integral as
72 / 3

7 2 / 3

310 0 0
1

( 1) 3
lim lim lim 6 6

2 / 3 21

dx x

x− +∈∈→ + ∈→ + ∈→ +
− +∈

+ ⎛ ⎞= = − ∈ =⎜ ⎟+ ⎝ ⎠∫
This shows that the integral converges to 6.

12.14. Determine whether 
5

31 ( 1)

dx

x− −∫  converges (a) in the usual sense and (b) in the Cauchy principal value sense.

(a) By definition,

1

21 2

1 2

5 1 5

3 3 31 1 10 0

2 20 0
1 2

lim lim
( 1) ( 1) ( 1)

1 1 1 1
lim lim

8 322 2

dx dx dx

x x x

−∈

− − +∈∈ → + ∈ → +

∈ → + ∈ → +

= +
− − −

⎛ ⎞ ⎛ ⎞
= − + −⎜ ⎟ ⎜ ⎟∈ ∈⎝ ⎠ ⎝ ⎠

∫ ∫ ∫

and, since the limits do not exist, the integral does not converge in the usual sense.

(b) Since

1 5

3 3 2 21 10 0

1 1 1 1 3
lim lim

8 32 32( 1) ( 1) 2 2

dx dx

x x

−∈

− +∈∈→ + ∈→ +

⎧ ⎫ ⎧ ⎫+ = − + − =⎨ ⎬ ⎨ ⎬− − ∈ ∈⎩ ⎭⎩ ⎭∫ ∫
the integral exists in the Cauchy principal value sense. The principal value is 3/32.

12.15. Investigate the convergence of:

(a)
3

2 3 2 / 32 ( 8)

dx

x x −∫  (c) 
5

1 (5 )( 1)

dx

x x− −∫  (e) 
/ 2

1/0
, 1

(cos ) n

dx
n

x

π
>∫

(b)
30

sin x
dx

x

π

∫  (d) 

1sin
1

1

2

1

x

dx
x

−

− −∫

(a)
2 / 3

2 / 3
2 3 2 / 3 2 2 32 2

1 1 1 1
lim ( 2) . lim .

( 8) 2 4 8 18x x
x

x x x x x→ + → +

⎛ ⎞− = =⎜ ⎟− + +⎝ ⎠
·  Hence, the integral converges by 

Theorem 3(i), Page 326.

(b) 2
30

sin
lim . 1.
x

x
x

x→ +
=·  Hence, the integral diverges by Theorem 3(ii) on Page 326.

(c) Write the integral as 
3 5

1 3
.

(5 )( 1) (5 )( 1)

dx dx

x x x x
+

− − − −∫ ∫

Since 1/ 2

1

1 1
lim ( 1) . ,

2(5 )( 1)x
x

x x→ +
− =

− −
·  the first integral converges.

Since 1/ 2

5

1 1
lim (5 ) . ,

2(5 )( 1)x
x

x x→ −
− =

− −
·  the second integral converges.

Thus, the given integral converges.

(d)

1sin
/ 2

1

2
lim (1 ). 2 .

1

x

x
x

x
π

−

→ −
− =

−
·  Hence, the integral diverges.
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Another method:

1sin2

1

x

x

−

−
>

/ 2
1

1

2
, and

1 1

dx

x x

π−

−− −∫ diverges. Hence, the given integral diverges.

(e)
1/

1 /
1 /1 / 2 1/ 2

1 / 2
lim ( / 2 ) . lim 1

cos(cos )

n

n

nx x

x
x

xxπ π

ππ
→ − → −

−⎛ ⎞− = =⎜ ⎟⎝ ⎠
· . Hence, the integral converges.

12.16. If m and n are real numbers, prove that 
1 1 1

0
(1 )m nx x dx− −−∫  (a) converges if m > 0 and n > 0 simultaneously 

and (b) diverges otherwise.

(a) For m >  1 and n >  1 simultaneously, the integral converges, since the integrand is continuous in 0 < x
<  1. Write the integral as

1/ 2 11 1 1 1

0 1/ 2
(1 ) (1 )m n m nx x dx x x dx− − − −− + −∫ ∫  (1)

If 0 < m < 1 and 0 < n < 1, the first integral converges, since 
0

lim
x→ + x1–m · xm–1 (1 – x)n–1 = 1, using Theorem 

3(i), Page 326, with p = 1 – m and a = 0.
Similarly, the second integral converges, since limx→ 1 – (1 – x)1–n · x)n–1 (1 – x)n – 1 = 1, using 4(i), Page 

326, with p = 1 – n and b = 1.
Thus, the given integral converges if m > 0 and n > 0 simultaneously.

(b) If m <  0, 
0

lim
x→ +

x · xm–1 (1 – x)n–1 = �. Hence, the first integral in Equation (1) diverges, regardless of the 

value of n, by Theorem 3(ii), Page 326, with p = 1 and a = 0.

Similarly, the second integral diverges if n <  0, regardless of the value of m, and the required result fol-
lows.

Some interesting properties of the given integral, called the beta integral or beta function, are considered 
in Chapter 15.

12.17.
0

1 1
Prove that sin   converges conditionally.dx

x x

π

∫
Letting x = 1/y, the integral becomes 

1/

sin y
dy

yπ

∞

∫  and the required result follows from Problem 12.12.

Improper integrals of the third kind

12.18. If n is a real number, prove that 1

0

n xx e dx
∞ − −∫  (a) converges if n > 0 and (b) diverges if n <  0.

Write the integral as
1 1 1

0 1

n x n xx e dx x e dx
∞− − − −+∫ ∫  (1)

(a) If n >  1, the first integral in Equation (1) converges, since the integrand is continuous in 0 < x <  1.

If 0 < n < 1, the first integral in Equation (1) is an improper integral of the second kind at x = 0. Since 

0
lim
x→ +

x1–n · xn–1 e–x = 1, the integral converges by Theorem 3(i), Page 326, with p = 1 – n and a = 0.

Thus, the first integral converges for n > 0.
If n > 0, the second integral in Equation (1) is an improper integral of the first kind. Since lim

x→∞
x2 · xn–1

e–x = 0 (by L’Hospital’s rule or otherwise), this integral converges by Theorem 1(i), Page 324, with p = 2.
Thus, the second integral also converges for n > 0, and so the given integral converges for n > 0.

(b) If n <  0, the first integral of Equation (1) diverges, since 
0

lim
x→ +

x · xn–1 e–x = � [Theorem 3(ii), Page 326].

If n <  0, the second integral of Equation (1) converges, since lim
x→∞

 · xn–1 e–x = 0 [Theorem 1(i), Page 324].
Since the first integral in Equation (1) diverges while the second integral converges, their sum also di-

verges; i.e., the given integral diverges if n <  0.
Some interesting properties of the given integral, called the gamma function, are considered in Chap-

ter 15.
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Uniform convergence of improper integrals

12.19. (a) Evaluate φ (α) = 
0

 for  > 0.xe dxαα α
∞ −∫ (b) Prove that the integral in (a) converges uniformly to 1 for α

� α1 > 0. (c) Explain why the integral does not converge uniformly to 1 for α > 0.

(a)
0

( ) lim lim lim1 1  if  > 0
bb ae x ab

ab b bx

e dx e eαφ α α α− − −

→∞ →∞ →∞=
= = − = − =∫

Thus, the integral converges to 1 for all α > 0.

(b) Method 1, using definition: The integral converges uniformly to 1 in α ε α1 > 0 if for each � > 0 we can 

find N, depending on � but not on α, such that 
0

1  for all  > .
u xe dx u Nαα −− < ∈∫

Since 1

0
1

1 1
1 |1 (1 ) | for ln ,

u ux u aue dx e e e u Nαα αα
α

−− − −− = − − = < <∈ > =
∈∫  the result follows.

 Method 2, using the Weierstrass M test: Since lim
x→�

x2 · αe–αx = 0 for α α1 > 0, we can choose 

| |xe αα − <
2

1

x
 for sufficiently large x—say, x > x0. Taking 

2

1
( )M x

x
=  and noting that 

0
2x

dx

x

∞

∫
converges, it follows that the given integral is uniformly convergent to 1 for α ε α1 > 0.

(c) As α1 → 0, the number N in the first method of (b) increases without limit, so that the integral cannot be 
uniformly convergent for α > 0.

12.20. If 
0

( ) ( , )f x dxφ α α
∞

= ∫  is uniformly convergent for α1 < α < α2, prove that φ(α) is continuous this 

interval.

Let ( ) ( , ) ( , ), where R( , ) ( , ) .
u

u u
f x dx R u u f x dxφ α α α α α

∞
= + =∫ ∫

Then ( ) ( , ) ( , ) and so
u

u
h f x h dx R u hφ α α α+ = + + +∫

( ) ( ) { ( , ) ( , )} ( , ) ( , )
u

u
h f x h f x dx R u h R uφ α φ α α α α α+ − = + − + + −∫

Thus,

| ( ) ( ) | | ( , ) ( , ) | | ( , | | ( , ) |
u

a
h f x h f x dx R u h R uφ α φ α α α α α+ − < + − + + +∫  (1)

Since the integral is uniformly convergent in (α)1 <  (α) < α2, we can, for find N independent of (α) such 
that for (u) > N,

 |R(u, α + h)| < �/3, |R(u, α)| < �/3 (2)

Since f (x, α) is continuous, we can find δ > 0 corresponding to each � > 0 such that

| ( , ) ( , ) | / 3 for | |
a

f x h f x dx h
υ

α α δ+ − < ∈ <∫  (3)

Using Equations (2) and (3) in (1), we see that |φ(α + h) – φ (α)| < � for |(h)| < δ, so that φ(α) is continuous.
Note that in this proof we assume that both α and α + h are in the interval α1 < α < α2. Thus, if α = α1,

for example, h > 0 and right-hand continuity is assumed.
Also note the analogy of this proof with that for infinite series.
Other properties of uniformly convergent integrals can be proved similarly.

12.21. (a) Show that lim lim
α

α

α

αα α
→ +

−∞

→ +

−∞
≠ ( )∫ ∫0 0 00

e dx e dxx x  and (b) explain the result in (a).

(a)
00 0

lim lim 1 by Problem 12.19xe dxα

α α
α

∞ −

→ + → +
= =∫ (a).

lim .
α

αα
→ +

−∞ ∞( ) = =∫ ∫00 0
0 0e dx dxx  Thus, the required result follows.

(b) Since 
0

( ) xe dxαφ α α
∞ −= ∫  is not uniformly convergent for 
 � 0 (see Problem 12.19), there is no guar-

antee that φ(
) will be continuous for 
 � 0. Thus, 
0

lim
α → +

φ(
) may not be equal to φ(0).
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12.22. (a) Prove that 
2 20

cos  for  > 0xe rx dx
r

α α α
α

∞ − =
+∫  and any real value of r. (b) Prove that the integral in 

(a) converges uniformly and absolutely for a < 
 < b, where 0 < a < b and any r.

(a) From integration formula 34, Page 103, we have

2 2 2 20
0

( sin cos )
lim cos lim

Mx
M x

M M

e r rx rx
e rx dx

r r

α
α α α

α α

−
−

→∞ →∞

−= =
+ +∫

(b) This follows at once from the Weierstrass M test for integrals, by noting that |e–αx cos rx| < e–αx and 

0

xe dxα∞ −∫  converges.

Evaluation of definite integrals

12.23. Prove that 
/ 2

0
ln sin ln 2.

2
x dx

π π=∫
The given integral converges [Problem 12.42(f)]. Letting x = π/2 – y,

/ 2 / 2 / 2

0 0 0
ln sin ln cos In cos I x dx y dy x dx

π π π
= = =∫ ∫ ∫ l

Then

/ 2 / 2

0 0

/ 2 / 2 / 2

0 0 0

sin 2
2 (ln sin  ln cos ) ln

2

ln sin 2 ln 2 ln sin 2 ln 2
2

x
I x x dx dx

xdx dx x dx

π π

π π π π

⎛ ⎞= + = ⎜ ⎟⎝ ⎠

= − = −

∫ ∫

∫ ∫ ∫
 (1)

Letting 2x = υ,

{ }/ 2 / 2

02 0 0

1 1
ln sin 2 ln sin ln sin

2 2
1

( ) (letting  =  in the last integral)
2

x dx d d

I I I

π π π
υ υ υ υ

υ π

= =

= + = −

∫ ∫ ∫

1
2
3

1
2
3

0

π

∫

Hence, Equation ( ) becomes 2 ln on ln 2.
2 2

l I I I
π π= = −

12.24. Prove that 
2

0
ln sin ln 2.x x dx

π π= −
2∫

Let x = π – y. Then, using the results in the preceding problem,

0 0 0
ln sin ( ) ln sin ( ) ln sin J x x dx u u du x x dx

π π π
π π= = − = −∫ ∫ ∫

0 0

2

ln sin  ln sin 

ln 2

x dx x x dx

J

π π
π

π

= −

= − −
∫ ∫

2

or     ln 2.
2

J
π= −

12.25. (a) Prove that 
2

dx

x αφ α
∞

+0
( ) = ∫  is uniformly convergent for α � 1. (b) Show that ( ) = .

2

πφ α
α

(c)
2 20

Evaluate .
( 1)

dx

x

∞

+∫ (d)
/ 2 2

2 10 0

1.3.5...(2 1)
Prove that  cos .

2.4.6...(2 ) 2( 1)
n

n

dx n
d

nx

π πθ θ
∞

+

−= =
+∫ ∫

···

···

(a) The result follows from the Weierstrass test, since 
2

1

x α+
<

2 20

1
  for  > 1 and 

1 1

dx
a

x x

∞

+ +∫ converges.

(b) 1 1
20

0

1 1
( ) = lim lim tan lim tan

2

b
b

b b b

dx x b

x

πφ α
α α α α α α

− −

→∞ →∞ →∞
= = =

+∫
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(c) From (b), 
20

.
2

dx

x

π
α α

∞
=

+∫  Differentiating both sides with respect to 
, we have

3 / 2
2 2 20 0

1

4( )

dx
dx

x x

π α
α α α

∞ ∞ −∂ ⎛ ⎞ = − =⎜ ⎟∂ + +⎝ ⎠∫ ∫

the result being justified by Theorem 8, Page 328, since 
2 20 ( )

dx

x α
∞

+∫  is uniformly convergent for α � 1 

2 2 2 2 2 20

1 1
because    and  converges .

( ) ( 1) ( 1)

dx

x x xα
∞⎛ ⎞<⎜ ⎟+ + +⎝ ⎠∫

Taking the limit as α → 1 +, using Theorem 6, Page 328, we find 
2 20

.
4( 1)

dx

x

π∞
=

+∫
(d) Differentiating both sides of 1/ 2

20 2

dx
n

x

π α
α

∞ −=
+∫ times, we find

(2 1, 2)
2 10

1 3 5 2 1
( 1)( 2)...( )

2 2 2 2 2( )
n

n

dx n
n

x

π α
α

∞ − −
+

−⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞− − − = − − − … −⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟+ ⎝ ⎠⎝ ⎠⎝ ⎠ ⎝ ⎠∫··· ···

where justification proceeds as in (c). Letting α → 1 +, we find

2 10

1 3 5 (2 1) 1 3 5 (2 1)

2 2 4 6 (2 ) 2( 1) 2 !n n

dx n n

nx n

π π∞

+

⋅ ⋅ ⋅ ⋅ ⋅ − ⋅ ⋅ … −= =
⋅ ⋅ …+∫

···

···

Substituting x = tan θ, the integral becomes 
/ 2 2

0
cos n d

π
θ θ∫  and the required result is obtained.

12.26. Prove that 
2 2

2 20

1
ln  where , 0.

sec 2

ax bxe e b r
dx a b

x rx a e

−∞ − += >
+∫

From Problem 12.22 and Theorem 7, Page 328, we have

e rx d dx e rx dxx

a

b

x

x

x

−

==

∞ −

=

∞

∫∫ ∫{ } = {α

α

ααcos cos
0 0 }}=∫α

α
a

b
d

or

2 20

cos
bx

b

x a
a

e rx
dx d

x r

α

α
α

α α
α

∞

= =
=

=
− +∫ ∫

i.e.,
2 2

2 20

1
ln

sec 2

ax bxe e b r
dx

x rx a r

− −∞ − +=
+∫

12.27. Prove that 1 2
20

1 cos 1
tan ln( 1), 0.

2
x x

e dx
x

α α α α
α

∞ −− = − + >∫
By Problem 12.22 and Theorem 7, Page 328, we have

e rx dx dr e rx dr dxx
r

ax
r−∞ −∞

∫∫ ∫∫{ } = { }α cos cos
00 00

or

1
2 20 0

sin
tan

rax rx r
e dx

x r

α
αα

∞ − −= =
+∫ ∫

Integrating again with respect to r from 0 to r yields

1 1 2 2
20 0

1 cos
tan tan ln( )

2

rax rx r r
e dx dr r r

x

α α
α α

∞ − − −− = = − +∫ ∫
using integration by parts. The required result follows on letting r = 1.

12.28. Prove that 
20

1 cos
.

2

x
dx

x

π∞ − =∫
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Since
2 2 20

1 cos 1 cos 1 cos
 for  > 0,  > 0 and ax x x x

e x dx
x x x

α
∞− − − −< ∫  converges [see Problem 

12.7(b)], it follows by the Weierstrass test that 
20

1 cosx x
e dx

x
α∞ −

∫  is uniformly convergent and represents a 

continuous function of α for α � 0 (Theorem 6, Page 328). Then, letting α → 0 +, using Problem 12.27, we have

1 2
2 20 00 0

1 cos 1 cos 1
lim lim tan ln( 1)

2 2
x x x

e dx dx
x x

α

α α

α πα
α

∞ ∞− −

→ →

− − ⎧ ⎫= = − + =⎨ ⎬
⎩ ⎭∫ ∫

12.29. Prove that 
2

20 0

sin sin
.

2

x x
dx

x x

π∞ ∞
= =∫ ∫

Integrating by parts, we have

2

1 cos 1 sin 1 cos 1 cos sin
(1 cos )

M
M M Mx x M x

dx x dx dx
x x M xx∈ ∈ ∈

∈

− − ∈ −⎛ ⎞= − − + = − +⎜ ⎟ ∈⎝ ⎠∫ ∫ ∫
Taking the limit as � → 0+ and M → � shows that

0 0

sin 1 cos

2

x x
dx dx

x x

π∞ ∞ −= =∫ ∫
2

20

1 cos sin ( / 2)
Since 2

x x
dx

x x

∞ − =∫
2

2 20 0

sin
 on letting u = / 2, we also have 

u
dx du x

u

∞ ∞
=∫ ∫

2

20

sin
.

2

x
dx

x

π∞
=∫

12.30. Prove that 
3

0

sin
.

4

x
dx

x

π∞
=∫

2 3 2 2 3
3

3

3 3

( ) 3( ) ( ) 3( )( ) ( )
sin

2 (2 )

1 3 1 3
sin 3 sin

4 2 4 2 4 4

ix ix ix ix ix ix ix ix

ix ix ix ix

e e e e e e e e
x

i i

e e e e
x x

i i

− − −

− − −

⎛ ⎞− − + −= =⎜ ⎟
⎝ ⎠

⎛ ⎞ ⎛ ⎞− −= − + = − +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

Then

3

0 0 0 0 0

sin 3 sin 1 sin 3 3 sin 1 sin

4 4 4 4
3

4

x x x x u
dx dx dx dx du

x x x x u

∞ ∞ ∞ ∞ ∞
= − = −

=

∫ ∫ ∫ ∫ ∫
1

2 4 2 4

π π π⎛ ⎞ ⎛ ⎞− =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

Miscellaneous problems

12.31. Prove that 
2

0
/ 2.xe dx π

∞ − =∫
By Problem 12.6, the integral converges. 

2 2

0 0
Let  and let lim ,

M Mx y
M MM

I e dx e dy I I− −

→∞
= = =∫ ∫  the re-

quired value of the integral. Then

I e dx e dy

e dx dy

M
x

M
x

M

x y
M

2

0 0

0

2 2

2 2

= ( )( )
=

− −

− +

∫ ∫

∫ ( )

00

2 2

M

x y

M

e dx dy

∫
∫∫= − +( )

where ℜM is the square OACE of side M (see Figure 12.3). Since the integrand is positive, we have
2 2 2 2( ) 2 ( )x y x y

M

M M

e dx dy I e dx dy− + − +< <∫∫ ∫∫  (1)
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where ℜ1 and ℜ2 are the regions in the first quadrant bounded by the circles having radii M and M π2 , respec-
tively.

Using polar coordinates, we have, from Equation (1),

2/ 2

0 0

M

p
e d d

π ρ

φ
ρ ρ φ−

= =∫ ∫ < 2
MI <

2/ 2 2

0 0

M
e d d

π ρ

φ π
ρ ρ φ−

= =∫ ∫  (2)

or

2 22 2(1 ) (1 )
4 4

M M
Me I e

π π −− < < −  (3)

Then, taking the limit as M → � in Equation (3), we find lim
M →∞

I2
M = I2 = π/4 and I = / 2π

12.32. Evaluate 
2

0
cos .xe x dxα

∞ −∫

Figure 12.3

Let
2

0
( ) cos .xI e x dxα α

∞ −= ∫  Then, using integration by parts and appropriate limiting procedures.

2 2 2

00 0

1 1
sin sin | cos

2 2 2
x x xdt

xe x dx e x e x dx I
d

αα α α α
α

∞ ∞− − ∞ −= − = − = −∫ ∫
The differentiation under the integral sign is justified by Theorem 8, Page 328, and the fact that 

2

0

xxe
∞ −∫  sin 

α x dx is uniformly convergent for all α (since by the Weierstrass test, |xe– x2 sin α x| < xe – x2 and 
2

0

xxe dx
∞ −∫

converges).
From Problem 12.31 and the uniform convergence, and thus continuity, of the given integral (since |e– x2

cos α x| < e–x2 and 
0

∞

∫ e–x2 dx converges, so that that Weierstrass test applies), we have I (0) = 

0

1
lim ( ) .

2
I

α
α π

→
=

2 / 4Solving  subject to (0) ,  we find ( )
2 2 2

dI
I I I e

d
αα π πα

α
−= − = =

12.33.
2 2 2( / ) (x )

0 0
( )  Prove that ( ) . ( ) Evaluate e .

2
x x xa I e dx b dxα πα

−∞ ∞− − − += =∫ ∫
(a)

2( / ) 2

0
We have ( ) 2 (1 / )x xI e x dxαα α

∞ − −′ = −∫
The differentiation is proved valid by observing that the integrand remains bounded as x → 0 + and that 

for sufficiently large x,

e–(x–α/x)2 (1 – α/x2) = e– x2 + 2α – α2/x2 (1 – α/x2) < e2α e–x2

so that I� (α) converges uniformly for α ε 0 by the Weierstrass test, since 
0

∞

∫ e – x2
dx converges. Now
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2

2
( / )

( / )
20 0

( ) 2 2 0
x x

x x e
I e dx dx

x

α
αα α

− −∞ ∞− −′ = − =∫ ∫
as seen by letting α/x = y in the second integral. Thus, I(α) = c, a constant. To determine c, let α → 0+ in the 

required integral and use Problem 12.31 to obtain c = / 2.π

(b)
2 2 2 2 2 2 2

2 2 2 2 2

( / ) ( ) 2 ( )

0 0 0

( ) 2 ( ) 2

0 0

From (a), .
2

Then  .  Putting  = 1,  .
2 2

x x x x x x

x x x x

e dx e dx e e dx

e dx e e dx e

α α α α

α α

π

π πα

− −

− −

∞ ∞ ∞− − + − +

∞ ∞− + − − + −

= = =

= =

∫ ∫ ∫

∫ ∫
12.34. Verify the results: ( ) { } ,a e

s
s aax� =

−
>1

α
and ( ) {cos } ,b az

s

s a
s� =

+
> 02 2 ..

(a) { } lim ( )e e e dx e dxax sx ax

M

s a x
M

� = =

=

−∞

→∞

− −∫ ∫0 0

llim
( )

M

s a Me

s a s a
s a

→∞

− −−
−

=
−

1 1
if  > 

(b) {cos ) cosax e ax dx
s

s a
sx� = =

+
−∞

∫0 2 2
 by Problem 12.22 with α = s, r = a.

Another method, using complex numbers. From (a), e
s a

ax{ } .� =
−
1

 Replace a by ai. Then

� � � �{ } {cos sin } {cos } {sie ax i ax ax iaix = + = + nn }ax

s ai

s ai

s a

s

s a
i

a

s a
=

−
= +

+
=

+
+

+
1

2 2 2 2 2 2

Equating real and imaginary parts:

�{cos }ax
s

s
=

+2 aa
ax

a

s a2 2 2, {sin }� =
+

This formal method can be justified using the methods in Chapter 16.

12.35. Prove that (a) �{Y� (x)} = (s) � {Y (x)} – Y(0) and (b) � {Y� (x)} = s2 �{Y(x)} – sY (0) – Y� (0) under 
suitable conditions on Y(x).

(a) By definition (and with the aid of integration by parts),

�{ ( )} ( ) lim ( )′ = ′ = ′−

→

∞ −∫Y x e Y x dx e Y x dxsx

M

sx
M

00 0∫∫
∫= +{ }

=

→∞

− −

−

lim ( ) ( )
M

sx M sx
M

sx

e Y x s e Y x dx

s e Y

0 0

(( ) ( ) {( )} ( )x dx Y s x Y− = −
∞

∫ 0 0
0

�

assuming that s is such that limM→�e–sM Y (M) = 0.

(b) Let U(x) = Y�(x). Then by (a), �{U�(x)} – U(0). Thus,

�{Y� (x)} = s �{Y�(x)} – Y�(0) = s[s�{Y(x)} – Y (0)] – Y�(0)

= s2 �{Y (x)} – sY(0) – Y�(0)

12.36. Solve the differential equation Y� (x) + Y (x) = x, Y(0) = 0, Y� (0) = 2.

Take the Laplace transform of both sides of the given differential equation. Then by Problem 12.35.

�{Y� (x) + Y (x)} = �{x}, �{Y� (x)} + �{Y(x)} = 1/s2

and so

s2 �{Y (x)} – s� (0) – Y�(0) + �{Y(x)} = 1/s2
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Solving for �{Y(x)} using the given conditions, we find

�{ ( )}
( )

Y x
s

s s s s
=

+
= +

+
2

1

1 1

1

2

2 2 2 2  (1)

by methods of partial fractions.

Since  and  it follow
1 1

12 2s
x

s
x=

+
=� �{ } {sin }, ss that 

1 1

12 2s s
x x+

+
= +�{ sin }

Hence, from (1), �{Y(x)} = �{x + sin x}, from which we can conclude that Y(x) = x + sin x, which is, in 
fact, found to be a solution.

Another method: If �{F(x)} = f (s), we call f (s) the inverse Laplace transform of F(x) and write f (s) = �–1

{F(x)}.
By Problem 12.78. �–1 {f (s) + g(s)} = �–1 = �–1 {f (s) + �–1 {g(s)}. Then, from Equation (1),

Y x
s s s s

( ) = +
+

⎧
⎨
⎩

⎫
⎬
⎭

= ⎧
⎨
⎩

⎫
⎬
⎭

+− − −� � �1
2 2

1
2

1
2

1 1

1

1 1

++
⎧
⎨
⎩

⎫
⎬
⎭

= +
1

x sin

Inverse Laplace transforms can be read from Table 12.1.

SUPPLEMENTARY PROBLEMS

Improper integrals of the first kind

12.37. Test for convergence:

(a)
2

40

1

1

x
dx

x

∞ +
+∫ (d) 40 4

dx

x

∞

+∫ (g)
2

2 5 / 20 ( 1)

x dx

x x

∞

+ +∫

(b)
2 3 1

x dx

x

∞

−
∫ (e)

2

2 sin

1

x
dx

x

∞

−∞

+
+∫ (h)

ln
xt

x dx

x e

∞

−+∫

(c)
3 2t

dx

x x

∞

+∫ (f)
32 (ln )

x dx

x

∞

∫ (i)
2

20

sin x
dx

x

∞

∫
Ans. (a) convergence (b) divergence (c) convergence (d) convergence (e) convergence ( f ) divergence (g)

convergence (h) divergence (i) convergence

12.38. Prove that 
2 2 2 2

 if | | .
2

dx
b a

x ax b b a

π∞

−∞
= >

+ + −
∫

12.39. Test for convergence: ( ) ln ,x

t
a e x dx

∞ −∫ 0
( ) ln(1 ) ,x xb e e dx

∞ − +∫ and 2

0
( ) cosh .xc e x dx

∞ −∫
Ans. (a) convergence (b) convergence (c) divergence

12.40. Test for convergence, indicating absolute or conditional convergence where possible: 
30

sin 2
( )

1

x
a dx

x

∞

+∫ ;

2

( ) axb e
∞ −

−∞∫  cos bx dx, where a, b are positive constants; 
0 2

cos
( )

1

x
c dx

x

∞

+
∫ ;

0 2 2

sin
( ) ;

x x
d dx

x a

∞

+
∫ and

0

cos
( ) .

cosh

x
e dx

x

∞

∫
Ans. (a) absolute convergence (b) absolute convergence (c) conditional convergence (d) divergence (e) 

absolute convergence

12.41. Prove the quotient tests (b) and (c) on Page 323.
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Improper integrals of the second kind

12.42. Test for convergence:

(a)
1

0 2( 1) 1

dx

x x+ −
∫ (d)

2

1 3 3

ln

8

x
dx

x−
∫ (g)

2
3

20 (3 )

x
dx

x−∫ (j)
3

0 x

dx

x∫

(b)
1

20

cos x
dx

x∫ (e)
1

0 ln(1 / )

dx

x∫ (h)
/ 2

0

cosxe x
dx

x

π −

∫

(c)

1tan
1

1

xe
dx

x

−

−∫ (f)
/ 2

0
ln sin x dx

π

∫ (i)
2 2

1

20

1
, | | 1

1

k x
dx k

x

− <
−∫

Ans. (a) convergence (b) divergence (c) divergence (d) convergence (e) convergence (f) convergence (g) 
divergence (h) divergence (i) convergence (j) convergence

12.43. (a) Prove that 
5

0 4

dx

x−∫  diverges in the usual sense but converges in the Cauchy principal value senses. (b) 

Find the Cauchy principal value of the integral in (a) and give a geometric interpretation.

Ans. (b) In 4

12.44. Test for convergence, indicating absolute or conditional convergence where possible: 
1

0

1
( ) cos ,a dx

x
⎛ ⎞
⎜ ⎟⎝ ⎠∫

1

0

1 1
( ) cos ,b dx

x x
⎛ ⎞
⎜ ⎟⎝ ⎠∫ and

1

20

1 1
( ) cos .c dx

xx

⎛ ⎞
⎜ ⎟⎝ ⎠∫

Ans. (a) absolute convergence (b) conditional convergence (c) divergence

12.45.
4 2

30

1 1 32 2
Prove that 3 sin cos .x x dx

x x

π

π
⎛ ⎞− =⎜ ⎟⎝ ⎠∫

Improper integrals of the third kind

12.46. Test for convergence: 
0

( ) ln ,xa e x dx
∞ −∫ 0

( ) ,
ln( 1)

xe dx
b

x x

−∞

+∫ and
30

( ) .
(3 2sin )

xe dx
c

x x

−∞

+∫
Ans. (a) convergence (b) divergence (c) convergence

12.47. Test for convergence: 
0 3 4 2

( )
dx

a
x x

∞

+
∫ and

0
( ) , 0.

sinh ( )

xe dx
b a

ax

∞
>∫

Ans. (a) convergence (b) convergence if a > 2, divergence if 0 < a <  2.

12.48. Prove that 
0

sinh( )

sinh( )

ax
dx

xπ
∞

∫  converges if 0 <  |a| < π and diverges if |a| < π.

12.49. Test for convergence, indicating absolute or conditional convergence where possible: 
0

sin
( )

2

x
a dx

∞

∫ and

0

sin
( ) .

sinh

x
b dx

x

∞

∫
Ans. (a) conditional convergence (b) absolute convergence

Uniform convergence of improper integrals

12.50. (a) Prove that 
20

cos
( )

1

x
dx

x

αφ α
∞

=
+∫  is uniformly convergent for all α. (b) Prove that φ(α) is continuous for 

all α. (c) Find 
0

lim
α →

φ(α).

Ans. (c) π/2

12.51. Let 
22

0
( ) ( ), ) , where ( , ) .xF x dx F x xe αφ α α α α

∞ −= =∫  (a) Show that φ(α) is not continuous at α = 0; 

i.e.,
0 00 0

lim ( , ) lim ( , )F x dx F x dx
α α

α α
∞ ∞

→ →
≠∫ ∫ . (b) Explain the result in (a).
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12.52. Work Problem 12.51 if F(x, α) = α2 xe–αx.

12.53. If F(x) is bounded and continuous for –� < x < � and

2 2

1 ( )
( , )

( )

yF d
V x y

y x

λ λ
π λ

∞

−∞
=

+ −∫
Prove that 

y
lim

→0
V(x, y) = F(x).

12.54. Prove (a) Theorem 7 and (b) Theorem 8 on Page 328.

12.55. Prove the Weierstrass M test for uniform convergence of integrals.

12.56. Prove that if 
0 0

( )  converges, then ( )xF x dx e F x dxα∞ ∞ −∫ ∫  converges uniformly for α � 0.

12.57. Prove that (a)
0

sin
( ) ( )  converges uniformly for   0, ax x
a a e dx a

x
φ

∞ −= >∫ 1( ) ( ) tan ,
2

b a a
πφ −= − and

0

sin
( )  (compare Problems 12.27 through 12.29).

2

x
c dx

x

π∞
=∫

12.58. State the definition of uniform convergence for improper integrals of the second kind.

12.59. State and prove a theorem corresponding to Theorem 8, Page 328, if α is a differentiable function of α.

Evaluation of definite integrals

Establish each of the following results. Justify all steps in each case.

12.60.
0

ln( / ), , 0
ax bxe e

dx b a a b
x

− −∞ − = >∫

12.61. 1 1

0
tan ( / ) tan ( / ), , , 0

csc

ax bxe e
dx b r a r a b r

x rx

− −∞ − −− = − >∫

12.62.
20

sin
(1 ), 0

2(1 )
rrx

dx e r
x x

π∞ −= − >
+∫

12.63.
20

1 cos
| |

2

rx
dx r

x

π∞ − =∫
12.64.

2 20

sin
, 0

2
arx rx

dx e a r
a x

π∞ −= >
+∫

12.65. (a) Prove that 
2 2

2 20

cos cos 1
ln , 0.

2
x ax bx b

e dx
x a

α α α
α

∞ − ⎛ ⎞− +⎛ ⎞ = >⎜ ⎟⎜ ⎟ +⎝ ⎠ ⎝ ⎠
∫ (b) Use (a) to prove that 

0

cos cos
ln .

ax bx b
dx

x a

∞ − ⎛ ⎞= ⎜ ⎟⎝ ⎠∫  [The results of (b) and Problem 12.60 are special cases of Frullani’s 

integral,
0

( ) ( )
(0) ln ,

F ax F bx b
dx F

x a

∞ − ⎛ ⎞= ⎜ ⎟⎝ ⎠∫  where F(t) is continuous for t < 0, t > 0, F�(0) exists and 

1

( )F t

t

∞

∫ dt converges.]

12.66. Given 
2

0

1
/ , 0

2
xe dxα π α α

∞ − = >∫ , prove that for p = 1,2,3,  . . . ,

22
(2 1) / 20

1 3 5 (2 1)
. . ....

2 2 2 2 2
p x

p

p
x e dxα π

α
∞ −

+

−=∫ ···· · .
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12.67. If a > 0, b > 0, prove that 
2 2/ /

0
( ) .u x b xe e dx b aπ π

∞ − −− = −∫
12.68. Prove that 

1 1

0

tan ( / ) tan ( / )
ln  

2

x a x b b
dx

x a

π− −∞ − ⎛ ⎞= ⎜ ⎟⎝ ⎠∫ , where 0, 0.a b> >

12.69. Prove that 
2 3

4
.

( 1) 3 3

dx

x x

π∞

−∞
=

+ +∫  (Hint: Use Problem 12.38.)

Miscellaneous problems

12.70. Prove that 
2

0

ln(1 )x
dx

x

∞ +⎧ ⎫
⎨ ⎬
⎩ ⎭∫  converges.

12.71. Prove that 
( 1)

3 2 3 20
0

 converges. Hint: Consider  and use the fact
1 sin 1 sin

n

n
n

dx dx

x x x x

π

π

∞∞ +

=

⎡
⎢+ +⎣

∑∫ ∫
(n+1) ( 1)

3 2 3 2
that .

1 sin 1 ( ) sin

n

n n

dx dx

x x n x

π π

π π π
+ ⎤< ⎥+ + ⎦∫ ∫

12.72. Prove that 
3 20 1 sin

x dx

x x

∞

+∫  diverges.

12.73. (a) Prove that 
2 2

20

ln(1 )
ln(1 ), 0.

1

x
dx

x

α π α α
∞ + = + >

+∫ (b) Use (a) to show that 

/ 2

0
ln sin  d  = ln 2.

2

π πθ θ −∫
12.74. Prove that 

4

40

sin
.

3

x
dx

x

π∞
=∫

12.75. Evaluate (a) �(1 / ),x  (b) �{cosh ax}, and (c) �{(sin x)/x}.

Ans. (a) / , 0s sπ >  (b) 
2 2

, | |
s

s a
s a

>
−

 (c) 1 1
tan , 0s

s
− ⎛ ⎞ >⎜ ⎟⎝ ⎠

12.76. (a) If �{eaxF(x)} prove that �{eax F(x)}= f (s – a) and (b) evaluate �{eax sin bx}.

Ans. (b) 
2 2

,
( )

b
s a

s a b
>

− +

12.77. (a) If �{F(x)} = f (s), prove that �{xn F(x)} = (–1)n f (n)(s), giving suitable restrictions on F(x). (b) Evaluate 
�{x cos x].

Ans. (b) 
2

2 2

1
, 0

( 1)

s
s

s

− >
+

12.78. Prove that �–1 {f (s) + g(s)} = �–1 {f (s)} + �–1 [g(s)], stating any restrictions.

12.79. Solve using Laplace transforms, the following differential equations subject to the given conditions:

(a) Y�(x) + 3Y�(x) + 2Y(x) = 0; Y(0) = 3, Y�(0) = 0

(b) Y�(x) – Y�(x) = x; Y(0) = 2, Y� (0) = –3

(c) Y�(x) + 2Y�(x) + 2Y(x) = 4; Y(0) = 0 Y�(0) = 0

Ans. (a) Y(x) = 6e–x – 3e–2x (b) Y(x) = 4 – 2ex – 
1

2
x2 – x (c) Y(x) = 1 – e–x (sin x + cos x)

12.80. Prove that �{F(x)} exists if F(x) is piecewise continuous in every finite interval [0, b] where b > 0 and if 
F(x) is of exponential order as x → �; i.e., there exists a constant α such that |e–α x F(x)| < P (a constant) for 
all x > b.
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12.81. If f (s) = �{F(x)} and g(s) = �{G(x)}, prove that f (s)g(s) = �{H(x)} where

0
( ) ( ) ( )

x
H x F u G x u du= −∫

is called the convolution of F and G, written F*G. Hint: Write

f s g s e F u du
M

su
M

( ) ( ) lim ( )= { }→∞

−∫0
ee G d

e F u G

se
M

M

s u r
M

−

→∞

−

∫

∫

{ }
=

( )

lim ( ) (( )

υ υ

υ

0

0
)) du d

M
υ υ

0∫ = and then let u + s(u+v) t

12.82. (a) Find �–1
2 2

1

( 1)s

⎧
⎨ +⎩

 (b) Solve Y �(x) + Y(x) = R(x), Y(0) = Y�(0) = 0. (c) Solve the integral equation

0
( ) ( )sin( ) .

x
Y x x Y u x u du= + −∫ (Hint: Use Problem 12.81.)

Ans. (a) 
1

(sin cos )
2

x x x−  (b) 
0

( ) ( )sin( )
x

Y x R u x u du= −∫  (c) 3( ) / 6Y x x x= +

12.83. Let f (x), g(x), and g�(x) be continuous in every finite interval a < x < b and suppose that g�(x) <  0. 

Suppose also that h(x) = 
0

x

∫ f (x) dx is bounded for all x ε a and 
0

lim
x→

g(x) = 0.

(a)
0

Prove that ( ) ( ) ( ) ( ) .
a

f x g x dx g x h x dx
∞ ∞

′= −∫ ∫
(b) Prove that the integral on the right, and, hence, the integral on the left, are convergent. The result is that 

under the given conditions on f (x) and g(x), ( ) ( )
a

f x g x dx
∞

∫  converges and is sometimes called Abel’s 

integral test. [Hint: For (a), consider lim ( ) ( )
b

ab
f x g x dx

→∞ ∫ after replacing f (x) by h�(x) and integrating by 

parts. For (b), first prove that if |h(x)| < H (a constant), then ( ) ( )
b

a
g x h x dx′∫  and then let b → �.]

12.84. Use Problem 12.83 to prove that 
0 0

sin
( )  and   ( ) sin , 1px
a dx b x dx p

x

∞ ∞
>∫ ∫  converge.

12.85. (a) Given that 2 2

0 0

1
sin cos

2 2
x dx x dx

π∞ ∞
= =∫ ∫  [see Problems 15.27 and 15.68(a)], evaluate 

2 2

0 0
sin( )x y dx dy

∞ ∞
+∫ ∫  and (b) Explain why the method of Problem 12.31 cannot be used to evaluate the 

multiple integral in (a).

Ans. π/4
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CHAPTER 13

Fourier Series

Mathematicians of the eighteenth century, including Daniel Bernoulli and Leonhard Euler, expressed the 
problem of the vibratory motion of a stretched string through partial differential equations that had no solu-
tions in terms of “elementary functions.” Their resolution of this difficulty was to introduce infinite series of 
sine and cosine functions that satisfied the equations. In the early nineteenth century, Joseph Fourier, while 
studying the problem of heat flow, developed a cohesive theory of such series. Consequently, they were 
named after him. Fourier series and Fourier integrals are investigated in this chapter and Chapter 14. As you 
explore the ideas, notice the similarities and differences with the chapters on infinite series and improper 
integrals.

Periodic Functions

A function f (x) is said to have a period T or to be periodic with period T if for all x, f (x + T) = f (x), where 
T is a positive constant. The least value of T > 0 is called the least period or simply the period of f (x).

EXAMPLE 1. The function sin x has periods 2π, 4π, 6π, . . . , since sin(x + 2π), sin( + 4π), sin(x + 
6π), . . . all equal sin x. However, 2π is the least period or the period of sin x.

EXAMPLE 2. The period of sin nx or cos nx, where n is a positive integer, is 2π/n.

EXAMPLE 3. The period of tan x is π.

EXAMPLE 4. A constant has any positive number as period.

Other examples of periodic functions are shown in the graphs of Figure 13.1(a), (b), and (c).

Figure 13.1

Fourier Series

Let f (x) be defined in the interval (–L, L) and outside of this interval by f (x + 2L) = f (x); i.e., f (x) is 2L-
periodic. It is through this avenue that a new function on an infinite set of real numbers is created from the 
image on (–L, L). The Fourier series or Fourier expansion corresponding to f (x) is given by

f (x)

(a)

x

Pe
ri

od
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0

1

cos sin
2 n n

n

a n x n x
a b

L L

π π∞

=

⎛ ⎞+ +⎜ ⎟⎝ ⎠∑  (1)

where the Fourier coefficients an and bn are

1
( )cos

0,1,2,...
1

( )sin

L

n L

L

n L

n x
a f x dx

L L n
n x

b f x dx
L L

π

π
−

−

⎧ =⎪⎪ =⎨
⎪ =⎪⎩

∫

∫
 (2)

To correlate the coefficients with the expansion, see the following Examples 1 and 2.

Orthogonality Conditions for the Sine and Cosine Functions

Notice that the Fourier coefficients are integrals. These are obtained by starting with the series (1) and em-
ploying the following properties called orthogonality conditions:

(a) cos cos 0 if and if
L

L

m x n x
dx m n L m n

L L

π π
−

= ≠ =∫
(b) sin sin 0 if and if

L

L

m x n x
dx m n L m n

L L

π π
−

= ≠ =∫  (3)

(c) sin cos 0.
L

L

m x n x
dx

L L

π π
−

=∫  Where m and n assume any positive integer values.

An explanation for calling these orthogonality conditions is given on Page 355. Their application in de-
termining the Fourier coefficients is illustrated in the following pair of examples and then demonstrated in 
detail in Problem 13.4.

EXAMPLE 1. To determine the Fourier coefficient a0, integrate both sides of the Fourier series (1) and em-
ploy the orthogonality conditions (2).

}0

1

( ) cos sin
2

L L L

n nL L L
n

a n x n x
f x dx dx a b dx

L L

π π∞

− − −
=

⎧= + +⎨
⎩

∑∫ ∫ ∫
Now

0
0 , sin 0, cos 0,

2

L L L

L L L

a n x n x
dx a L dx dx

L L

π π
− − −

= = =∫ ∫ ∫
therefore

0

1
( )

L

L
a f x dx

L −
= ∫

EXAMPLE 2. To determine a1, multiply both sides of series (1) by cos 
x

L

π
 and then integrate. Using the or-

thogonality conditions (3)a and (3)c, we obtain 1

1
( ) cos .

L

L

x
a f x dx

L L

π
−

= ∫  Now see Problem 13.4.

If L = π, the series (1) and the coefficients (2) or (3) are particularly simple. The function in this case has 
the period 2π.

Dirichlet Conditions

Suppose that

1. f (x) is defined except possibly at a finite number of points in (–L, L).

2. f (x) is periodic outside (–L, L) with period 2L.

3. f (x) and f ′(x) are piecewise continuous in (–L, L).
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Then the series (1) with Fourier coefficients converges to

(a) f (x) if x is a point of continuity

(b)
( 0) ( 0)

2

f x f x+ + −
 if x is a point of discontinuity

Here f (x + 0) and f (x – 0) are the right- and left-hand limits of f (x) at x and represent 
0

lim
ε → +

f (x + �) and 
0

lim
ε → +

f (x – �), respectively. For a proof, see Problems 13.18 through 13.23.
The conditions 1, 2, and 3 imposed on f (x) are sufficient but not necessary, and are generally satisfied in 

practice. There are at present no known necessary and sufficient conditions for convergence of Fourier series. 
It is of interest that continuity of f (x) does not alone ensure convergence of a Fourier series.

Odd and Even Functions

A function f (x) is called odd if f (–x) = –f (x). Thus, x3, x5 – 3x3 + 2x, sin x, and tan 3x are odd functions.
A function f (x) is called even if f (–x) = f (x). Thus, x4, 2x6 – 4x2 + 5, cos x, and ex + e–x are even func-

tions.
The functions portrayed graphically in Figure 13.1(a) and (b) are odd and even, respectively, but that of 

Figure 13.1(c) is neither odd nor even.
In the Fourier series corresponding to an odd function, only sine terms can be present. In the Fourier series 

corresponding to an even function, only cosine terms (and possibly a constant, which we shall consider a 
cosine term) can be present.

Half Range Fourier Sine or Cosine Series

A half range Fourier sine or cosine series is a series in which only sine terms or only cosine terms are present, 
respectively. When a half range series corresponding to a given function is desired, the function is generally 
defined in the interval (0, L) [which is half of the interval (–L, L), thus accounting for the name half range]
and then the function is specified as odd or even, so that it is clearly defined in the other half of the interval, 
namely, (–L, 0). In such case, we have

0

2
0, ( )sin for

2
0, ( ) cos for

L

n n L

L

n n

n x
a b f x dx half range sine series

L L
n x

b a f x dx half range consine series
L L

π

π
−

⎧ = =⎪⎪
⎨
⎪ = =⎪⎩

∫

∫
 (4)

Parseval’s Identity

If an and bn are the Fourier coefficients corresponding to f (x) and if f (x) satisfies the Dirichlet conditions, 
then

2
22 20

1

1
{ ( )} ( )

2

L

n nL
n

a
f x dx a b

L

∞

−
=

= + +∑∫  (5)

(See Problem 13.13.)

Differentiation and Integration of Fourier Series

Differentiation and integration of Fourier series can be justified by using the theorems on Page 285, which 
hold for series in general. It must be emphasized, however, that those theorems provide sufficient conditions 
and are not necessary. The following theorem for integration is respecially useful.
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Theorem The Fourier series corresponding to f (x) may be integrated term by term from a to and the result-

ing series will converge uniformly to ( )
x

a
f x dx∫  provided that F(x) is piecewise continueus in –L < x < L

and both a and x are in this interval.

Complex Notation for Fourier Series

Using Euler’s identities,

eiθ = cos θ + i sinθ, e– iθ = cos θ – i sin θ (6)

where i = 1−  (see Problem 11.48), the Fourier series for f (x) can be written as

/( ) in x L
n

n

f x c e π
∞

=−∞

= ∑  (7)

where

/1
( )

2

L in x L
n L

c f x e dx
L

π−

−
= ∫  (8)

In writing the equality (7), we are supposing that the Dirichlet conditions are satisfied and, further, that 
f (x) is continuous at x. If f (x) is discontinuous at x, the left side of (7) should be replaced by 

( ( 0) ( 0)
.

2

f x f x+ + −

Boundary-Value Problems

Boundary value problems seek to determine solutions of partial differential equations satisfying certain 
prescribed conditions called boundary conditions. Some of these problems can be solved by use of Fourier 
series (see Problem 13.24).

EXAMPLE. The classical problem of a vibrating string may be idealized in the following way. See Figure 
13.2.

Suppose a string is tautly stretched between points (0, 0) and (L, 0). Suppose the tension F is the same at 
every point of the string. The string is made to vibrate in the xy plane by pulling it to the parabolic position 
g(x) = m(Lx – x2) and releasing it (m is a numerically small positive constant). Its equation will be of the form 
y = f (x, t). The problem of establishing this equation is idealized by (a) assuming that the constant tension F
is so large as compared to the weight wL of the string that the gravitational force can be neglected, (b) the 
displacement at any point of the string is so small that the length of the string may be taken as L for any of 
its positions, and (c) the vibrations are purely transverse. 

The force acting on a segment PQ is

2

2
,

w y
x

g t

∂Δ
∂

x < x1 < x + Δx, g ≈ 32 ft per sec2

If α and β are the angles that F makes with the horizontal, then the vertical difference in tensions is 
F(sin α – sin β). This is the force producing the acceleration that accounts for the vibratory motion.

)
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Figure 13.2 

Now

F{sin α – sin β} = F
2 2

tan tan

1 tan 1 tan

α β

α β

⎧ ⎫⎪ ⎪−⎨ ⎬
+ +⎪ ⎪⎩ ⎭

≈ F{tan α – tan β} ( , ) ( , )
y y

F x x t x t
x x

∂ ∂⎧ ⎫= + Δ −⎨ ⎬∂ ∂⎩ ⎭

where the squared terms in the denominator are neglected because the vibrations are small.
Next, equate the two forms of the force, i.e.,

2

2
( , ) ( , )

y y w y
F x x t x t x

x x g t

∂ ∂ ∂⎧ ⎫+ Δ − = Δ⎨ ⎬∂ ∂ ∂⎩ ⎭

divide by Δx, and then let Δx → 0. After letting ,
Fg

w
α =  the resulting equation is
2 2

2
2 2

y y

t x
α∂ ∂=

∂ ∂
This homogeneous second partial derivative equation is the classical equation for the vibrating string. 

Associated boundary conditions are

y(0, t) = 0, y(L, t) = 0, t > 0

The initial conditions are
2( ,0) ( ), ( ,0) 0,0

y
y x m Lx x x x L

t

∂= − = < <
∂

The method of solution is to separate variables, i.e., assume

y(x, t) = G(x)H(t)

Then, upon substituting,

G(x) H″ (t) = α2 G″ (x)H(t)

Separating variables yields
" "

2, ,
G H

k k
G H

α= =  where k is an arbitrary constant

Since the solution must be periodic, trial solutions are

1 2

3 4

( ) sin cos , 0

( ) sin cos

G x c k x c k x

H t c k t c k tα α

= − + − <

= − + −
Therefore,

1 2 3 4[ sin cos ][ sin cos ]y GH c k x c k x c k t c k tα α= = − + − − + −

The initial condition y = 0 at x = 0 for all t leads to the evaluation c2 = 0.

 ″  ″
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Thus,

1 3 4[ sin ][ sin cos ]y c k x c k t c k tα α= − − + −

Now impose the boundary condition y = 0 at x = L; thus, 0 = [c1 sin k L− ] [c3 sin α k t−  + c4 cos α
k t− ].
c1 � 0, as that would imply y = 0 and a trivial solution. The next-simplest solution results from the

choice 1 3 4,since sin sin cos
n n n n

k y c x c t c t
L L l L

π π π πα α⎡ ⎤ ⎡ ⎤− = = +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
 and the first factor is zero when 

x = L.

With this equation in place, the boundary condition ( , 0) 0, 0
y

x x L
t

∂ = = < <
∂

 can be considered.

1 3 4sin cos sin
y n n n n n

c x c t c t
t L L L L L

π π π π πα α α α∂ ⎡ ⎤ ⎡ ⎤= −⎢ ⎥ ⎢ ⎥∂ ⎣ ⎦ ⎣ ⎦
At t = 0,

1 30 sin
n n

c x c
L L

π πα⎡ ⎤= ⎢ ⎥⎣ ⎦

Since c1 � 0 and sin
n

L

π
x is not identically zero, it follows that c3 = 0 and that

1 4sin cos
n n n

y c x c t
L L L

π π πα α⎡ ⎤ ⎡ ⎤= ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
The remaining initial condition is

y(x, 0) = m(Lx – x2), 0 < x < L

When it is imposed,
2

1 4( ) sin
n n

m Lx x c c x
L L

π πα− =

However, this relation cannot be satisfied for all x on the interval (0, L). Thus, the preceding extensive 
analysis of the problem of the vibrating string has led us to an inadequate form:

1 4 sin cos
n n n

y c c x t
L L L

π π πα α=

and an initial condition that is not satisfied. At this point the power of Fourier series is employed. In particu-
lar, a theorem of differential equations states that any finite sum of a particular solution also is a solution. 
Generalize this to infinite sum and consider

1

sin cosn
n

n n
y b x t

L L

π πα
∞

=

= ∑
with the initial condition expressed through a half range sine series, i.e.,

2

1

sin ( ), 0n
n

n
b x m Lx x t

L

π∞

=

= − =∑
According to the formula on Page 351 for the coefficient of a half range sine series,

2

0
( )sin

2

L

n

L n x
b Lx x dx

m L

π= −∫
That is,

2

0 0
sin sin

2

L L

n

L n x n x
b Lx dx x dx

m L L

π π= −∫ ∫
Application of integration by parts to the second integral yields

3

0 0
sin cos cos 2

2

L L

n

L n x L L n x
b L x dx n x dx

m L n n L

π ππ
π π

= + +∫ ∫
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When integration by parts is applied to the two integrals of this expression and a little algebra is employed, 
the result is

2

3

4
(1 cos )

( )n

L
b n

n
π

π
= −

Therefore,

1

sin cosn
n

n n
y b x t

L L

π πα
∞

=

= ∑
with the coefficients bn defined previously.

Orthogonal Functions

Two vectors A and B are called orthogonal (perpendicular) if A · B = 0 or or A1B1 + A2B2 + A3B3 = 0, where 
A = A1i + A2 j + A3k and B = B1i + B2 j + B3k. Although not geometrically or physically evident, these ideas 
can be generalized to include vectors with more than three components. In particular, we can think of a 
function—say, A(x)—as being a vector with an infinity of components (i.e., an infinite dimensional vector),
the value of each component being specified by substituting a particular value of x in some interval (a, b). It 
is natural in such case to define two functions, A(x) and B(x), as orthogonal in (a, b) if

( ) ( ) 0
b

a
A x B x dx =∫  (9)

A vector A is called a unit vector or normalized vector if its magnitude is unity, i.e., if A · A = A2 = 1. 
Extending the concept, we say that the function A(x) is normal or normalized in (a, b) if

2{ ( )} 1
b

a
A x dx =∫  (10)

From this, it is clear that we can consider a set of functions {φk (x)}, k = 1, 2, 3, . . . , having the properties

( )
b

ma
xφ∫ ) ( ) 0n x dx m nφ = ≠  (11)

2{ ( )} 1 1,2,3,...
b

ma
x dx mφ = =∫  (12)

In such case, each member of the set is orthogonal to every other member of the set and is also normalized. 
We call such a set of functions an orthonormal set.

Equations (11) and (12) can be summarized by writing

( )
b

ma
xφ φ∫ ( )n mnx dxφ δ=  (13)

where δmn, called Kronecker’s symbol, is defined as 0 if m � n and 1 if m = n.
Just as any vector r in three dimensions can be expanded in a set of mutually orthogonal unit vectors i, j,

k in the form r = c1i + c2 j + c3k, so we consider the possibility of expanding a function f (x) in a set of ortho-
normal functions, i.e.,

1

( ) ( )n n
n

f x c x a x bφ
∞

=

= ≤ ≤∑  (14)

As we have seen, Fourier series are constructed from orthogonal functions. Generalizations of Fourier 
series are of great interest and utility from both theoretical and applied viewpoints.
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SOLVED PROBLEMS

Fourier Series

13.1. Graph each of the following functions.

(a)
3 0 5

( ) Period 10
3 5 0

x
f x

x

< <⎧
= =⎨− − < <⎩

Figure 13.3

Since the period is 10, that portion of the graph in –5 < x < 5 (indicated by heavy lines in Figure 13.3) is 
extended periodically outside this range (indicated by dashed lines). Note that f (x) is not defined at x = 0, 5, 
–5, 10, –10, 15, –15, and so on. These values are the discontinuities of f (x).

(b)
sin 0

( ) Period = 2
0 2

x x
f x

x

π
π

π π

< <⎧⎪= ⎨
< <⎪⎩

Figure 13.4

Refer to Figure 13.4. Note that f (x) is defined for all x and is continuous everywhere.

(c)

0 0 2

( ) 1 2 4 Period 6

0 4 6

x

f x x

x

≤ <⎧
⎪= ≤ < =⎨
⎪ ≤ <⎩

Fig.13.5

Refer to Figure 13.5. Note that f (x) is defined for all x and is discontinuous at x = ±2, ±4, ±8, ±10, 
±14, . . . .

13.2.
k x k x

prove sin cos 0 1,2,3,...
L L

L L

-L -L
dx dx if k

π π= = =∫ ∫
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k x k x
sin cos cos cos( ) 0

L L

k x
cos sin sin sin( ) 0

L

L

-L

L

-L

LL L L
dx k k

Lk k k

LL k x L L
dx k k

Lk L k k

π π π π
π π π

π π π π
π π π

= − = + − =
−

= = − − =
−

∫

∫

13.3. Prove (a) 
0

cos cos sin sin
L L

L L

m nm x n x m x n x
dx dx

L m nL L L L

π π π π
− −

≠⎧
= = ⎨ =⎩∫ ∫

  (b) sin cos 0
L

L

m x n x
dx

L L

π π
−

=∫
where m and n can assume any of the values 1, 2, 3, . . . .

(a) From trigonometry: cos A cos B = 
1
2

 {cos(A – B) + cos(A + B)}, sin A sin B = 
1
2

 {cos(A – B) – 
cos (A + B)}.

Then, if m � n, by Problem 13.2,

1 ( ) ( )
cos cos cos cos 0

2

L L

L L

m x n x m x x m n x
dx dx

L L L L

π π π π
− −

− +⎧ ⎫= + =⎨ ⎬
⎩ ⎭∫ ∫

Similarly, if m � n,

1 ( ) ( )
sin sin cos cos 0

2

L L

L L

m x n x m n x m n x
dx dx

L L L L

π π π π
− −

− +⎧ ⎫= − =⎨ ⎬
⎩ ⎭∫ ∫

If m = n, we have

1 2
cos cos 1 cos

2

1 2
sin sin 1 cos

2

L L

L L

L L

L L

m x n x n x
dx dx L

L L L

m x n x n x
dx dx L

L L L

π π π

π π π

− −

− −

⎛ ⎞= + =⎜ ⎟⎝ ⎠
⎛ ⎞= − =⎜ ⎟⎝ ⎠

∫ ∫

∫ ∫
Note that if m = n these integrals are equal to 2L and 0, respectively.

(b) We have sin A cos B = 1/2 {sin(A – B) + sin(A + B)}. Then by Problem 13.2, if m � n,

1 ( ) ( )
sin cos sin sin

2

L L

L L

m x n x m n x m n x
dx

L L L L

π π π π
− −

− +⎧ ⎫= +⎨ ⎬
⎩ ⎭∫ ∫ 0dx =

If m = n,
1 2

sin cos sin 0
2

L L

L L

m x n x n x
dx dx

L L L

π π π
− −

= =∫ ∫
The results of (a) and (b) remain valid even when the limits of integration –L, L are replaced by c, c + 2L,

respectively.

13.4. If the series 
1

cos sinn n
n

n x n x
A a b

L L

π π∞

=

⎛ ⎞+ +⎜ ⎟⎝ ⎠∑  converges uniformly to f(x) in (–L, L), show that for n = 

1, 2, 3, . . . , (a) 
1

( ) cos
L

n L

n x
a f x dx

L L

π
−

= ∫  and (b) 
1

( )sin ,
L

n L

n x
b f x dx

L L

π
−

= ∫  (c) 0 .
2

a
A =

(a) Multiplying

1

( ) cos sinn n
n

n x n x
f x A a b

L L

π π∞

=

⎛ ⎞= + +⎜ ⎟⎝ ⎠∑  (1)

by cos 
m x

L

π
 and integrating from –L to L, using Problem 13.3, we have
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1

( ) cos cos

cos cos cos sin

if 0

L L

L L

L L

n nL L
n

m

m x m x
f x dx A dx

L L
m x n x m x n x

a dx b dx
L L L L

a L m

π π

π π π π
− −

∞

− −
=

=

⎧ ⎫+ +⎨ ⎬
⎩ ⎭

= ≠

∫ ∫

∑ ∫ ∫

Thus,

1
( ) cos if 1,2,3,...

L

m L

m x
a f x dx m

L L

π
−

= =∫

(b) Multiplying Equation (1) by sin
m x

L

π
 and integrating from –L to L, using Problem 13.3, we have

( )sin sin
L L

L L

m x m x
f x dx A dx

L L

π π
− −

=∫ ∫

1

sin cos cos sin
L L

n nL L
n

m x n x m x n x
a dx b dx

L L L L

π π π π∞

− −
=

⎧ ⎫+ +⎨ ⎬
⎩ ⎭

∑ ∫ ∫
mb L=

Thus,

1
( )sin if 1,2,3,...

L

m L

m x
b f x dx m

L L

π
−

= =∫
(c) Integrating Equation (1) from –L to L, using Problem 13.2, gives

1
( ) 2 or ( )

2

L L

L L
f x dx AL A f x dx

L− −
= =∫ ∫

Putting m = 0 in the result of (a), we find 0
0

1
( ) and so .

2

L

L

a
a f x dx A

L −
= =∫

The above results also hold when the integration limits –L, L are replaced by c, c + 2L.
Note that in (a), (b), and (c), interchange of summation and integration is valid because the series is as-

sumed to converge uniformly to f (x) in (–L, L). Even when this assumption is not warranted, the coefficients 
am and bm as obtained are called Fourier coefficients corresponding to f (x), and the corresponding series with 
these values of am and bm is called the Fourier series corresponding to f (x). An important problem in this case 
is to investigate conditions under which this series actually converges to f (x). Sufficient conditions for this 
convergence are the Dirichlet conditions established in Problems 13.18 through 13.23.

13.5. (a) Find the Fourier coefficients corresponding to the function

0 5 0
( ) Period = 10

3 0 5

x
f x

x

− < <⎧
= ⎨ < <⎩

(b) Write the corresponding Fourier series.

(c) How should f (x) be defined at x = –5, x = 0, and x = 5 in order that the Fourier series will converge to f (x)

for –5 < x < 5?

The graph of f (x) is shown in Figure 13.6.
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Figure 13.6

(a) Period = 2L = 10 and L = 5. Choose the interval c to c + 2L as –5 to 5, so that c = –5. Then

2 5

5

1 1
( )cos ( )cos

5 5

c L

n c

n x n x
a f x dx f x dx

L L

π π+

−
= =∫ ∫

}0 5 5

5 0 0

1 3
(0)cos (3)cos cos

5 5 5 5 5

n x n x n x
dx dx dx

π π π
−

⎧= + =⎨
⎩∫ ∫ ∫

                                      

3 5
sin

5 5

n x

n

π
π

⎛ ⎞= ⎜ ⎟⎝ ⎠

5

0

0 0if n
⎞ = ≠⎟⎠

5 5

0 0 0

2

3 0 3
If 0, cos 3.

5 5 5
1 1

( )sin ( )sin
5 5

n

c L

n c

x
n a a dx dx

n x n x
b f x dx f x

L L

π

π π+

= = = = =

= =

∫ ∫

∫

}

5

5

0 5 5

5 0 0

5

0

1 3
(0)sin (3)sin sin

5 5 5 5 5

3 5 3(1 cos )
cos

5 5

dx

n x n x n x
dx dx dx

n x n

n n

π π π

π π
π π

−

−

⎧= + =⎨
⎩

−⎛ ⎞= − =⎜ ⎟⎝ ⎠

∫

∫ ∫ ∫

(b) The corresponding Fourier series is

0

1 1

3 3(1 cos )
cos sin sin

2 2 5

3 6 1 3 1 5
sin sin sin

2 5 3 5 5 5

n n
n n

a n x n x n n x
a b

L L n

x x x

π π π π
π

π π π
π

∞ ∞

= =

−⎛ ⎞+ + = +⎜ ⎟⎝ ⎠
⎛ ⎞= + + + +⎜ ⎟⎝ ⎠

∑ ∑

L

(c) Since f (x) satisfies the Dirichlet conditions, we can say that the series converges to f (x) at all points of 

continuity and to
( 0) ( 0)

2

f x f x+ + −
at points of discontinuity. At x = –5, 0, and 5, which are points 

of discontinuity, the series converges to (3 + 0)/2 = 3/2, as seen from the graph. If we redefine f (x) as 
follows,

3 / 2 5

0 5 0

( ) Period = 103 / 2 0

3 0 5

3 / 2 5

x

x

f x x

x

x

= −⎧
⎪ − < <⎪⎪= =⎨
⎪ < <⎪
⎪ =⎩

then the series will converge to f(x) for –5 < x <  5.

13.6. Expand f(x) = x2, 0 < x < 2π in a Fourier series if (a) the period is 2π and (b) the period is not specified.

(a) The graph of f (x) with period 2π is shown in Figure 13.7.

      ...
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Period = 2L = 2π and L = π. Choosing c = 0, we have

2 2 2

0

1 1
( )cos cos

c L

n c

n x
a f x dx x nx dx

L L

ππ
π

+
= =∫ ∫

1

π
= ⎧

⎨
⎩
{

2

2
2 3 2

0

sin cos sin 4
( ) (2 ) 2 , 0

nx nx nx
x x n

n n n n

π
⎫− −⎛ ⎞ ⎛ ⎞ ⎛ ⎞− + = ≠⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎭

2
2 2

0 0

1 8
If 0, .

3
n a x dx

π π
π

= = =∫
2 2 2

0

1 1
( )sin sin

c L

n c

n x
b f x dx x nx dx

L L

ππ
π

+
= =∫ ∫

1

π
= =

⎧
⎨
⎩
{

2

2
2 3

0

sin cos sin
( ) (2 ) 2

nx nx nx
x x

n n n

π
⎫− −⎛ ⎞ ⎛ ⎞ ⎛ ⎞− + ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎭

2
2

2
1

4 4 4
Then ( ) cos sin .

3 n

f x x nx nx
nn

π π∞

=

⎛ ⎞= = + −⎜ ⎟⎝ ⎠∑

This is valid for 0 < x < 2π. At x = 0 and x = 2π the series converges to 2π2.
(b) If the period is not specified, the Fourier series cannot be determined uniquely in general.

13.7. Using the results of Problem 13.6, prove that 
2 2 2

1 1 1

1 2 3
+ + + ...

2

.
6

π=

At x = 0, the Fourier series of Problem 13.6 reduces to 
2

2
1

4 4
.

3 n n

π ∞

=

+ ∑

By the Dirichlet conditions, the series converges at x = 0 to 
1

2
 (0 + 4π2) = 2π 2.

Then
2 2

2
2 2

1 1

4 4 1
2 ,and so .

3 6n nn n

π ππ
∞ ∞

= =

+ = =∑ ∑

Odd and even functions, half range Fourier series

13.8. Classify each of the following functions according to whether they are even, odd, or neither even nor odd.

(a)
2 0 3

( ) Period 6
2 3 0

x
f x

x

< <⎧
= =⎨− − < <⎩

From Figure 13.8, it is seen that f (–x) = –f (x), so that the function is odd.

(b)
cos 0

( ) Period = 2
0 2

x x
f x

x

π
π

π π
< <⎧

= ⎨ < <⎩
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Figure 13.8

From Figure 13.9, it is seen that the function is neither even nor odd.

Figure 13.9

(c) f (x) = x(10 –x), 0 < x < 10    Period = 10

From Figure 13.10 below the function is seen to be even.

Figure 13.10

13.9. Show that an even function can have no sine terms in its Fourier expansion.

Method 1: No sine terms appear if bn = 0, n = 1, 2, 3, . . . . To show this, let us this, let us write

0

0

1 1 1
( )sin ( )sin ( )sin

L L

n L L

n x n x n x
b f x dx f x dx f x dx

L L L L L L

π π π
− −

= = +∫ ∫ ∫  (1)

If we make the transformation x = –u in the first integral on the right of Equation (1), we obtain

0

0 0

0 0

1 1 1
( )sin ( )sin ( )sin

1 1
( )sin ( )sin

L L

L

L L

n x n u n u
f x dx f u du f u du

L L L L L L
n u n u

f u du f x dx
L L L L

π π π

π π
−

⎛ ⎞= − − = − −⎜ ⎟⎝ ⎠

= − = −

∫ ∫ ∫

∫ ∫
 (2)

where we have used the fact that for an even function f (–u) = f (u) and in the last last step that the dummy 
variable of integration u can be replaced by any other symbol, in particular, x. Thus, from Equation (1), using 
Equation (2), we have

0 0

1 1
( )sin ( )sin 0

L L

n

n x n u
b f x dx f x dx

L L L L

π π= − + =∫ ∫
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Method 2: Assume 

0

1

( ) cos sin
2 n n

n

a n x n x
f x a b

L L

π π∞

=

⎛ ⎞= + +⎜ ⎟⎝ ⎠∑
Then

0

1

( ) cos sin
2 n N

n

a n x n x
f x a b

L L

π π∞

=

⎛ ⎞− = + −⎜ ⎟⎝ ⎠∑
If f (x) is even, f (–x) = f (x). Hence,

0 0

1 1

cos sin cos sin
2 2n n n n

n n

a an x n x n x n x
a b a b

L L L L

π π π π∞ ∞

= =

⎛ ⎞ ⎛ ⎞+ + = + −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠∑ ∑
and so

0

1 1

sin 0, i.e., ( ) cos
2n n

n n

an x n x
b f x a

L L

π π∞ ∞

= =

= = +∑ ∑
and no sine terms appear.

In a similar manner, we can show that an odd function has no cosine terms (or constant term) in its Fourier 
expansion.

13.10. If f (x) is even, show that (a) 
0

2
( ) cos ,

L

n

n x
a f x dx

L L

π= ∫  and (b) bn = 0.

(a)
0

0

1 1 1
( )cos ( )cos ( )cos

L L

n L L

n x n x n x
a f x dx f x dx f x dx

L L L L L L

π π π
− −

= = +∫ ∫ ∫
Letting x = –u,

0

0 0

1 1 1
( )cos ( ) cos ( ) cos

L L

L

n x n x n x
f x dx f u du f u du

L L L L L L

π π π
−

−⎛ ⎞= − =⎜ ⎟⎝ ⎠∫ ∫ ∫
since, by definition of an even function, f (–u) = f (u). Then

0 0 0

1 1 2
( )cos ( ) cos ( ) cos

L L L

n

n u n x n x
a f u du f x dx f x dx

L L L L L L

π π π= + =∫ ∫ ∫
(b) This follows by Method 1 of Problem 13.9.

13.11. Expand f (x) = sin x, 0 < x < π, in a Fourier cosine series.

A Fourier series consisting of cosine terms alone is obtained only for an even function. Hence, we extend 
the definition of f (x) so that it becomes even (dashed part of Figure 13.11). With this extension, f (x) is then 
defined in an interval of length 2π. Taking the period as 2π, we have 2L = 2π so that L = π.

Figure 13.11

By Problem 13.10, bn = 0 and

0 0

2 2
( )cos sin cos

L

n

n u
a f x dx x nx dx

L L

ππ
π

= =∫ ∫
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0
0

2

1 1 cos( 1) cos( 1)
{sin( ) sin( )}

1 1

1 1 cos( 1) cos( 1) 1 1 1 cos 1 cos

1 1 1 1

2(1 cos )
if 1.

( 1)

n x n x
x nx x nx

n n

n n n n

n n n n

n
n

n

π
π

π π

π π π π
π π

π
π

⎧ ⎫+ −= + + − = − +⎨ ⎬+ −⎩ ⎭
⎧ ⎫ ⎧ ⎫− + − − + += + = +⎨ ⎬ ⎨ ⎬+ − + −⎩ ⎭ ⎩ ⎭

− += ≠
−

∫

For n = 1, 
2

1 0
0

2 2 sin
1, sin cos 0

2

x
n a x x dx

π
π

π π
= = = =∫

For n = 0, 

0 0
0

2 2 4
0, sin ( cos )n a x dx x

π
π

π π π
= = = − =∫

Then

2
2

2 2 (1 cos )
( ) cos

1n

n
f x nx

n

π
π π

∞

=

+= −
−∑

2 2 2

2 4 cos2 cos 4 cos6

2 1 4 1 6 1

x x x

π π
⎛= − + + +⎜ − − −⎝

... .
⎞
⎟
⎠

13.12. Expand f (x) = x, 0 < x < 2, in a half range (a) sine series and (b) cosine series.

(a) Extend the definition of the given function to that of the odd function of period 4 shown in Figure 13.12. 
This is sometimes called the odd extension of f (x). Then 2L = 4, L = 2.

Figure 13.12

Thus, an = 0 and

2

0 0

2

2 2

0

2 2
( )sin sin

2 2

2 4 4
( ) cos (1) sin cos `

2 2

L

n

n x n x
b f x dx x dx

L L

n x n x
x n

n nn

π π

π π π
π ππ

= =

⎧ ⎫− − −⎛ ⎞ ⎛ ⎞= − =⎨ ⎬⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎩ ⎭

∫ ∫

Then

1

4
( ) cos sin

2

4 1 2 1 3
sin sin sin

2 2 2 3 2

n

n x
f x n

n

x x x

ππ
π

π π π
π

∞

=

−=

⎛ ⎞= − + −⎜ ⎟⎝ ⎠

∑

L

(b) Extend the definition of f (x) to that of the even function of period 4 shown in Figure 13.13. This is the 
even extension of f (x). Then 2L = 4, L = 2.

 ...
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Figure 13.13

Thus, bn = 0,

2

0 0

2 2
( )cos cos

2 2

L

n

n x n x
a f x dx x dx

L L

π π= =∫ ∫
2

2 2

0

2 4
( ) sin (1) cos

2 2

n x n x
x

n

π π
π π

⎧ ⎫−⎛ ⎞ ⎛ ⎞= −⎨ ⎬⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎩ ⎭

2 2

4
(cos 1) If n 0n

n
π

π
= − ≠

If
2

0 0
0, 2.n a x dx= = =∫

Then

2 2
1

2 2 2

4
( ) 1 (cos 1)cos

2

8 1 3 1 5
1 cos cos cos

2 2 23 5

n

n x
f x n

n

nx x x

ππ
π

π π
π

∞

=

= + −

⎛ ⎞= − + = +⎜ ⎟⎝ ⎠

∑

L

It should be noted that the given function f (x) = x, 0 < x < 2 is represented equally well by the two differ-
ent series in (a) and (b).

Parseval’s identity

13.13. Assuming that the Fourier series corresponding to f (x) converges uniformly to f (x) in (–L, L), prove 
Parseval’s identity

2
2 01

{ ( )} (
2

L

nL

a
f x dx a

L −
= + ∑∫ 2 2

nb+ 2 )

where the integral is assumed to exist.

If 0

1

( ) cos sin ,
2 n n

n

a n x n x
f x a b

L L

π π∞

=

⎛ ⎞= + +⎜ ⎟⎝ ⎠∑  then multiplying by f (x) and integrating term by term 

from –L to L (which is justified since the series is uniformly convergent), we obtain

{2 0

1

{ ( )} ( ) ( ) cos ( )sin
2

L L L L

n nL L L L
n

a n x n x
f x dx f x dx a f x dx b f x dx

L L

π π∞

− − − −
=

⎫= + + ⎬
⎭

∑∫ ∫ ∫ ∫
2

220

1

( )
2 n n

n

a
L L a b

∞

=

= + +∑  (1)

where we have used the results

:

0( ) cos , ( )sin , ( )
L L L

n nL L L

n x n x
f x dx La f x dx Lb f x dx La

L L

π π
− − −

= = =∫ ∫ ∫  (2)

obtained from the Fourier coefficients.
The required result follows on dividing both sides of Equation (1) by L. Parseval’s identity is valid under 

less restrictive conditions than that imposed here.

 ...
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13.14. (a) Write Parseval’s identity corresponding to the Fourier series of Problem 13.12(b). (b) Determine from (a) 

the sum S of the series
4 4 4 4

1 1 1 1
.

1 2 3 n
+ + + + +L L

(a) Here
0 2 2

4
2, 2, (cos 1), 0, 0.n nL a a n n b

n
π

π
= = = − ≠ =

Then Parseval’s identity becomes

2
2 22 2 2

4 42 2
1

1 1 (2) 16
{ ( )} (cos 1)

2 2 2 n

f x dx x dx n
n

π
π

∞

− −
=

= = + −∑∫ ∫
or

4 4 4 4 4 4 4

8 64 1 1 1 1 1 1
2 . ie.,

3 1 3 5 1 3 5π
⎛ ⎞= + + + + + + +⎜ ⎟⎝ ⎠

L L
4

96

π=

(b)
4 4 4 4 4 4 4 4 4

4 4 4 4 4 4 4

4 4

1 1 1 1 1 1 1 1 1
,
1 2 3 1 3 5 2 4 6

1 1 1 1 1 1 1

1 3 5 2 1 2 3

, from which
96 16 90

S

S
S

π π

⎛ ⎞ ⎛ ⎞= + + + = + + + + + + +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
⎛ ⎞ ⎛ ⎞= + + + + + + +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

= + =

L L L

L L

13.15. Prove that for all positive integers M,
2

22 20

1

1
( ) { ( )}

2

M L

n n L
n

a
a b f x dx

L −
=

+ + ≤∑ ∫
where an and bn are the Fourier coefficients corresponding to f (x), and f (x) is assumed piecewise continuous 
in (–L, L).

Let
0

1

( ) cos sin
2

M

M n n
n

a n x n x
S x a b

L L

π π
=

⎛ ⎞= + +⎜ ⎟⎝ ⎠∑  (1)

For M = 1, 2, 3, . . . , this is the sequence of partial sums of the Fourier series corresponding to f (x).
We have

2{ ( ) ( )} 0
L

ML
f x S x dx

−
− >∫  (2)

since the integrand is nonnegative. Expanding the integrand, we obtain

2 22 ( ) ( ) ( ) { ( )}
L L L

M ML L L
f x S x dx S x dx f x dx

− − −
− <∫ ∫ ∫  (3)

Multiplying both sides of Equation (1) by 2 f (x) and integrating from –L to L, using Equations (2) of 
Problem 13.13, gives

2
2 20

1

2 ( ) ( ) 2 ( )
2

ML

M n nL
n

a
f x S x dx L a b

−
=

⎧ ⎫⎪ ⎪= + +⎨ ⎬
⎪ ⎪⎩ ⎭

∑∫  (4)

Also, squaring Equation (1) and integrating from –L to L, using Problem 13.3, we find

2
2 2 2

1

( ) 2 ( )
2

ML

M n nL
n

ao
S x dx L a b

−
=

⎧ ⎫
= + +⎨ ⎬

⎩ ⎭
∑∫  (5)

Substitution of Equations (4) and (5) into Equation (3) and dividing by L yields the required result.
Taking the limit as M → �, we obtain Bessel’s inequality

2
2 2 20

1

1
( ) { ( )}

2

L

n n L
n

a
a b f x dx

L

∞

−
=

+ + <∑ ∫  (6)

If the equality holds, we have Parseval’s identity (Problem 13.13).

 ...  ...

 ...  ...

 ...  ...  ...

 ...  ...
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We can think of SM(x) as representing an approximation to f (x), while the left-hand side of Equation (2), 
divided by 2L, represents the mean square error of the approximation. Parseval’s identity indicates that as 
M → �, the mean square error approaches zero, while Bessels’ inequality indicates the possibility that this 
mean square error does not approach zero.

The results are connected with the idea of completeness of an orthonormal set. If, for example, we were 
to leave out one or more terms in a Fourier series (cos 4πx/L, for example), we could never get the mean square 
error to approach zero no matter how many terms we took. For an analogy with three-dimensional vectors, see 
Problem 13.60.

Differentiation and integration of Fourier series

13.16. (a) Find a Fourier series for f (x) = x2, 0 < x < 2, by integrating the series of Problem 13.12(a). (b) Use (a) to 

evaluate the series
1

2
1

( 1)
.

n

n n

−∞

=

−∑

(a) From Problem 13.12(a).

4 1 2 1 3
sin sin sin

2 2 2 3 2

x x x
x

π π π
π

⎛ ⎞= − + −⎜ ⎟⎝ ⎠
L  (1)

Integrating both sides from 0 to x (applying the theorem of Page 352) and multiplying by 2, we find

2
2 2 2

16 1 2 1 3
cos cos cos

2 2 22 3

x x x
x C

π π π
π

⎛ ⎞= = − + −⎜ ⎟⎝ ⎠
L  (2)

where 2
2 2 2 2

16 1 1 1
1

2 3 4
x C

π
⎛ ⎞= = − + − +⎜ ⎟⎝ ⎠

L

(b) To determine C in another way, note that Equation (2) represents the Fourier cosine series for x2 in 0 < x
< 2. Then, since L = 2 in this case,

2 20

0 0

1 1 4
( )

2 2 3

La
C f x x dx

L
= = = =∫ ∫

Then, from the value of C in (a), we have

1 2 2

2 2 2 2
1

( 1) 1 1 1 4
1

16 3 122 3 4

n

n n

π π−∞

=

− = − + − + = ⋅ =∑ L

13.17. Show that term-by-term differentiation of the series in Problem 13.12(a) is not valid.

Term-by-term differentiation yields 
2 3

2 cos cos cos .
2 2 2

x x xπ π π⎛ ⎞− + −⎜ ⎟⎝ ⎠
L  Since the nth term of this 

series does not approach 0, the series does not converge for any value of x.

Convergence of Fourier series

13.18. Prove that 

(a)
1

cos cos2
2

t t+ + + . . . 

1
sin

2cos
1

2sin
2

M t
Mt

t

⎛ ⎞+⎜ ⎟⎝ ⎠+ =

(b)
0

0

1 1
sin sin

1 1 1 12 2,
1 12 22sin 2sin
2 2

M t M t
dt dt

t t

π

ππ π −

⎛ ⎞ ⎛ ⎞+ +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠= =∫ ∫

 ...

 ...

 ...

 ...

 ...
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(a) We have 
1 1 1 1

cos sin sin sin .
2 2 2 2

nt t n t n t
⎫⎧ ⎪⎛ ⎞ ⎛ ⎞= + − −⎜ ⎟ ⎜ ⎟⎨ ⎬⎝ ⎠ ⎝ ⎠ ⎪⎩ ⎭

Then, summing from n = 1 to M,

1
sin {cos cos2

2
t t t+ + ... + 3 1 5 3

cos }. sin sin sin sin
2 2 2 2

Mt t t t t
⎛ ⎞ ⎛ ⎞+ = − + −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

+ ...+ 1 1
(sin sin sin

2 2
M t M t

⎛ ⎞ ⎛ ⎞+ + − −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
1 1 1

sin sin
2 2 2

M t t
⎧ ⎫⎛ ⎞= + −⎜ ⎟⎨ ⎬⎝ ⎠⎩ ⎭

On dividing by sin 
1

2
t and adding 

1

2
, the required result follows.

(b) Integrating the result in (a) from –π to 0 and 0 to π, respectively, gives the required results, since the in-
tegrals of all the cosine terms are zero.

13.19. Prove that lim ( )sin lim ( )cos 0 if ( )
n n

f x nx dx f x nx dx f x
π π

π π− −→∞ →∞
= =∫ ∫  is piecewise continuous.

This follows at once from Problem 13.15, since if the series 
2

220

1

( )
2 n n

n

a
a b

∞

=

+ +∑ is convergent, 
lim lim 0.n nn n

a b
→∞ →∞

= =

The result is sometimes called Riemann’s theorem.

13.20. Prove that 
1

lim ( )sin 0 if ( )
2m

f x M x dx f x
π

π−→∞

⎛ ⎞+ =⎜ ⎟⎝ ⎠∫ is piecewise continuous.

We have

1 1 1
( )sin { ( )sin }cos { ( )cos }sin

2 2 2
f x M x dx f x x Mx dx f x x Mx dx

π π π

π π π− − −

⎛ ⎞+ = +⎜ ⎟⎝ ⎠∫ ∫ ∫
Then the required result follows at once by using the result of Problem 13.19, with f (x) replaced by f (x) sin

1

2
x and f (x) cos 

1

2
x, respectively, which are piecewise continuous if f (x) is.

The result can also be proved when the integration limits are a and b instead of –π and π.

13.21. Assuming that L = π, i.e., that the Fourier series corresponding to f (x) has period 2L = 2π, show that

0

1

1
sin

1 2( ) ( cos sin ) ( )
12 2sin
2

M

M n n
n

M t
a

S x a nx b nx f t x dt
t

π

ππ −
=

⎛ ⎞+⎜ ⎟⎝ ⎠= + + = +∑ ∫

Using the formulas for the Fourier coefficients with L = π, we have

1
cos sin ( ) cosn na nx b nx f u nu du

π

ππ −

⎛ ⎞+ = ⎜ ⎟⎝ ⎠∫
1

cos ( )sinnx f u nu du
π

ππ −

⎛ ⎞+ ⎜ ⎟⎝ ⎠∫ sin nx

1
( )(cos cos sin sin )f u nu nx nu nx du

π

ππ −
= +∫

1
( )cos ( )f u n u x du

π

ππ −
= −∫

Also,
1

( )
2 2

oa
f u du

π

ππ −
= ∫

2
2 2
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Then

0

1

1

1

( ) ( cos sin )
2

1 1
( ) ( ) cos ( )

2

1 1
( ) cos ( )

2

1
sin ( )

1 2( )
1

2sin ( )
2

M

M n n
n

M

n

M

n

a
S x a nx b nx

f u du f u n u x du

f u n u x du

M u x
f u du

u x

π π

π π

π

π

π

π

π π

π

π

=

− −
=

−
=

−

= + +

= + −

⎧ ⎫= + −⎨ ⎬
⎩ ⎭

⎛ ⎞+ −⎜ ⎟⎝ ⎠=
−

∑

∑∫ ∫

∑∫

∫

using Problem 13.18. Letting u – x = t, we have

1
sin

1 2( ) ( )
1

2sin
2

x

M x

M t
S x f t x dt

t

π

ππ
−

− −

⎛ ⎞+⎜ ⎟⎝ ⎠= +∫

Since the integrand has period 2π, we can replace the interval –π – x, π – x by any other interval of length 
2π, in particular, –π, π. Thus, we obtain the required result.

13.22. Prove that

( ) ( )0( 0) ( 0) ( ) ( 0)1 1
( ) sin

12 22sin
2

M

f x f x f t x f x
S x M t dt

t
ππ −

⎛ ⎞ ⎛ ⎞+ + − + − − ⎛ ⎞− = +⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎜ ⎟⎜ ⎟⎝ ⎠

∫

( )
0

( ) ( 0)1 1
sin

1 22sin
2

f t x f x
M t dt

t

π

π
⎛ ⎞+ − + ⎛ ⎞+ +⎜ ⎟⎜ ⎟ ⎝ ⎠⎜ ⎟⎜ ⎟⎝ ⎠

∫

From Problem 13.21,

0

0

1 1
sin sin

1 12 2( ) ( ) ( )
1 1

2sin 2sin
2 2

M

M t M t
S x f t x dt f t x dt

t t

π

ππ π−

⎛ ⎞ ⎛ ⎞+ +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠= + + +∫ ∫  (1)

Multiplying the integrals of Problem 13.18(b) by f (x – 0) and f (x + 0), respectively,

0 0

1 1
sin sin

( 0) ( 0) 1 12 2( 0) ( 0)
1 12 2sin 2sin
2 2

M t M t
f x f x

f x dt f x dt
t t

π ππ π− −

⎛ ⎞ ⎛ ⎞+ +⎜ ⎟ ⎜ ⎟+ + − ⎝ ⎠ ⎝ ⎠= − + +∫ ∫  (2)

Subtracting Equation (2) from Equation (1) yields the required result.

13.23. If f (x) and f ′(x) are piecewise continuous in (–π, π), prove that

( 0) ( 0)
lim ( )

2MM

f x f x
S x

→∞

+ + −=

The function 
( ) ( 0)

1
2sin

2

f t x f x

t

+ − +
 is piecewise continuous in 0 < t < π because f (x) is piecewise con-

tinuous.
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Also,
0 0 0

( ) ( 0) ( ) ( 0) ( ) ( 0)
lim lim . lim

1 1
2sin 2sin

2 2

t t t

f t x f x f t x f x t f t x f x

t tt t
→ + → + → +

+ − + + − + + − += =  exists, 

since, by hypothesis, f ′(x) is piecewise continuous so that the right-hand derivative of f (x) at each x exists.

Thus,
( ) ( 0)

1
2sin

2

f t x f x

t

+ − −
 is piecewise continuous in 0 < t < π.

Similarly, 
( ) ( 0)

1
2sin

2

f t x f x

t

+ − −
 is piecewise continuous in –π < t <  0.

Then, from Problems 13.20 and 13.22, we have

( 0) ( 0) ( 0) ( 0)
lim ( ) 0 or lim ( )

2 2M MM M

f x f x f x f x
S x S x

→∞ →∞

+ − − + + −⎧ ⎫ ⎧ ⎫− = =⎨ ⎬ ⎨ ⎬
⎩ ⎭ ⎩ ⎭

Boundary value problems

13.24. Find a solution U(x, t) of the boundary value problem

2

2
3 0,0 2

U U
t x

t x

∂ ∂= > < <
∂ ∂
(0, ) 0, (2, ) 0U t U t= =         0t >
( ,0) 0 2U x x x= < <

A method commonly employed in practice is to assume the existence of a solution of the partial differen-
tial equation having the particular form U(x, t) = X(x) T(t), where X(x) and T(t) are functions of x and t, respec-
tively, which we shall try to determine. For this reason, the method is often called the method of separation of 
variables.

Substitution in the differential equation yields

2

2
( ) 3 ( )

U
XT XT

t x

∂ ∂=
∂ ∂

  (1)

or
2

2
3

dT d X
X T

dt dx
=   (2)

where we have written X and T in place of X(x) and T(t).
Equation (2) can be written as

2

2

1 1

3

dT d X

T dt X dx
=  (3)

Since one side depends only on t and the other only on x, and since x and t are independent variables, it is clear 
that each side must be a constant c.

In Problem 13.47 we see that if c >  0, a solution satisfying the given boundary conditions cannot exist.
Let us thus assume that c is a negative constant, which we write as –λ2. Then, from Equation (3), we 

obtain two ordinary differentiation equations

2
2 2

2
3 0, 0

dT d X
T X

dt dx
λ λ+ = + =  (4)

whose solutions are, respectively,
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23
1 1 1, cos sintT C e X A x B xλ λ λ−= = +  (5)

A solution is given by the product of X and T, which can be written

23( , ) ( cos sin )tU x t e A x B xλ λ λ−= +  (6) 

where A and B are constants.
We now seek to determine A and B so that Equation (6) satisfies the given boundary conditions. To satisfy 

the condition U(0, t) = 0, we must have
2

( ) 0 or 0s te A Aλ− = =  (7)

so that Equation (6) becomes

( , )U x t Be=
23 te λ− sin xλ  (8)

To satisfy the condition U(2, t) = 0, we must then have
2

sin 2 0s tBe λ λ− =  (9)

Since B = 0 makes the solution (8) identically zero, we avoid this choice and instead take

sin 2 0, i.e., 2 or =
2

m
m

πλ λ π λ= =  (10)

where m = 0, ±1, ±2, . . . .
Substitution in Equation (8) now shows that a solution satisfying the first two boundary conditions is

2 23 / 4( , ) sin
2

m t
m

m x
U x t B e π π−=  (11)

where we have replaced B by Bm, indicating that different constants can be used for different values of m.
If we now attempt to satisfy the last boundary condition U(x, 0) = x, 0 < x < 2, we find it to be impossible 

using Equation (11). However, upon recognizing the fact that sums of solutions having the form (11) are also 
solutions (called the principle of superposition), we are led to the possible solution

2 23 / 4

1

( , ) sin
2

m t
m

m

m x
U x t B e π π∞

−

=

= ∑  (12)

From the condition U(x, 0) = x, 0 < x < 2, we see, on placing t = 0, that Equation (12) becomes

1

sin 0 2
2m

m

m x
x B x

π∞

=

= < <∑  (13)

This, however, is equivalent to the problem of expanding the function f(x) = x for 0 < x < 2 into a sine 

series. The solution to this is given in Problem 13.12(a), from which we see that 
4

mB
mπ
−=  cos mπ so that 

Equation (12) becomes

2 23 / 4

1

4
( , ) cos sin

2
m t

m

m x
U x t m e

m
π ππ

π

∞
−

=

⎛ ⎞= −⎜ ⎟⎝ ⎠∑  (14)

which is a formal solution. To check that Equation (14) is actually a solution, we must show that it satisfies the 
partial differential equation and the boundary conditions. The proof consists in justification of term-by-term 
differentiation and use of limiting procedures for infinite series and may be accomplished by methods of 
Chapter 11.

The boundary value problem considered here has an interpretation in the theory of heat conduction. The 

equation
2

2

U U
k

t x

∂ ∂=
∂ ∂

 is the equation for heat conduction in a thin rod or wire located on the x axis between 

x = 0 and x = L if the surface of the wire is insulated so that heat cannot enter or escape. U(x, t) is the tem-
perature at any place x in the rod at time t. The constant k = K/sp (where K is the thermal conductivity, s is the 
specific heat, and ρ is the density of the conducting material) is called the diffusivity. The boundary conditions 
U(0, t) = 0 and U(L, t) = 0 indicate that the end temperatures of the rod are kept at zero units for all time t > 0, 
while U(x, 0) indicates the initial temperature at any point x of the rod. In this problem the length of the rod is 
L = 2 units, while the diffusivity is k = 3 units.
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Orthogonal functions

13.25. (a) Show that the set of functions

2 2 3 3
1,sin ,cos ,sin ,cos ,sin ,cos ,

x x x x x x

L L L L L L

π π π π π π
L

forms an orthogonal set in the interval (–L, L).

(b) Determine the corresponding normalizing constants for the set in (a) so that the set is orthonormal in
(–L, L).

(a) This follows at once from the results of Problems 13.2 and 13.3.

(b) By Problem 13.3,

2 2sin , cos
L L

L L

m x m x
dx L dx L

L L

π π
− −

= =∫ ∫
Then

2 2

1 1
sin 1 cos 1

L L

L L

m x m x
dx dx

L L L L

π π
− −

⎛ ⎞ ⎛ ⎞
= =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠∫ ∫
Also,

2
2 1

(1) 2 or 1
2

L L

L L
dx L dx

L− −

⎛ ⎞= =⎜ ⎟
⎝ ⎠∫ ∫

Thus, the required orthonormal set is given by

1 1 1 1 2 1 2
, sin , cos , sin , cos ,...

2

x x x x

L L L LL L L L L

π π π π

Miscellaneous problems

13.26. Find a Fourier series for f(x) = cos αx, –π < x < π, where α � 0, ±1, ±2, ±3, . . . .

We shall take the period as 2π so that 2L = 2π, L = π. Since the function is even, bn = 0 and

0 0

0

2 2
( )cos cos cos

1
{cos( ) cos( ) }

L

na f x nx dx x nx dx
L

n x n x dx

π

π

α
π

α α
π

= =

= − + +

∫ ∫

∫

0

1 sin( ) sin( )

2sin

n n

n n

α π α π
π α α

απα
απ

− +⎧= + +⎨ − +⎩

=

 . . .
2 2

2 sin cos

( )

n

n

α απ π
π α

⎫ =⎬ −⎭

Then

2 2
1

2 2 2 2 2 2

sin 2 sin cos
cos cos

2

sin 1 2 2 2
cos cos2 cos3

1 2 3

n

n
x nx

x x x

απ α απ πα
απ π α

απ α α α
π α α α α

∞

=

= +
−

⎛ ⎞= − + − +⎜ ⎟− − −⎝ ⎠

∑

L

13.27. Prove that 
2 2 2

2 2 2
sin 1 1 1

(2 ) (3 )

x x x
x x

π π π
⎛ ⎞ ⎛ ⎞ ⎛ ⎞

= − − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠
L

Let x = π in the Fourier series obtained in Problem 13.26. Then

 ...

 ...

 ...
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2 2 2 2 2 2

sin 1 2 2 2
cos

1 2 3

απ α α αα
π α α α α

⎛ ⎞= + + + +⎜ ⎟− − −⎝ ⎠
L

or

2 2 2 2 2 2

1 2 2 2
cot

1 2 3

α α απ απ
α α α α

− = + + +
− − −

L  (1)

This result is of interest since it represents an expansion of the contangent into partial fractions.
      By the Weierstrass M test,       the series on the right of Equation (1) converges uniformly for 0 < ⎟ α⎟ <⎟ x⎟ < 1 

and the left-hand side of (1) approaches zero as α → 0,       as is seen by using L’Hospital’s rule. Thus,       we can integrate 
both sides of (1) from 0 to x to obtain

2 2 20 0 0

1 2 2
cot

1 2

x x x
d d d

α απ απ α α α
α α α

⎛ ⎞− = + +⎜ ⎟ − −⎝ ⎠∫ ∫ ∫ L

or
sin

ln
απ

απ
⎛ ⎞
⎜ ⎟⎝ ⎠

2

2
0

In 1
1

x
x⎛ ⎞⎞ = −⎜ ⎟⎟ ⎝ ⎠⎠

2

2
In 1

2

x⎛ ⎞
+ − +⎜ ⎟⎝ ⎠

L

i.e.,
2

2

sin
ln lim ln 1

1n

x

x

π
π →∞

⎛ ⎞⎛ ⎞ = −⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

2

2
ln 1

2

x⎛ ⎞
+ −⎜ ⎟⎝ ⎠

⎞
+⎟⎠

...
2

2
ln 1

x

n

⎛ ⎞
+ −⎜ ⎟⎝ ⎠

2 2

2 2
lim ln 1 1

1 2n

x x
→∞

⎧⎛ ⎞⎛ ⎞⎪= − −⎨⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎪⎩
...

2

2
1

x

n

⎛ ⎞
−⎜ ⎟⎝ ⎠

⎫⎪
⎬
⎪⎭

2 2

2 2
ln lim 1 1

1 2n

x x
→∞

⎧ ⎛ ⎞⎛ ⎞⎪= − −⎨ ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎪⎩
...

2

2
1

x

n

⎛ ⎞
−⎜ ⎟⎝ ⎠

⎫⎪
⎬
⎪⎭

so that
2 2

2 2

sin
lim 1 1 .

1 2n

x x

x

π
π →∞

⎛ ⎞ ⎛ ⎞
= − −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

...
2 2 2

2 2 2
. 1 1 1

1 2

x x x

n

⎛ ⎞ ⎛ ⎞⎛ ⎞
− = − −⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠⎝ ⎠

L  (2)

Replacing x by x/π, we obtain
2 2

2 2
sin 1 1

(2 )

x x
x x

π π
⎛ ⎞ ⎛ ⎞

= − −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
L  (3)

called the infinite product for sin x, which can be shown valid for all x. The result is of interest since it corre-
sponds to a factorization of sin x in a manner analogous to factorization of a polynomial.

13.28. Prove that 
2 2 4 4 6 6 8 8

.
2 1 3 3 5 5 7 7 9

π ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅=
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

L
L

Let x = 1/2 in Equation (2) of Problem 13.27. Then,

2 2 2

2 1 1 1
1 1 1

2 4 6π
⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠

... 1 3 3 5 5 7

2 2 4 4 6 6
⎛ ⎞ ⎛ ⎞ ⎛ ⎞= ⋅ ⋅ ⋅⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠

...

Taking reciprocals of both sides, we obtain the required result, which is often called Wallis’s product.

SUPPLEMENTARY PROBLEMS

Fourier Series

13.29. Graph each of the following functions and find their corresponding Fourier series using properties of even 
and odd functions wherever applicable.

 ...

 ...

 ...

l l  ...

 ...

 ...

 ...

 ...
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(a)
8 0 2

( ) Period 4
8 2 4

x
f x

x

< <⎧
= ⎨− < <⎩

 (c) ( ) 4 ,0 10, Period 10f x x x= < <

(b)
4 0

( ) Period 8
0 4

x x
f x

x x

− − < <⎧⎪= ⎨ < <⎪⎩
(d)

2 0 3
( ) Period 6

0 3 0

x x
f x

x

< <⎧ ⎫
= ⎨ ⎬− < <⎩ ⎭

Ans. (a) 
1

16 (1 cos )
sin

2n

n n x

n

π π
π

∞

=

−∑    (c) 
1

40 1
20 sin

5n

n x

n

π
π

∞

=

− ∑

 (b) 
2 2

1

8 (1 cos )
2 cos

4n

n n x

n

π π
π

∞

=

−− ∑  (d) 
2 2

1

3 6(cos 1) 6cos
cos sin

2 3 3n

n n x n n x

nn

π π π π
ππ

∞

=

−⎧ ⎫+ −⎨ ⎬
⎩ ⎭

∑

13.30. In each part of Problem 13.29, tell where the discontinuities of f (x) are located and to what value the series 
converges at the discontunities.

Ans. (a) x = 0, ±2, ±4, . . . ; 0  (c) x = 0, ±10, ±20, . . . ; 20
(b) no discontinuities  (d) x = ±3, ±9, ±15, . . . ; 3

13.31. Expand 
2 0 4

( )
6 4 8

x x
f x

x x

− < <⎧
= ⎨ − < <⎩

 in a Fourier series of period 8.

Ans.
2 2 2

16 1 3 1 5
cos cos cos

4 4 43 5

x x xπ π π
π

⎫⎧ + + +⎨ ⎬
⎩ ⎭

L

13.32. (a) Expand f (x) = cos x, 0 < x < π, in a Fourier sine series. (b) How should f(x) be defined at x = 0 and x = π

so that the series will converge to f(x) for 0 
<

 x 
< π?

Ans.
2

1

8 sin 2
( ) ( ) (0) ( ) 0

4 1n

n nx
a b f f

n
π

π

∞

=

= =
−∑

13.33. (a) Expand in a Fourier series f (x) = cos x, 0 < x < π if the period is π, and (b) compare with the result of 
Problem 13.32, explaining the similarities and differences, if any.

Ans. Answer is the same as in Problem 13.32.

13.34. Expand 
0 4

( )
8 4 8

x x
f x

x x

< <⎧
= ⎨ − < <⎩

 in a series of (a) sines and (b) cosines.

Ans. (a) 
2 2

1

32 1
sin sin

2 8n

n n x

n

π π
π

∞

=
∑   (b) 

2 2
1

16 2cos / 2 cos 1
cos

8n

n n n x

n

π π π
π

∞

=

− −⎛ ⎞
⎜ ⎟⎝ ⎠∑

13.35. Prove that for 0 < x < π,

(a)
2

2 2 2

cos2 cos 4 cos6
( )

6 1 2 3

x x x
x x

ππ ⎛ ⎞− = − + +⎜ ⎟⎝ ⎠
L

(b)
3 3 3

8 sin sin 3 sin 5
( )

1 3 5

x x x
x xπ

π
⎛ ⎞− = + + +⎜ ⎟⎝ ⎠

L

13.36. Use the preceding problem to show that

(a)
2

2
1

1

6n n

π∞

=

=∑  (b) 
1 2

2
1

( 1)

12

n

n n

π−∞

=

− =∑  (c) 
1 3

3
1

( 1)

32(2 1)

n

n n

π−∞

=

− =
−∑

 ...

 ...

 ...
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13.37. Show that 
3 3 3 3 3 3

1 1 1 1 1 1

1 3 5 7 9 11
+ − − + + − . . . 

23 2
.

16

π=

Differentiation and integration of Fourier series

13.38. (a) Show that for –π < x < π,

sin sin 2 sin 3
2

1 2 3

x x x
x

⎛ ⎞= − + −⎜ ⎟⎝ ⎠
L

(b) By integrating the result of (a), show that for –π < x < π,

2
2

2 2 2

cos cos2 sin 3
4

3 1 2 3

x x x
x

π ⎛ ⎞= − − + −⎜ ⎟⎝ ⎠
L

(c) By integrating the result of (b), show that for –π <
 x 

< π,

3 3 3

sin sin 2 sin 3
( )( ) 12

1 2 3

x x x
x x xπ π ⎛ ⎞− + = − + −⎜ ⎟⎝ ⎠

L

13.39. (a) Show that for –π < x < π,

1 2 3 4
cos sin 2 sin 2 sin 3 sin 4

2 1 3 2 4 3 5
x x x x x x

⎛ ⎞= − + − + −⎜ ⎟⋅ ⋅ ⋅⎝ ⎠
L

(b) Use (a) to show that for –π <
 x 

< π,

1 cos2 cos3 cos 4
sin 1 cos 2

2 1.3 2.4 3.5

x x x
x x x

⎛ ⎞= − − − + −⎜ ⎟⎝ ⎠
L

13.40. By differentiating the result of Problem 13.35(b), prove that for 0 < x < π,

2 2 2

4 cos cos3 cos5

2 1 3 5

x x x
x

π
π

⎛ ⎞= − + + +⎜ ⎟⎝ ⎠
L

Parseval’s identity

13.41. By using Problem 13.35 and Parseval’s identity, show that

4 6

4 6
1 1

1 1
( ) ( )

90 945n n

a b
n n

π π∞ ∞

= =

= =∑ ∑

13.42. Show that 
2

2 2 2 2 2 2

1 1 1 8
.

161 3 3 5 5 7

π −+ + + =
⋅ ⋅ ⋅

L  (Hint: Use Problem 13.11.)

13.43. Show that 

(a)
4

4
1

1

96(2 1)n n

π∞

=

=
−∑

(b)
6

6
1

1

960(2 1)n n

π∞

=

=
−∑

13.44. Show that 
2

2 2 2 2 2 2 2 2 2

1 1 1 4 39

161 2 3 2 3 4 3 4 5

π −+ + + =
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

L

 ...

 ...

 ...

 ...

 ...

 ...

 ...

 ...
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Boundary value problems

13.45. (a) Solve 
2

2
2

U U

t x

∂ ∂=
∂ ∂

, subject to the conditions U(0, t) = 0, U (4, t) = 0, U (x, 0) = 3 sin πx – 2 sin 5π x,

where 0 < x < 4, t > 0. (b) Give a possible physical interpretation of the problem and solution.

Ans. (a) U(x, t) = 3e –2π2t sin πx – 2e –50π2t sin 5πx

13.46. Solve 
2

2

U U

t x

∂ ∂=
∂ ∂

, subject to the conditions 
1 0 3

(0, ) 0, (6, ) 0, ( ,0)
0 3 6

x
U t U t U x

x

< <⎧
= = = ⎨ < <⎩

, and 

interpret and interpret physically.

Ans.
2 2 / 36

1

1 cos( / 3)
( , ) 2 sin

6
m t

m

m m x
U x t e

m
ππ π

π

∞
−

=

−⎡ ⎤= ⎢ ⎥⎣ ⎦∑

13.47. Show that if each side of Equation (3), Page 369, is a constant c, where c >  0, then there is no solution 
satisfying the boundary value problem.

13.48. A flexible string of length π is tightly stretched between points x = 0 and x = = π on the x axis, its ends are 
fixed at these points. When set into small transverse vibration, the displacement Y(x, t) from the the x axis of 

any point x at time t is given by 
2 2

2
2 2

,
Y Y

a
t x

∂ ∂=
∂ ∂

 where a2 = T/ρ, T = tension, ρ = mass per unit length.

(a) Find a solution of this equation (sometimes called the wave equation) with a2 = 4 which satisfies the 
conditions Y(0, t) = 0, Y(π, t) = 0, Y(x, 0) = 0.1 sin x + 0.01 sin 4x, Yt(x, 0) = 0 for 0 < x < π, t > 0.

(b) Interpret physically the boundary conditions in (a) and the solution.

Ans. (a) Y(x, t) = 0.1 sin x cos 2t + 0.01 sin 4x cos 8t

13.49. (a) Solve the boundary value problem 
2 2

2 2
9

Y Y

t x

∂ ∂=
∂ ∂

, subject to the conditions Y(0, t) = 0, Y(2, t) = 0, Y(x, 0) 

= 0.05x(2 – x), Yt(x, 0) = 0, where 0 < x < 2, t > 0. (b) Interpret physically.

Ans. (a) 
3 3

1

1.6 1 (2 1) 3(2 1)
( , ) sin cos

2 2(2 1)n

n x n t
Y x t

n

π π
π

∞

=

− −=
−∑

13.50. Solve the boundary value problem 
2

2
,

U U

t x

∂ ∂=
∂ ∂

U(0, t) = 1, U(π, t) = 3, U(x, 0) = 2. [Hint: Let U(x, t) = 

V(x, t) + F(x) and choose F(x) so as to simplify the differential equation and boundary conditions for V(x, t).]

Ans.
2

1

2 4cos
( , ) 1 sinm t

m

x m
U x t e mx

m

π
π π

∞
−

=

= + + ∑

13.51. Give a physical interpretation to Problem 13.50.

13.52. Solve Problem 13.49 with the boundary conditions for Y(x, 0) and Y t(x, 0) interchanged; i.e., Y(x,) = 0, 
Yt(x, 0) = 0.05x(2 – x), and give a physical interpretation.

Ans.
4 4

1

3.2 1 (2 1) 3(2 1)
( , ) sin sin

2 23 (2 1)n

n x n t
Y x t

n

π π
π

∞

=

− −=
−∑

13.53. Verify that the boundary value problem of Problem 13.24 actually has the solution (14), Page 370.
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Miscellaneous Problems

13.54. If –π < x < π and α � 0, ±1. ±2, . . . , prove that

2 2 2 2 2 2

sin sin 2sin 2 3sin 3

2sin 1 2 3

x x x xπ α
απ α α α

= − + −
− − −

 . . .

13.55. If –π < x < π, prove that

(a)
2 2 2 2 2 2

sinh sin 2sin 2 3sin 3

2 sinh 1 2 3

x x x xπ α
απ α α α

= − + −
+ + +

. . .

(b)
2 2 2 2

cosh 1 cos cos2

2 sinh 2 1 2

x x xπ α α α
απ α α α

= − + −
+ +

. . .

13.56. Prove that 
2 2 2

2 2 2
sinh 1 1 1

(2 ) (3 )

x x x
x x

π π π
⎛ ⎞⎛ ⎞⎛ ⎞

= + + +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠
. . . .

13.57. Prove that 
2 2 2

2 2 2

4 4 4
cos 1 1 1

(3 ) (5 )

x x x
x

π π π
⎛ ⎞ ⎛ ⎞ ⎛ ⎞

= − − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠
. . . . [Hint: cos x = (sin 2x)/(2 sin x).]

13.58. Show that 

(a)
2 1 3 5 7 9 22 13 15

2 2 6 6 10 10 14 142

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅=
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

L
L

 . . .

. . .

(b)
4 4 8 8 12 12 16 16

2 4
3 5 7 9 11 13 15 17

π ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⎛ ⎞= ⎜ ⎟⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⎝ ⎠
L
L. . .
. . .

13.59. Let r be any three-dimensional vector. Show that (a) (r · i)2 + (r · j)2 <
 (r)2 and (b) (r · i)2 + (r · j)2 + (r · k)2

= r2 and discuss these with reference to Parseval’s identity.

13.60. If {φn (x)}, n = 1, 2, 3, . . . is orthonormal in (a, b, prove that 

2

1

( ) ( )
b

n na
n

f x c xφ
∞

=

⎧ ⎫−⎨ ⎬
⎩ ⎭

∑∫ dx is a minimum 

when ( )
b

n a
c f x= ∫ ( )n x dxφ . Discuss the relevance of this result to Fourier series.
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CHAPTER 14

Fourier Integrals

Fourier integrals are generalizations of Fourier series. The series representation 
a0

2
+ an cos

nπ x

L
+ bn sin

nπ x

L
⎧
⎨
⎩

⎫
⎬
⎭n=1

∞

∑
of a function is a periodic form on –� < x < � obtained by generating the coefficients from the function’s 
definition on the least period [–L, L]. If a function defined on the set of all real numbers has no period, then 
an analogy to Fourier integrals can be envisioned as letting L → � and replacing the integer valued index n
by a real valued function α. The coefficients an and bn then take the form A(α) and B(α). This mode of 
thought leads to the following definition. (See Problem 14.8.)

The Fourier Integral

Let us assume the following conditions on f (x):

1. f (x) satisfies the Dirichlet conditions (Page 350) in every finite interval (–L, L).

2. f (x)
−∞

∞

∫ dx converges; i.e., f (x) is absolutely integrable in (–�, �).

Then Fourier’s integral theorem states that the Fourier integral of a function f is

f (x) = {A(α ) cos αx
0

∞

∫ + B(α )sin αx} dα  (1)

where

A(α ) = 1

π
f (x) cos αx dx

−∞

∞

∫
B(α ) = 1

π
f (x)sin αx dx

−∞

∞

∫

⎧

⎨
⎪⎪

⎩
⎪
⎪

⎫

⎬
⎪⎪

⎭
⎪
⎪

 (2)

A(α) and B(α) with –� < α < � are generalizations of the Fourier coefficients an and bn. The right-hand 
side of Equation (1) is also called a Fourier integral expansion of f. (Since Fourier integrals are improper 
integrals, a review of Chapter 12 is a prerequisite to the study of this chapter.) The result (1) holds if x is a 

point of continuity of f (x). If x is a point of discontinuity, we must replace f (x) by 
f (x + 0) + f (x − 0)

2
, as in 

the case of Fourier series. Note that these conditions are sufficient but not necessary.
In the generalization of Fourier coefficients to Fourier integrals, a0 may be neglected, since whenever 

f (x)
−∞

∞

∫ dx exists,

| a0| = 1

L
f (x) dx

− L

L

∫ → 0 as L → ∞
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Equivalent Forms of Fourier’s Integral Theorem

Fourier’s integral theorem can also be written in the forms

f (x) = 1

π
f (u) cos α(x − u) du dα

u=−∞

∞

∫α =0

∞

∫  (3)

f (x) = 1

2π
eiαxdα f (u)eiaudu

−∞

∞

∫−∞

∞

∫
= 1

2π
f (u)eiα (u−x )du dα

−∞

∞

∫−∞

∞

∫
 (4)

where it is understood that if f (x) is not continuous at x, the left side must be replaced by 
f (x + 0) + f (x − 0)

2
.

These results can be simplified somewhat if f (x) is either an odd or an even function, and we have

0 0

2
( ) cos ( ) cos if ( ) is evenf x x dx f u u du f xα α

π
∞ ∞

= ∫ ∫  (5)

f (x) = 2

π
sin αx dx

0

∞

∫ f (u)sin αu du
0

∞

∫ if f (x) is odd  (6)

An entity of importance in evaluating integrals and solving differential and integral equations is introduced 
in the next paragraph. It is abstracted from the Fourier integral form of a function, as can be observed by putting 
Equation (4) in the form

f (x) = 1

2π
e− iαx

−∞

∞

∫
1

2π
eiαu f (u)du

−∞

∞

∫⎧
⎨
⎩

⎫
⎬
⎭

dα

and identifying the parenthetic expression, as F (α). The following Fourier transforms result.

Fourier Transforms

From Equation (4) it follows that

F(α ) = 1

2π
f (u)eiαu

−∞

∞

∫ du  (7)

then

F(x) = 1

2π
F(α )eiax

−∞

∞

∫ dα  (8)

The function F(α) is called the Fourier transform of f (x) and is sometimes written F(α) = �{ f (x)}. The 
function f (x) is the inverse Fourier transform of F(α) and is written f (x) = �–1 {F(α)}.

Note: The constants preceding the integral signs in Equations (7) and (8) were here taken as equal to 

1 / 2π .  However, they can be any constants different from zero so long as their product is 1/2π. This is 
called the symmetric form. The literature is not uniform as to whether the negative exponent appears in Equa-
tion (7) or in (8).

EXAMPLE. Determine the Fourier transform of f if f (x) = e–x for x > 0 and e2x when x < 0.

F e f x dx e e dx e ei x i x x i x( ) ( )α
π π

α α α= = +
−∞

∞ −∫
1

2 2

1

2
2 xx

i

x

x i

dx

e

i

e

i

0

0

2 0 11

2 2

∞

−∞

+

→−∞

→ − −

∫∫{ }
=

+
+

−π α α

α α

11

1

2

1

2

1

1
0x

x

i i→ +

→∞⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
=

+
+

−
⎧
⎨
⎩

⎫
⎬
⎭π α α

If f (x) is an even function, Equation (5) yields

Fc (α ) = 2

π
f (u) cos αu du

0

∞

∫

f (x) = 2

π
Fc (α ) cos αx dx

0

∞

∫

⎧

⎨
⎪⎪

⎩
⎪
⎪

 (9) 

and we call Fc(α) and f (x) Fourier cosine transforms of each other.
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If f (x) is an odd function, Equation (6) yields

Fs (α ) = 2

π
f (u)sin αu du

0

∞

∫

f (x) = 2

π
Fs (α )sin αx dα

0

∞

∫

⎧

⎨
⎪⎪

⎩
⎪
⎪

 (10) 

and we call Fs(α) and f (x) Fourier sine transforms of each other.
Note: The Fourier transforms Fc and Fs are (up to a constant) of the same form as A(α) and B(α). Since f

is even for Fc and odd for Fs, the domains can be shown to be 0 < α < �.
When the product of Fourier transforms is considered, a new concept called convolution comes into being, 

and in conjunction with it, a new pair (function and its Fourier transform) arises. In particular, if F(α) and 
G(α) are the Fourier transforms of f and g, respectively, and the convolution of f and g is defined to be

f * g = 1

π
f (u)g(x − u) du

−∞

∞

∫  (11)

then

F(α ) G(α ) = 1

π
eiαu f * g du

−∞

∞

∫  (12)

f * g = 1

π
eiαx

−∞

∞

∫ F(α ) G(α ) dα  (13)

where in both Equations (11) and (13) the convolution f ∗ g is a function of x.
It may be said that multiplication is exchanged with convolution. Also “the Fourier transform of the con-

volution of two functions, f and g is the product of their Fourier transforms,” i.e.,

T ( f * g) = G( f ) T (g)

[F(α) G(α) and f ∗ g) are demonstrated to be a Fourier transform pair in Problem 14.29.]
Now equate the representations of f ∗ g expressed in Equations (11) and (13), i.e.,

1

π
f (u) g(x − u) du = 1

π−∞

∞

∫ eiaxF(α ) G(α ) dα
−∞

∞

∫  (14)

and let the parameter x be zero; then

f (u) g(−u) du =
−∞

∞

∫ F(α ) G(α ) dα
−∞

∞

∫  (15)

Now suppose that g = f  and, thus, G = F , where the bar symbolizes the complex conjugate function. 
Then Equation (15) takes the form

| f (u) |2 du =
−∞

∞

∫ | F(α ) |2 dα
−∞

∞

∫  (16)

This is Parseval’s theorem for Fourier integrals.
Furthermore, if f and g are even functions, it can be shown that Equation (15) reduces to the following 

Parseval identities:

f (u) g(u)du =
0

∞

∫ Fc (α ) Gc (α ) dα
0

∞

∫  (17)

where Fc and Gc are the Fourier cosine transforms of f and g. If f and g are odd functions, then Equation (15) 
takes the form

f (u) g(u)du =
0

∞

∫ Fs (α ) Gs (α ) dα
0

∞

∫  (18)

where Fs and Gs are the Fourier sine transforms of f and g . (See Problem 14.3.)
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SOLVED PROBLEMS

The Fourier integral and Fourier transforms

14.1. (a) Find the Fourier transform of f (x) =
1 | x | < a

0 | x | > a

⎧
⎨
⎩

.  (b) Graph f (x) and its Fourier transform for a = 3.

(a) The Fourier transform of f (x) is

F(α ) = 1

2π
f (u)eiαu

−∞

∞

∫ du = 1

2π
(1)eiαudu = 1

2 π−a

a

∫
eiαu

iα −a

a

= 1

2π
eiαa − e− iαa

iα
⎛
⎝⎜

⎞
⎠⎟

= 2

π
sin αa

α
, α ≠ 0

For α = 0, we obtain F(α ) = 2 / π a.

(b) The graphs of f (x) and F(α) for a = 3 are shown in Figures 14.1, and 14.2, respectively.

 Figure 14.1  Figure 14.2

14.2. (a) Use the result of Problem 14.1 to evaluate 
sin αa cos αx

α
dα

−∞

∞

∫ . (b) Deduce the value of 
sin u

u
du

0

∞

∫ .

(a) From Fourier’s integral theorem, if

F(α ) = 1

2π
f (u)eiαudu

−∞

∞

∫ then f (x) = 1

2π
F(α )e− iαxdα

−∞

∞

∫
Then, from Problem 14.1,

1

2π
2

π
sinαa

α−∞

∞

∫ e− iaxdx =
1 | x | < a

1 / 2 | x | = a

0 | x | > a

⎧
⎨
⎪

⎩⎪
 (1)

The left side of Equation (1) is equal to

1

π
sin αa cos αx

α−∞

∞

∫ dα − i

π
sin αa sin αx

α−∞

∞

∫ dα  (2)

The integrand in the second integral of Equation (2) is odd, and so the integral is zero. Then from Equa-
tions (1) and (2), we have

sin αa cos αx

α
dα =

π | x | < a

π / 2 | x | = a

0 | x | > a

⎧
⎨
⎪

⎩⎪
−∞

∞

∫  (3)

Alternative solution: Since the function f in Problem 14.1 is an even function, the result follows immedi-
ately from the Fourier cosine transform (9).
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(b) If x = 0 and a = 1 in the result of (a), we have

sinα
α

dα = π
−∞

∞

∫ or
sinα

α
dα = π

20

∞

∫
since the integrand is even.

14.3. If f (x) is an even function, show that (a) F(α ) = 2

π
f (u) cos αu du

0

∞

∫  and 

(b) f (x) = 2

π
F(α ) cos αx dα

0

∞

∫
We have

F(α ) = 1

2π
f (u)eiau

−∞

∞

∫ du = 1

2π
f (u) cos αu du + i

2π−∞

∞

∫ f (u)sin αu du
−∞

∞

∫  (1)

(a) If f (u) is even, f (u) cos λu is even and f (u) sin λu is odd. Then the second integral on the right of Equa-
tion (1) is zero, and the result can be written

F(α ) = 2

2π
f (u) cos αu du

0

∞

∫ = 2

π
f (u) cos αu du

0

∞

∫
(b) From (a), F(–α) = F(α) so that F(α) is an even function. Then, by using a proof exactly analogous to that 

in (a), the required result follows.

A similar result holds for odd functions and can be obtained by replacing the cosine by the sine.

14.4. Solve the integral equation f (x) cos αx dx =
1− α 0 < α < 1

0 α > 1

⎧
⎨
⎩0

∞

∫ .

Let
2

π
f (x) cos αx dx

0

∞

∫ = F(α ) and choose F(α ) =
2 / π (1 − α ) 0 < α < 1

0 α > 1

⎧
⎨
⎪

⎩⎪
 Then, by Prob-

lem 14.3,

f (x) = 2

π
F(α )

0

∞

∫ cos αx dα = 2

π
2

π
(1 − α ) cos αx dα

0

1

∫
= 2

π
(1 − α ) cosαx dα = 2(1− cos x)

π x20

1

∫
14.5. Use Problem 14.4 to show that 

sin2 u

u20

∞

∫ du = π
2

.

As obtained in Problem 14.4,

2

π
1− cos x

x20

∞

∫ cos αx dx =
1− α 0 < α < 1

0 α > 1

⎧
⎨
⎩

Taking the limit as α → 0 +, we find
1− cos x

x20

∞

∫ dx = π
2

But this integral can be written as 
2 sin2 (x / 2)

x20

∞

∫ dx , which becomes 
sin2 u

u20

∞

∫ du  on letting x = 2u,  so 
that the required result follows.

14.6. Show that 
cos αx

a2 + 10

∞

∫ dα = π
2

e− x , x > 0.

Let f (x) = e–x in the Fourier integral theorem

f (x) = 2

π
cos αx dα

0

∞

∫ f (u) cos λu du
0

∞

∫
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Then
2

π
cosαx dα

0

∞

∫ e−u cos αu du = e− x

0

∞

∫

But by Problem 12.22, we have e−u

0

∞

∫ cos αu du = 1

α 2 + 1
. Then

2

π
cos αx

α 2 + 10

∞

∫ dα = e− x or
cos αx

a2 + 10

∞

∫ dα = π
2

e− x

Parseval’s identity

14.7. Verify Parseval’s identity for Fourier integrals for the Fourier transforms of Problem 14.1.

We must show that

{ f (x)}2 dx = {F(α )}2

−∞

∞

∫ dα
−∞

∞

∫
where

f (x) =
1 | x | < a

0 | x | < a

⎧
⎨
⎩

 and   F(α ) = 2

π
sin αa

α

This is equivalent to

(1)2 dx = 2

π
sin2 αa

α 2−∞

∞

∫−a

a

∫ dα

or
sin2 αa

α 2−∞

∞

∫ dα = 2
sin2 αa

a20

∞

∫ dα = πa

i.e.,
sin2 αa

α 20

∞

∫ dα = πa

2
By letting αa = u and using Problem 14.5, it is seen that this is correct. The method can also be used to 

find 
sin2 u

u20

∞

∫ du directly.

Proof of the Fourier integral theorem

14.8. Present a heuristic demonstration of Fourier’s integral theorem by use of a limiting form of Fourier series.

Let

f (x) = a0

2
+ an cos

nπ x

L
+ bn sin

nπ x

L
⎛
⎝⎜

⎞
⎠⎟

n=1

∞

∑  (1)

where

an = 1

L
f (u) cos

nπu

L
du   and  bn = 1

L
f (u)sin

nπu

L
du

− L

L

∫− L

L

∫
Then, by substitution (see Problem 13.21),

f (x) = 1

2L
f (u) du +

− L

L

∫
1

L
f (u) cos

nπ
L

(u − x) du
n=1

∞

∑  (2)

If we assume that f (u) du
−∞

∞

∫ converges, the first term on the right of Equation (2) approaches zero as 

L → �, while the remaining part appears to approach

lim
L→∞

1

L
f (u) cos

nπ
L

(u − x) du
−∞

∞

∫
n=1

∞

∑  (3)
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This last step is not rigorous and makes the demonstration heuristic.
Calling Δα = π/L, Equation (3) can be written

f (x) = lim
Δα→0

ΔαF(nΔα )
n=1

∞

∑  (4)

where we have written

F(α ) = 1

π
f (u) cos α(u − x) du

0

∞

∫  (5)

But the limit (4) is equal to

f (x) = F(α ) dα
0

∞

∫ = 1

π
dα

0

∞

∫ f (u) cos α(u − x) du
−∞

∞

∫
which is Fourier’s integral formula.

This demonstration serves only to provide a possible result. To be rigorous, we start with the integral

1/π ∫�
0 dα ∫�

–� f (u) cos α(u – x)dx

and examine the convergence. This method is considered in Problems 14.9 through 14.12.

14.9. Prove that

(a) lim
α→∞

sinαυ
υ0

L

∫ dυ = π
2

,

(b) lim
α→∞

sinαυ
υ− L

0

∫ dυ = π
2

.

(a) Let αυ = y. Then lim
α→∞

sin αυ
υ0

L

∫ dυ = lim
α→∞

sin y

y
dy = sin y

y
dy = π

20

∞

∫0

αL

∫ .  by Problem 12.29.

(b) Let αυ = −y. Then  lim
α→∞

sin αυ
υ− L

0

∫ dυ = lim
x→∞

sin y

y
dy = π

20

αL

∫
.

14.10. Riemann’s theorem states that if F(x) is piecewise continuous in (a, b), then

lim
α→∞

F(x)sin αx dx = 0
a

b

∫
with a similar result for the cosine (see Problem 14.32). Use this to prove that

(a) lim
α→∞

f (x + υ)
sin αυ

υ0

L

∫ dυ = π
2

f (x + 0)

(b) lim
α→∞

f (x + υ)
sin αυ

υ− L

0

∫ dυ = π
2

f (x − 0)

where f (x) and f ′ (x) are assumed piecewise continuous in (0, L) and (–L, 0), respectively.
(a) Using Problem 14.9(a), it is seen that a proof of the given result amounts to proving that

lim
α→∞

{ f (x + υ) − f (x + 0)}
sinαυ

υ0

L

∫ dυ = 0

This follows at once from Riemann’s theorem, because F(υ) = f (x + υ) − f (x + 0)

υ
is piecewise continuous 

in (0, L), since 
0

lim
n→ +

F(υ) exists and f (x) is piecewise continuous.

(b) A proof of this is analogous to that in (a) if we make use of Problem 14.9(b).
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14.11. If f (x) satisfies the additional condition that | f (x) | dx
−∞

∞

∫ converges, prove that

(a) lim
α→∞

f (x + υ)
sin αυ

υ0

∞

∫ dυ = π
2

f (x + 0) (b) lim
α→∞

f (x + υ)
sinαυ

υ−∞

0

∫ dυ = π
2

f (x − 0)

We have

f (x + υ)
sinαυ

υ0

∞

∫ dυ = f (x + υ)
sin αυ

υ0

L

∫ dυ + f (x + υ)
sin αυ

υL

∞

∫ dυ  (1)

f (x + 0)
sinαυ

υ0

∞

∫ dυ = f (x + 0)
sin αυ

υ0

L

∫ dυ + f (x + 0)
sin αυ

υL

∞

∫ dυ  (2)

Subtracting,

{ f (x + υ) − f (x + 0)}
sinαυ

υ0

∞

∫ dυ = { f (x + υ) − f (x + 0)}
sinαυ

υ0

L

∫ dυ
 (3)

+ f (x + υ)
sinαυ

υ
dυ − f (x + 0)

sinαυ
υ

dυ
L

∞

∫L

∞

∫
Denoting the integrals in Equation (3) by I, I1, I2, and I3, respectively, we have I = I1 + I2 + I3 so that

 ⏐I⏐ < ⏐I1⏐ + ⏐I2⏐ + ⏐I3⏐  (4)

Now

| I2 | < f (x + υ)
sinαυ

υL

∞

∫ dυ < 1

L
| f (x + υ) | dυ

L

∞

∫
Also,

| I3 | < | f (x + 0) |
sinαυ

υ
dυ

L

∞

∫ .

Since both | f (x)}dx and 
sinαυ

υ0

∞

∫0

∞

∫ dυ  converge, we can choose L so large that ⏐I2⏐ < �/3, ⏐I3⏐

< � /3. Also, we can choose α so large that ⏐I1⏐ < � /3. Then from Equation (4) we have ⏐I⏐ < � for α and 

L sufficiently large so that the required result follows.
This result follows by reasoning exactly analogous to that in (a).

14.12. Prove Fourier’s integral formula where f (x) satisfies the conditions stated on Page 377.

We must prove that lim
L→∞

1

π
f (u) cosα(x − u) du dα = f (x + 0) + f (x − 0)

2u=−∞

∞

∫α =0

L

∫ .

Since f (u) cosα(x − u) du
−∞

∞

∫ < | f (u) | du,
−∞

∞

∫ which converges, it follows by the Weierstrass test 

that f (u) cosα(x − u) du
−∞

∞

∫ converges absolutely and uniformly for all α. Thus, we can reverse the order of 
integration to obtain

1

π
dα

α =0

L

∫ f (u) cosα(x − u) du
u=−∞

∞

∫ = 1

π
f (u) du cosα(x − u) dα

α =0

L

∫u=−∞

∞

∫
= 1

π
f (u)

u=−∞

∞

∫
sin L(u − x)

u − x
du

= 1

π
f (x + υ)

sin Lυ
υu=−∞

∞

∫ dυ

= 1

π
f (x + υ)

sin Lυ
υ

dυ
−∞

0

∫ + 1

π
f (x + υ)

sin Lυ
υ0

∞

∫ dυ

where we have let u = x + υ.
Letting L → �, we see by Problem 14.11 that the given integral converges to 

f (x) + 0) + f (x − 0)

2
 as 

required.



CHAPTER 14  Fourier Integrals 385

Miscellaneous problems

14.13. Solve 
∂U

∂t
= ∂2U

∂x2 , subject to the conditions U(0, t) = 0, U(x, 0) =
1   0 < x < 1

0         x > 1

⎧
⎨
⎩

, U(x, 1) is bounded 

where x > 0, t > 0.

We proceed as in Problem 13.24. A solution satisfying the partial differential equation and the first bound-
ary condition is given by Be– λ2t sin λx. Unlike Problem 13.24, the boundary conditions do not prescribe the 
specific values for λ, so we must assume that all values of λ are possible. By analogy with that problem, we 
sum over all possible values of λ, which corresponds to an integration in this case, and are led to the possible 
solution

U(x, 1) = B(λ)
0

∞

∫ e−λ2t sin λxdλ  (1)

where B(λ) is undetermined. By the second condition, we have

B(λ)sin λxdλ =
1   0 < x < 1

0        x > 1

⎧
⎨
⎩0

∞

∫ = f (x)  (2)

from which we have, by Fourier’s integral formula,

B(λ) = 2

π
f (x)sin λx dx

0

∞

∫ = 2

π
sin λx dx = 2(1− cos λ)

πλ0

1

∫  (3)

so that, at least formally, the solution is given by

U(x, 1) = 2

π
1− cos λ

λ
⎛
⎝⎜

⎞
⎠⎟0

∞

∫ e−λ2t sin λx dx  (4)

See Problem 14.26.

14.14. Show that e–x2/2 is its own Fourier transform.

Since e–x2/2 is even, its Fourier transform is given by 2 / π = e− x2 /2

0

∞

∫ cos xα dx .

Letting x = 2u  and using Problem 12.32, the integral becomes

2

π
e−u2

0

∞

∫ cos(α 2 u) du = 2

π
. π

2
e−α 2 /2

which proves the required result.

14.15. Solve the integral equation

y(x) = g(x) + y(u) r(x − u) du
−∞

∞

∫
where g(x) and r(x) are given.

Suppose that the Fourier transforms of y(x), g(x), and r(x) exist, and denote them by Y(α), G(α), and R(α),
respectively. Then, taking the Fourier transform of both sides of the given integral equation, we have, by the 
convolution theorem,

Y (α ) = G(α ) + 2πY (α ) R(α )          or Y (α ) = G(α )

1− 2π R(α )

Then

y(x) = �−1 G(α )

1− 2π R(α )

⎧
⎨
⎩

⎫
⎬
⎭

= 1

2π
G(α )

1− 2π R(α )
e− iαx

−∞

∞

∫ dα

assuming this integral exists.
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SUPPLEMENTARY PROBLEMS

The Fourier integral and Fourier transforms

14.16. (a) Find the Fourier transform of f (x) =
1 / 2 ∈   | x | < ∈
0         | x | > ∈

⎧
⎨
⎩

. (b) Determine the limit of this transform as 
� → 0+ and discuss the result.

Ans. (a) 
1

2π
sinα ∈

α ∈
 (b) 

1

2π

14.17. (a) Find the Fourier transform of f (x) =
1− x2     | x | < 1

  0        | x | > 1

⎧
⎨
⎩⎪

. (b) Evaluate x cos x − sin x

x3

⎛
⎝⎜

⎞
⎠⎟0

∞

∫  cos
x

2
dx .

Ans. (a) 2
2

π
α cosα − sinα

α 3

⎛
⎝⎜

⎞
⎠⎟ (b)

3π
16

14.18. If f (x) =
1   0 < x < 1

0         x > 1

⎧
⎨
⎩⎪

, find (a) the Fourier since transform and (b) the Fourier cosine transform of f (x).

In each case, obtain the graph of f (x) and its transform.

Ans. (a)
2

π
1− cos α

α
⎛
⎝⎜

⎞
⎠⎟ (b)

2

π
sinα

α

14.19. (a) Find the Fourier sine transform of e–x, x >  0. (b) Show that 
x sin mx

x2 + 10

∞

∫ dx = π
2

e− m , m > 0  by using 

the result in (a). (c) Explain from the viewpoint of Fourier’s integral theorem why the result in (b) does not 
hold for m = 0.

Ans. (a) 2 / π [α / (1 + α 2 )]

14.20. Solve for Y(x) the integral equation

Y (x)sin xt dx
0

∞

∫ =
1 0 < t < 1

2 1 < t < 2

0 t > 0

⎧

⎨
⎪

⎩
⎪

and verify the solution by direction substitution.
Ans. Y(x) = (2 + 2 cos x – 4 cos 2x)/πx

Parseval’s identity

14.21. Evaluate (a) 
dx

(x2 + 1)20

∞

∫  and (b) 
x2dx

(x2 + 1)20

∞

∫  by use of Parseval’s identity. (Hint: Use the Fourier sine and 

cosine transforms of e–x, x > 0.)

Ans. (a) π/4 (b) π/4

14.22. Use Problem 14.18 to show that (a)
1− cos x

x
⎛
⎝⎜

⎞
⎠⎟

2

dx
0

∞

∫ = π
2

 and (b) 
sin4 x

x20

∞

∫ dx = π
2

.

14.23. Show that 
(x cos x − sin x)2

x60

∞

∫ dx = π
15

.
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Miscellaneous problems

14.24. (a) Solve 
∂U

∂t
= 2

∂2U

∂x2 , U(0, t) = 0,  U(x, 0) = e− x , x > 0,  U(x, t)  is bounded where x > 0, t > 0. 

(b) Give a physical interpretation.

Ans. U(x, t) = 2

π
λe−2λ2t sin λx

λ2 + 10

∞

∫ dλ

14.25. Solve 
∂U

∂t
= ∂2U

∂x2 , Ux (0,  t) = 0,  U(x,  0) =
x   0 < x < 1

0          x > 1

⎧
⎨
⎩

, U(x, t)  is bounded where x > 0, t > 0.

Ans.U(x, t) = 2

π
sin λ

λ
+ cos λ − 1

λ2

⎛
⎝⎜

⎞
⎠⎟0

∞

∫ e−λ2t cos λx dλ

14.26. (a) Show that the solution to Problem 14.13 can be written

U(x, t) = 2

π
e−υ2

0

x/2 t

∫ dυ − 1

π
e−υ2

(1−x )/2 t

(1+x )/2 2

∫ dυ

(b) Prove directly that the function in (a) satisfies 
∂U

∂t
= ∂2U

∂x2 and the conditions of Problem 14.13.

14.27. Verify the convolution theorem for the functions f (x) = g(x) =
1    | x |< 1

0   | x |> 1

⎧
⎨
⎩

.

14.28. Establish Equation (4), Page 378, form Equation (3), Page 378.

14.29. Prove the result (12), Page 379. [Hint: If F(α ) = 1

2π
f (u)eiαudu

−∞

∞

∫ and G(α ) = 1

2π
g(v)eiαv dυ,

−∞

∞

∫
then F(α )G(α ) = 1

2π
eiα (u+v) f (u)g(υ) du dυ

−∞

∞

∫−∞

∞

∫ . Now make the transformation u + υ = x.]

F(α ) G(α ) = 1

π
eiαx f (u)g(x − u) du dx

−∞

∞

∫−∞

∞

∫
Define

f * g = 1

π
f (u)g(x − u) du

−∞

∞

∫          ( f * g   is a function of x)

then

F(α ) G(α ) = 1

π
eiαx

−∞

∞

∫−∞

∞

∫ f * g dx

Thus, F(α) G(α) is the Fourier transform of the convolution f ∗ g and, conversely, as indicated in Equa-
tion (13), f ∗ g is the Fourier transform of F(α) G(α).

14.30. If F(α) and G(α) are the Fourier transforms of f (x) and g(x), respectively, prove (by repeating the pattern of 
Problem 14.29) that

F(α ) G(α )
−∞

∞

∫ dα = f (x) g(x)
−∞

∞

∫ dx

where the bar signifies the complex conjugate. Observe that if G is expressed as in Problem 14.29, then

G(α ) = 1

π
e− iαx

−∞

∞

∫ f (u) g(υ) dυ



CHAPTER 14  Fourier Integrals388

14.31. Show that the Fourier transform of g(u – x) is eiαx; i.e., eiαxG(α ) = 1

π
eiαu

−∞

∞

∫ f (u) g(u − x) du . (Hint: 
See Problem 14.29. Let υ = u – x.)

14.32. Prove Riemann’s theorem (see Problem 14.10).
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CHAPTER 15

Gamma and Beta 
Functions

The Gamma Function

The gamma function may be regarded as a generalization of n! (n-factorial), where n is any positive integer 
to x!, where x is any real number. (With limited exceptions, the discussion that follows will be restricted to 
positive real numbers.) Such an extension does not seem reasonable, yet, in certain ways, the gamma function 
defined by the improper integral

Γ(x) = t x−1

0

∞

∫ e− tdt  (1) 

meets the challenge. This integral has proved valuable in applications. However, because it cannot be repre-
sented through elementary functions, establishment of its properties takes some effort. Some of the important 
properties are outlined as follows.

The gamma function is convergent for x > 0. (See Problem 12.18.)
The fundamental property

 Γ(x + 1) = xΓ(x) (2)

may be obtained by employing the technique of integration by parts to Equation (1). The process is carried 
out in Problem 15.1. From the form of Equation (2), the function Γ(x) can be evaluated for all x > 0 when its 
values in the interval 1 < x < 2 are known. (Any other interval of unit length will suffice.) Table 15.1 and the 

graph in Figure 15.1 illustrate this idea.

Tables of Values and Graph of 
the Gamma Function

TABLE 15.1

N Γ(N)

1.00 1.0000
1.10 0.9514
1.20 0.9182
1.30 0.8975
1.40 0.8873
1.50 0.8862
1.60 0.8935
1.70 0.9086
1.80 0.9314
1.90 0.9618
2.00 1.0000

Figure 15.1



CHAPTER 15  Gamma and Beta Functions390

Equation (2) is a recurrence relationship that leads to the factorial concept. First observe that if x = 1, then 
Equation (1) can be evaluated and in particular,

Γ(1) = 1

From Equation (2)

Γ(x + 1) = xΓ(x) = x(x – 1)Γ(x – 1) = . . . x (x – 1)(x – 2) . . . (x – k)Γ(x – k)

If x = n, where n is a positive integer, then

 Γ(n + 1) = n(n – 1)(n – 2) . . . 1 = n! (3)

If x is a real number, then x! = Γ(x + 1) is defined by Γ(x + 1). The value of this identification is in intuitive 
guidance.

If the recurrence relation (2) is characterized as a differential equation, then the definition of Γ(x) can be 
extended to negative real numbers by a process called analytic continuation. The key idea is that even though 

Γ(x) as defined in Equation (1) is not convergent for x < 0, the relation 
1

( ) ( 1)x x
x

Γ = Γ +  allows the meaning 

to be extended to the interval – 1 < x < 0, and from there to – 2 < x < – 1, and so on. A general development 
of this concept is beyond the scope of this presentation; however, some information is presented in Problem 
15.7.

The factorial notion guides us to information about Γ(x + 1) in more than one way. In the eighteenth cen-
tury, James Stirling introduced the formula (for positive integer values n)

12
lim 1

n n

n

n e

n

π + −

→∞
=

!
 (4)

This is called Stirling’s formula, and it indicates that n! asymptotically approaches 12 n nn eπ + −  for large 
values of n. This information has proved useful, since n! is difficult to calculate for large values of n.

There is another consequence of Stirling’s formula. It suggests the possibility that for sufficiently large 
values of x,

1( 1) 2 x xx x x eπ + −! = Γ + ≈  (5a)

(An argument supporting this is made in Problem 15.20.)
It is known that Γ(x + 1) satisfies the inequality

1 1
12( 1)

1
2 ( 1) 2x x x x

x
x e x x e

e
π π+ − + −

+< Γ + <  (5b)

Since the factor 
12( 1)

1
xe + → 0 for large values of x, the suggested value (5a) of Γ(x + 1) is consistent with (5b).

An exact representation of Γ(x + 1) is suggested by the following manipulation of n!. [It depends on (n + k)! 
= (k + n)!.]

12 ( 1) ( 2) ( ) ( 1)( 2) ( )
lim lim lim

( 1)( 2) ( ) ( 1) ( )

n

nk k k

n n n n k k k k k k n
n

n n n k n n k k→∞ →∞ →∞

+ + + + ! + + +! = =
+ + + + +

K K K
K KK

K

K

K K

Since n is fixed, the second limit is one; therefore, lim .
( 1) ( )

n

k

k k
n

n n k→∞

!! =
+ +KK

 (This must be read as an in-
finite product.)

This factorial representation for positive integers suggests the possibility that

( 1) lim 1, 2,
( 1) ( )

x

k

k k
x x x k

x x k→∞

!Γ + = ! = ≠ − − −
+ +KK

 (6)

Carl Friedrich Gauss verified this identification back in the nineteenth century.

This infinite product is symbolized by Π(x,k); i.e., Π(x,k) .
( 1) ( )

xk k

x x k

!=
+ +LL

 It is called Gauss’s function, 
and through this symbolism,

( 1) lim ( , )
k

x x k
→∞

Γ + = Π  (7)



CHAPTER 15  Gamma and Beta Functions 391

The expression for 
1

( )xΓ
 [which has some advantage in developing the derivative of Γ(x)] results as fol-

lows. Put Equation (6) in the form

1 1
lim , ,

(1 )(1 / 2) (1 / ) 2 3

x

k

k
x

x x x k→∞
≠ −

+ + +KK
 . . . 

1
,
k

Next, introduce

1 1
1

2 3kγ = + + + . . . 1 1n
k

− k

Then

lim kk
γ γ

→∞
=

is Euler’s constant. This constant has been calculated to many places, a few of which are 
γ ≈ 0.57721566 . . . .

By letting kx = ex ln k = ex[– γk+1+1/2+…+1/k], the representation (6) can be further modified so that

/ 2 /
In

1

1

( 1) lim / 1
1 1 /2 1 /

1 2 3
( ) lim lim ( , )

( 1)( 2) ( )

x x x k
x x x x k

k
k

x x

k k
k

e e e x
x e e e e

x x x k k

k
k k k x x x k

x x x k

γ γ γ
∞

− −

→∞
=

∞

→∞ →∞
=

⎛ ⎞Γ + = = +⎜ ⎟+ + + ⎝ ⎠
⋅ ⋅= ! + = = ∏

+ + +

∏

∏

L

L
L

L

L

L

l

 (8)

Since Γ(x + 1) = xΓ(x),

/ 2

1 1 1 /2
lim

( )
x

x xk

x x
xe

x e e
γ

→∞

+ +=
Γ

 . . . /
/

1

1 /
(1 / )x x k

x k
k

x k
xe x k e

e
γ

∞
−

=

+ = +∏  (9)

Another result of special interest emanates from a comparison of Γ(x)Γ(1 – x) with the well-known for-
mula

2 2

1 1
lim

sin 1 1 ( / 2)k

x

x x x

π
π →∞

⎧
= ⎨ − −⎩

 . . . 2
2

1

1
{1 ( / }

(1 / k

x k
x k

∞

=

⎫
= −⎬− ⎭

∏  (10)

[See Differential and Integral Calculus, by R. Courant (translated by E. J. McShane), Blackie & Son Limited.]

Γ(1 – x) is obtained from 
1

( ) ( 1)y y
y

Γ = Γ +  by letting y = – x; i.e.,

1
( ) (1 ) or (1 ) ( )x x x x x

x
Γ − = − Γ − Γ − = − Γ −

Now use Equation (8) to produce

Γ(x)Γ(1 – x) = 1 1 /

1
lim (1 / )x x k

k
x e k eγ

κ

∞
− − −

→
=∞

⎛ ⎞⎧ ⎫+⎨ ⎬⎜ ⎟
⎩ ⎭⎝ ⎠

∏ ⎛
⎜
⎝
e 1 /

1
lim (1 / )x x kx k eγ

κ

− −

=
−

⎞
⎟
⎠

2

1

1
lim (1( / ) )
k

x k
x κ

∞

→∞
=

= ∏
Thus,

( ) (1 ) , 0 1
sin

x x x
π

π
Γ Γ − = < <  (11a)

Observe that Equation (11a) yields the result

1

2
π⎛ ⎞Γ =⎜ ⎟⎝ ⎠

 (11b)

Another exact representation of Γ(x + 1) is

1
2 3

1 1 139
( 1) 2 1

12 288 51840
x xx x e

x x x
π + − ⎧Γ + = + + + +⎨

⎩
 . . . ⎫⎬

⎭
 (12)

The method of obtaining this result is closely related to Stirling’s asymptotic series for the gamma func-
tion. (See Problems 15.20 and 15.74.)



CHAPTER 15  Gamma and Beta Functions392

The duplication formula
2 1 1

2 ( ) (2 )
2

x x x xπ− ⎛ ⎞Γ Γ + = Γ⎜ ⎟⎝ ⎠
 (13a) 

is also part of the literature. Its proof is given in Problem 15.24.
The duplication formula is a special case (m = 2) of the following product formula:

1
( )x x

m
⎛ ⎞Γ Γ +⎜ ⎟⎝ ⎠

 . . . 2
x

m
⎛ ⎞Γ +⎜ ⎟⎝ ⎠

 . . . 
1 1

2 2
1

(2 ) ( )
m

mxm
X m mx

m
π

−−−⎛ ⎞Γ + = Γ⎜ ⎟⎝ ⎠
 (13b)

It can be shown that the gamma function has continuous derivatives of all orders. They are obtained by 
differentiating (with respect to the parameter) under the integral sign.

It helps to recall that 1 x-1

0
( ) and that if y = t ,x ytx t e dt

∞ − −Γ = ∫  then ln y = ln t x–1 = (x – 1) ln t.

Therefore;
1

y
y

′ = ln t.

It follows that
1

0
( ) x tx t e

∞ − −Γ′ = ∫ ln t dt. (14a)

This result can be obtained (after making assumptions about the interchange of differentiation with limits) 
by taking the logarithm of both sides of Equation (9) and then differentiating.

In particular,

 Γ′ (1) = –γ (γ is Euler’s constant.) (14b)

It also may be shown that

( ) 1 1 1 1

( ) 1 2 1

x

x x x
γΓ′ ⎛ ⎞ ⎛ ⎞= − + − + − +⎜ ⎟ ⎜ ⎟Γ +⎝ ⎠ ⎝ ⎠

 . . . 1 1

1n x n
⎛ ⎞−⎜ ⎟+ −⎝ ⎠

 (15)

(See Problem 15.73 for further information.)

The Beta Function

The beta function is a two-parameter composition of gamma functions that has been useful enough in ap-
plication to gain its own name. Its definition is

1 1 1

0
( , ) (1 )x yB x y t t dt− −= −∫  (16)

If x ≥ 1 and y ≥ 1, this is a proper integral. If x > 0, y > 0, and either or both x < 1 or y < 1, the integral is 
improper but convergent.

It is shown in Problem 15.11 that the beta function can be expressed through gamma functions in the fol-
lowing way

( ) ( )
( , )

( )

x y
B x y

x y

Γ Γ=
Γ +

 (17)

Many integrals can be expressed through beta and gamma functions. Two of special interest are
/ 2 2 1 2 1

0

1 1 ( ) ( )
sin cos ( , )

2 2 ( )
x y x y

d B x y
x y

π
θ θ θ− − Γ Γ= =

Γ +∫  (18)

1

0
( ) ( 1) 0 1

1 sin

px
dx p p p

x P

π
π

−∞
= Γ Γ − = < <

+∫  (19)

See Problem 15.17. Also see Page 391, where a classical reference is given. Finally, see Problem 16.38, 
where an elegant complex variable resolution of the integral is presented.
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Dirichlet Integrals

If V denotes the closed region in the first octant bounded by the surface 1
p q r

x y z

a a c
⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ + =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 and the 
coordinate planes, then if all the constants are positive,

1 1 1

1V

p b ra b c
x y z dx dy dz

pqr
p q r

α β γ
α β γ

α β γ

α β γ
− − −

⎛ ⎞ ⎛ ⎞ ⎛ ⎞Γ Γ Γ⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠⎝ ⎠=
⎛ ⎞Γ + + +⎜ ⎟⎝ ⎠

∫ ∫ ∫  (20)

Integrals of this type are called Dirichlet integrals and are often useful in evaluating multiple integrals 
(see Problem 15.21).

SOLVED PROBLEMS

The gamma function

15.1. Prove (a) Γ(x + 1) = xΓ(x), x > 0 and (b) Γ(n + 1) = n!, n = 1, 2, 3, . . . 

(a)

Γ( ) lim

lim (

υ υ υ+ = =

=

∞ −

→∞

−

→∞

∫ ∫1
0 0

x e dx x e dx

x

x

M

M
x

M

υυ υυ)( ) ( )( )

lim

− − −
⎧
⎨
⎩⎪

⎫
⎬
⎭⎪

=

− − −∫e
M

e x dxx x
M

M

0
1

0

→→∞

− − −− +{ } = >∫M e x e dxM
M

xυ υυ υ υ υ1

0
0Γ( ) if

(b)
0 0

(1) lim lim (1 ) 1.
Mx x M

M M
e dx e dx e

∞ − − −

→∞ →∞
Γ = = = − =∫ ∫
Put n = 1, 2, 3, . . . in Γ(n + 1) = nΓ(n). Then

Γ(2) = 1Γ(1) = 1, Γ(3) = 2Γ(2) = 2 · 1 = 2! Γ(4) = 3Γ(3) = 3 · 2! = 3!

In general, Γ(n + 1) = n! if n is a positive integer.

15.2. Evaluate each of the following:

(a)
(6) 5! 5 4 3 2

30
2 (3) 2 2! 2 2

Γ ⋅ ⋅ ⋅= = =
Γ ⋅ ⋅

(b)

5 3 3 3 1 1
.

32 2 2 2 2 2
1 1 1 4
2 2 2

⎛ ⎞ ⎛ ⎞ ⎛ ⎞Γ Γ Γ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠= = =
⎛ ⎞ ⎛ ⎞ ⎛ ⎞Γ Γ Γ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠

(c)
(3) (2.5) 2!(1.5)(0.5) (0.5) 16

(5.5) (4.5)(3.5)(2.5)(1.5)(0.5) (0.5) 315

Γ Γ Γ= =
Γ Γ

(d)

8 5 2 2
6 6

43 3 3 3
2 2 3

5 5
3 3

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞Γ Γ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠= =
⎛ ⎞ ⎛ ⎞Γ Γ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

15.3. Evaluate each integral.

(a) 3

0
(4) 3! 6xx e dx

∞ − = Γ = =∫
(b) 6 2

0

xx e dx
∞ −∫
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Let 2x = 7. Then the integral becomes
6

6
7 7 70 0

1 (7) 6! 45

2 2 82 2 2
y yy dy

e y e dy
∞ ∞− − Γ⎛ ⎞ = = = =⎜ ⎟⎝ ⎠∫ ∫

15.4. Prove that 
1

.
2

π⎛ ⎞Γ =⎜ ⎟⎝ ⎠
1/ 2

0

1
.

2
xx e dx

∞ − −⎛ ⎞Γ =⎜ ⎟⎝ ⎠ ∫
Letting x = u2 this integral becomes

2

0
2 2

2
ue du

π π
∞ − ⎛ ⎞

= =⎜ ⎟
⎝ ⎠∫

using Problem 12.31. This result also is described in Equation (11a, b) on Page 391.

15.5. Evaluate each integral.

(a)
2

0
.yy e dy

∞ −∫
Letting y3 = x, the intergral becomes

1/ 3 2 / 3 1/ 2

0 0

1 1 1 1
.
3 3 3 2 3

x xx e x dx x e dx
π∞ ∞− − − − ⎛ ⎞= = Γ =⎜ ⎟⎝ ⎠∫ ∫

(b)
2 2 24 In3 ( 4 ) (4In3)

0 0 0
3 ( ) (x x zdx e dz e dz

∞ ∞ ∞− − −= =∫ ∫ ∫
Letting (4 ln 3)z2 = x, the integral becomes

1/ 2
- 1 / 2

0 0

1 (1 / 2)
e

4In3 2 4In3 2 4In3 4 In3
x xx
d x e dx

π∞ ∞ − −⎛ ⎞ Γ= = =⎜ ⎟
⎝ ⎠∫ ∫l l ll

(c)
1

0
.

ln

dx

x−∫
Let – ln x = u. Then x = e–u. When x = 1, u = 0; when x = 0, u = �. The integral becomes

1/ 2

0 0
(1 / 2)

u
ue

du u e du
u

π
−∞ ∞ − −= = Γ =∫ ∫

15.6. Evaluate 
0

nm axx e dx
∞ −∫ , where m, n, and a are positive constants.

Letting axn = y, the integral becomes

1/ 1/
( 1) / 1

( 1) / ( 1) /0 0

1 1 1
mn n

y m n y

m n m n

y y m
e d y e dy

a a nna na

∞ ∞− + − −
+ +

⎧ ⎫ ⎧ ⎫ +⎪ ⎪ ⎪ ⎪⎛ ⎞ ⎛ ⎞ ⎛ ⎞= = Γ⎨ ⎬ ⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭
∫ ∫

15.7. Evaluate (a) ( ) ( 1 / 2)a Γ −  (b) ( 5 / 2)−

We use the generalization to negative values defined by 
( 1)

( ) .
x

x
x

Γ +Γ =

(a) Letting 
1 (1 / 2)

, ( 1 / 2) 2 .
2 1/ 2

x πΓ= − Γ − = = −
−

(b) Letting 
( 1 / 2) 2 4

3 / 2, ( 3 / 2) ,
3 / 2 3 / 2 3

x
π πΓ − −= − Γ − = = =

− −
 using (a)

Then
( 3 / 2) 8

( 5 / 2) .
5 / 2 15

πΓ −Γ − = = −
−
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15.8. Prove that x dx
n

m
m

n

n0

1

1

1

1
∫ = −

+ +
(

( ) !

( )
,ln x n)  where n is a positive integer and m > –1.

Letting x = e–y, the integral becomes ( 1)

0
( 1) .If ( 1)n n m yy e dy m+ y = u,

∞ − +− ∫  this last integral becomes

1 1 10 0

( 1) ( 1) ( 1) !
( 1) ( 1)

1( 1) ( 1) ( 1) ( 1)

n n n n
n u n u

n n n n

u du n
e u e du n

mm m m m

∞ ∞− −
+ + +

− − −− = = Γ + =
++ + + +∫ ∫

Compare with Problem 8.50.

15.9. A particle is attracted toward a fixed point O with a force inversely proportional to its instantaneous distance 
from O. If the particle is released from rest, find the time for it to reach O

At time t = 0, let the particle be located on the x axis at x = a > 0 and let O be the origin. Then, by 
Newton’s law,

2

2

d x k
m

xdt
= −  (1)

where m is the mass of the particle and k > 0 is a constant of proportionality.

Let
dx

dt
υ= , the velocity of the particle. Then 

2

2
. .

d x d d dx d

dt dx dt dxdt

υ υ υυ= = =  and Equation (1) be-
comes

2

or
2

d k m
m k

dx x

υ υυ = − = − ln x +c  (2)

upon integrating. Since υ = 0 at x = a, we find c = k ln a. Then

m
k

dx

dt

k

m

a

x

υ υ
2

2

2= = = −ln or ln
a

x
 (3)

where the negative sign is chosen, since x is decreasing as t increases. We thus find that the time T taken for 
the particle to go from x = a to x = 0 is given by

T
m

k

dx

a x

a
= ∫

2 0 ln /
 (4)

Letting ln a/x = u or x = ae–u, this becomes

1/ 2

0

1

2 2 2 2
um m m

T a u e du a a
k k k

π∞ − − ⎛ ⎞= = Γ =⎜ ⎟⎝ ⎠∫

The Beta Function

15.10. Prove that (a) B(u, υ) = B(υ, u) and (b) 
/ 2 2 1 2 1

0
( , ) 2 sin cos .uB u d

π υυ θ θ θ− −= ∫
(a) Using the transformation x = 1 – y, we have

1 1 11 1 1 1 1 1

0 0 0
( , ) (1 ) (1 ) (1 ) ( , )u u uB u x x dx y y dy y y dy B uυ υ υυ υ− − − − − −= − = − = − =∫ ∫ ∫

(b) Using the transformation x = sin2 θ, we have
1 / 2 11 1 2 1 2

0 0

/ 2 2 1 2 1

0

( , ) (1 ) (sin ) (cos ) 2sin cos

2 sin cos

u u

u x

B u x x dx d

d

π υυ

π

υ θ θ θ θ θ

θ θ θ

−− − −

− −

= − =

=

∫ ∫
∫

15.11. Prove that 
( ) ( )

( , ) , 0.
( )

u
B u u

u

υυ υ
υ

Γ Γ= >
Γ +

Letting z2 = x2, we have 
21 2 1

0 0
( ) 2 .u z u xu z e dx x e dx

∞ ∞− − − −Γ = =∫ ∫
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Similarly, 
22 1

0
( ) 2 .yy e dyυυ

∞ − −Γ = ∫  Then

Γ Γ( ) ( )u x e dx y e dyu x yυ υ= ( ) ( )
=

− −∞ − −∞∫ ∫4 2 1

0

2 1

0

2 2

44 2 1 2 1

00

2 2

x y e dx dyu x y− − − +∞∞ ∫∫ υ ( )

Transforming to polar coordinates, x = ρ cos φ, y = ρ sin φ,

Γ Γ( ) ( ) ( ) cos sinu u v e uυ ρ φρ υ

ρ
= + − − − −

=

∞

∫4 12 2 1 2 1

0

2

φφ

π

υ

φ ρ φ
=

+ − −

=

∞ −

∫

∫= ( )
0

2

2 1

0

24
2

/

( ) cos

d d

p e dpu p

p

u 11 2 1

0

2

2 1 22

φ φ φ

υ φ

υ

φ

π

υ

sin

( ) cos sin

/ −

=

−

∫( )
= +

d

u uΓ −− = +

= +
∫ 1

0

2
φ φ υ υ

υ υ

π
d u B u

u B u

Γ

Γ

( ) ( , )

( ) ( , )

/

using the results of Problem 15.10. Hence, the required result follows.
This argument can be made rigorous by using a limiting procedure as in Problem 12.31.

15.12. Evaluate each of the following integrals.

(a)
1 4 3

0

(5) (4) 4!3! 1
(1 ) (5,4)

(9) 8! 280
x x dx B

Γ Γ− = = = =
Γ∫

(b)
2

2

0 2

x dx

x−∫
Letting x = 2υ, the integral becomes

2
1 1 2 1/ 2

0 0

4 2 (3) (1 / 2)1 64 2
4 2 4 2 (1 ) 4 2 3,

2 (7 / 2) 151
d d B

υ υ υ υ υ
υ

− Γ Γ⎛ ⎞= − = = =⎜ ⎟⎝ ⎠ Γ−∫ ∫
(c)

4 2 2

0

a
y a y dy−∫

Letting
2 2 or ,y a x y x= = the integral becomes

6 6
16 3 / 2 1/ 2 6

0

(5 / 2) (3 / 2)
(1 ) (5 / 2,3 / 2)

(4) 16

a a
a x x dx a B

πΓ Γ− = = =
Γ∫

15.13. Show that 
/ 2 2 1 2 1

0

( ) ( )
sin cos , 0.

2 ( )
u u

d u
u

π υ υθ θ θ υ
υ

− − Γ Γ= >
Γ +∫

This follows at once from Problems 15.10 and 15.11.

15.14. Evaluate (a) 
/ 2 6

0
sin ,d

π
θ θ∫  (b) 

/ 2 4 5

0
sin cos ,d

π
θ θ θ∫  and (c) 

/ 2 4

0
cos d

π
θ θ∫ .

(a) Let 2u – 1 = 6, 2υ – 1 = 0, i.e., u = 7/2, υ = 1/2, in Problem 15.13. Then the required integral has the value 

(7 / 2) (1 / 2) 5
.

2 (4) 32

πΓ Γ =
Γ

(b) Letting 2u – 1 = 4, 2υ – 1 = 5, the required integral has the value 
(5 / 2) (3) 8

.
2 (11/ 2) 315

Γ Γ =
Γ

(c) The given integral = 
/ 2 4

0
2 cos .d

π
θ θ∫  Thus, letting 2u – 1 = 0, 2υ – 1 = 4 in Problem 15.13, the value is 

2 (1 / 2) (5 / 2) 3
.

2 (3) 8

πΓ Γ =
Γ



CHAPTER 15  Gamma and Beta Functions 397

15.15. Prove 
/ 2 / 2

0 0

1 3 5 ( 1)
sin cos ( ) if

2 4 6 2
p p p

d d a p
p

π π πθ θ θ θ ⋅ ⋅ −= =
⋅ ⋅∫ ∫
L

L
L

L
is an even positive integer and 

(b)
2 4 6 ( 1)

1 3 5

p

p

⋅ ⋅ −
⋅ ⋅
L
L
L

L
 if p is an odd positive integer.

From Problem 15.13, with 2u – 1 = p, 2υ – 1 = 0, we have

/ 2

0

1 1
( 1)

2 2sin
1

2 ( 2)
2

p

p
d

p

π
θ θ

⎡ ⎛ ⎞Γ + Γ⎜ ⎟⎢⎣ ⎝ ⎠=
⎡ ⎤Γ +⎢ ⎥⎣ ⎦

∫

(a) If p = 2r, the integral equals

1 3 1 1 11 .( 1)
(2 1)(2 3) 1 1 3 5 (2 1)2 2 2 2 22

2 ( 1) 2 ( 1) 2 (2 2) 2 2 2 4 6 2 2

r rr
r r r

r r r r r r

π π
⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞ − − Γ ΓΓ + Γ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ − − ⋅ ⋅ −⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠= = =

Γ + − − ⋅ ⋅

L
L L

L L

L & L L

LL

(b) If p = 2r + 1, the integral equals

1
( 1)

( 1) 1 2 4 6 22
3 1 1 1 1 3 5 (2 1)

2 2
2 2 2 2

r
r r r

r
r r r

π

π

⎛ ⎞Γ + Γ⎜ ⎟ − ⋅ ⋅ ⋅⎝ ⎠ = =
⋅ ⋅ +⎛ ⎞ ⎛ ⎞⎛ ⎞Γ + + −⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

L L
LL

L

L
L

L

In both cases, 
/ 2 / 2

0 0
sin cos ,as seen by letting / 2 .p pd d

π π
θ θ θ θ θ π φ= = −∫ ∫

15.16. Evaluate (a) 
/ 2 6

0
cos ,d

π
θ θ∫  (b) 

/ 2 3 2

0
sin cos ,d

π
θ θ θ∫  and (c) 

2 8

0
sin .d

π
θ θ∫

(a) From Problem 15.15, the integral equals 
1 3 5 5

2 4 6 32

π⋅ ⋅ =
⋅ ⋅

 [compare Problem 15.14(a)].

(b) The integral equals

/ 2 / 2 / 23 2 3 5

0 0 0

2 2 4 2
sin (1 sin ) sin sin

1 3 1 3 5 15
d d d

π π π
θ θ θ θ θ θ θ ⋅− = − = − =

⋅ ⋅ ⋅∫ ∫ ∫
The method of Problem 15.14(b) can also be used.

(c) The given integral equals 
/ 2 8

0

1 3 5 7 35
4 sin 4 .

2 4 6 8 2 64
d

π π πθ θ ⋅ ⋅ ⋅⎛ ⎞= =⎜ ⎟⋅ ⋅ ⋅⎝ ⎠∫

15.17. Given 
1

0
,

1 sin

px
dx

x p

π
π

−∞
=

+∫  show that ( ) (1 ) ,
sin

p p
p

π
π

Γ Γ − =  where 0 < p < 1.

Letting or ,
1 1

x y
y x

x y
= =

+ −
 the given integral becomes

1 1

0
(1 ) ( ,1 ) ( ) (1 )p py y dy B p p p p− −− = − = Γ Γ −∫

and the result follows.

15.18. Evaluate 
40

.
1

dy

y

∞

+∫
Let y4 = x. Then the integral becomes ( )

3 / 4

0

1 2

4 1 4sin / 4 4

x
dx

x

π π
π

−∞
= =

+∫  by Problem 15.17, with 

1
.

4
p =  The result can also be obtained by letting y2 = tan θ.
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15.19. Show that 
2 3 3

0

16
8 .

9 3
x x dx

π− =∫
Letting x3 – 8y or x = 2y1/3, the integral becomes

1 11/ 3 2 / 3 1/ 3 1/ 3

0 0

2 8 8 2 4
2 8(1 ). (1 ) ,

3 3 3 3 3

2 4
8 8 1 2 8 163 3 .
3 (2) 9 3 3 9 sin / 3 9 3

y y y dy y y dy B

π π
π

− − ⎛ ⎞− = − = ⎜ ⎟⎝ ⎠
⎛ ⎞Γ Γ⎜ ⎟ ⎛ ⎞ ⎛ ⎞⎝ ⎠= = Γ Γ = =⎜ ⎟ ⎜ ⎟Γ ⎝ ⎠ ⎝ ⎠

∫ ∫

Stirling’s formula

15.20. Show that for large positive integers , ! 2 n nn n n n eπ −=  approximately.

By definition, 1

0
( ) .z tz t e dt

∞ − −Γ = ∫  Let lfz = x + 1, then

In In

0 0 0
( 1)

xx t t t t x tx t e dt e dt e dt
∞ ∞ ∞− − + − +Γ + = = =∫ ∫ ∫  (1)

For a fixed value of x the function x, ln t – t has a relative maximum for t = x (as is demonstrated by ele-
mentary ideas of calculus). The substitution t = x + y yields

y
In 1+

In(x+y)-y x( 1)
x y

x x x x

x x
x e e dy x e e dy

⎛ ⎞−∞ ∞ ⎜ ⎟− − ⎝ ⎠
− −

Γ + = =∫ ∫  (2)

To this point the analysis has been rigorous. The following formal steps can be made rigorous by incor-
porating appropriate limiting procedures; however, because of the difficulty of the proofs, they have been 
omitted.

In Equation (2) introduce the logarithmic expansion

l
2 3

2 3
n 1

2 3

y y y y

x x x x

⎛ ⎞+ = − + − +⎜ ⎟⎝ ⎠
 . . . (3)

and also let

,y x dy x dυ υ= =

Then
2 3/ 2 ( / 3)( 1) xx x

x
x x e x e dυ υ υ

∞ − + −−

−
Γ + = ∫ LL  (4)

For large values of x
2 / 2( 1) 2x x x x

x
x x e x e d x e xυ υ π

∞− − −

−
Γ + ≈ =∫

When x is replaced by integer values n, then the Stirling relation

! ( 1) 2 x xn x x x eπ −= Γ + ≈   (5)

is obtained.
It is of interest that from Equation (4) we can also obtain the result (12) on Page 391. See Problem 15.72.

Dirichlet integrals

15.21. Evaluate 1 1 1y

V

I x y z dx dy dzα β− − −= ∫∫∫ , where V is the region in the first octant bounded by the sphere x2 + y2

+ z2 = 1 and the coordinate planes.
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Let x2 = u, y2 = υ, z2 = w. Then

( 1) / 2 ( 1) / 2 ( 1) / 2

( / 2) 1 ( / 2) 1 ( / 2) 1

2 2 2

1

8

y du d dw
I u w

u w

u w du d dw

α β

ℜ

α β γ

ℜ

υυ
υ

υ υ

− − −

− − −

=

=

∫∫∫

∫∫∫
 (1)

where ℜ is the region in the uυw space bounded by the plane 
u + υ + w = 1 and the uυ, υw, and uw planes, as in Figure 
15.2. Thus,

I u w y

w

u
= − − − −

=

− −

=

−

∫
1

8
2 1 2 1 2 1

0

1

0

1
( / ) ( / ) ( / )α βυ

υ
υ

uu

u
du d dw

u u

∫∫ =

− −= − −

0

1

2 1 2 11

4
1

υ

γ
υ υα β γ( / ) ( / ) /( ) 22

0

1

0

1

2 1

0

1
2 11

4

υ

α β

υ

γ
υ

=

−

=

−

=

−

∫∫

∫=

u

u

u

du d

u( / ) ( / ) (( ) /1 2

0

1
− −{ }=

−

∫ u d du
u

υ υγ

υ

 (2)

Letting υ = (1 – u)t, we have

1 1( / 2) 1 / 2 ( ) / 2 ( / 2) 1 / 2

0 0

( ) / 2

(1 ) (1 ) (1 )

( / 2) ( / 2 1)
(1 )

[( ) / 2 1]

u

t
u d u t t dt

u

β γ β γ β γ

υ

β γ

υ υ υ

β γ
β γ

− − + −

= =

+

− − = − −

Γ Γ += −
Γ + +

∫ ∫

so that Equation (2) becomes

11 ( / 2) ( ) / 2

0

1 ( / 2) ( / 2 1)
(1 )

4 [( ) / 2 1]

1 ( / 2) ( / 2 1) ( / 2) ( ) / 2 1) ( / 2) ( / 2) ( / 2)
.

4 [( ) / 2 1] [( ) / 2 1] 8 [( ) / 2 1]

u
I u u duα β γβ γ

γ β γ
β γ α β γ α β γ

γ β γ α β γ α β

− +

=

Γ Γ += −
Γ + +

Γ Γ + Γ Γ + + Γ Γ Γ= =
Γ + + Γ + + + Γ + + +

∫
 (3)

where we have used (γ/2) Γ(γ/2) = Γ(γ/2 + 1).
The integral evaluated here is a special case of the Dirichlet integral Equation (20), Page 393. The general 

case can be evaluated similarly.

15.22. Find the mass of the region bounded by x2 + y2 + z 2 = a2 if the density is σ = x2y2z2.

The required mass 2 2 28 ,
V

x y z dx dy dz= ∫∫∫  where V is the region in the first octant bounded by the sphere 

x2 + y2 + z2 = a2 and the coordinate planes.
In the Dirichlet integral, Equation (20), Page 393, let b = c = a, p = q = r = 2, and α = β = γ = 3. Then the 

required result is
3 3 3 9(3 / 2) (3 / 2) (3 / 2) 4

8.
2 2 2 (1 3 / 2 3 / 2 3 / 2) 945

a a a sπ⋅ ⋅ Γ Γ Γ =
⋅ ⋅ Γ + + +

Miscellaneous problems

15.23. Show that 
2

1 4

0

{ (1 / 4)}
1 .

6 2
x dx

π
Γ− =∫

Let x4 = y. Then the integral becomes

2
1 3 / 4 1/ 2

0

1 1 (1 / 4) (3 / 2) { (1 / 4)}
(1 ) .

4 4 (7 / 4) 4 (1.4) (3 / 4)
y y dy

π− Γ Γ Γ− = =
Γ Γ Γ∫

From Problem 15.17, with p = 1/4, Γ(1/4)Γ(3/4) = π 2 , so that the required result follows.

Figure 15.2
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15.24. Prove the duplication formula 22p–1 Γ(p)Γ(p + 
1

2
) = π Γ(2p).

Let
/ 2 / 22 2

0 0
sin , sin 2 .p pI x dx J x dx

π π
= =∫ ∫

Then

1
1 1 1 2,
2 2 2 2 ( 1)

p
I B p

p

π⎛ ⎞Γ +⎜ ⎟⎛ ⎞ ⎝ ⎠= + =⎜ ⎟⎝ ⎠ Γ +
.

Letting 2x = u, we find
/ 22 2

0 0

1
sin sin

2
p pJ u du u du I

π π
= = =∫ ∫

But
/ 2 / 22 2 2 2

0 0

2

2 1

2 1

(2sin cos ) 2 sin cos

1
2

21 1
2 ,

2 2 (2 1)

p p p p

p

p

J x x dx x x dx

p

B p P
p

π π

−

−

= =

⎧ ⎫⎛ ⎞Γ +⎜ ⎟⎨ ⎬⎝ ⎠⎛ ⎞ ⎩ ⎭= + + =⎜ ⎟⎝ ⎠ Γ +

∫ ∫

Then, since I = J,
2

2 1 11 2
22

2 ( ) 2 (2 )

p pp

p p p p

π
− ⎧ ⎫⎛ ⎞⎛ ⎞ Γ +⎜ ⎟⎨ ⎬Γ +⎜ ⎟ ⎝ ⎠⎝ ⎠ ⎩ ⎭=

Γ Γ
and the required result follows. (See Problem 15.74, where the duplication formula is developed for the simpler 
case of integers.)

15.25. Show that 
2

/ 2

0
2

{ (1 / 4)}
.

1 4
1 sin

2

dπ φ
πφ

Γ=
−

∫

Consider
2

/ 2 / 2 1/ 2

0 0

11
41 1 1 4cos ,

32 4 2cos 2 22
4

d
I d B

π π
πθ θ θ

θ π
−

⎧ ⎫⎛ ⎞⎛ ⎞ Γ⎜ ⎟⎨ ⎬Γ⎜ ⎟ ⎝ ⎠⎛ ⎞ ⎝ ⎠ ⎩ ⎭= = = = =⎜ ⎟⎝ ⎠ ⎛ ⎞Γ⎜ ⎟⎝ ⎠

∫ ∫

as in Problem 15.23.

But
/ 2 / 2 / 2

0 0 02 2 2
.

cos cos / 2 sin / 2 1 2sin / 2

d d d
I

π π πθ θ θ
θ θ θ θ

= = =
− −

∫ ∫ ∫

Letting 2  sin θ /2 = sinφ in this last integral, it becomes 
/ 2

0
2

2 ,
1

1 sin
2

dπ φ

φ−
∫  from which the result 

follows.

15.26. Prove that 
0

cos
,0 1.

2 ( ) cos( / 2)p

x
dx p

p px

π
π

∞
= < <

Γ∫

We have 1

0

1 1
.

( )
p xu

p
u e du

px

∞ − −=
Γ ∫  Then

1

0 0 0

20

cos 1
cos

( )

1

( ) 1

p xu

p

p

x
dx u e x du dx

px

u
du

p u

∞ ∞ ∞ − −

∞

=
Γ

=
Γ +

∫ ∫ ∫

∫
 (1)

where we have reversed the order of integration and used Problem 12.22.
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Letting u2 = υ in the last integral, we have, by Problem 15.17,

( 1) / 2

20 0

1

2 1 2sin( 1) / 2 2cos / 21

p pu
du d

p pu

υ π πυ
υ π π

−∞ ∞
= = =

+ ++∫ ∫  (2)

Substitution of Equation (2) in Equation (1) yields the required result.

15.27. Evaluate 2

0
cos .x dx

∞

∫
Letting x2 = y, the integral becomes 

0

1 cos 1 1
/ 2

12 2 2
2 cos / 4

2

y
dy

y

π π
π

∞ ⎛ ⎞= =⎜ ⎟⎛ ⎞⎜ ⎟Γ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∫  by Problem 15.26.

This integral and the corresponding one for the sine [see Problem 15.68(a)] are called Fresnel integrals.

SUPPLEMENTARY PROBLEMS

The gamma function

15.28. Evaluate (a) 
(7)

,
2 (4) (3)

Γ
Γ Γ

 (b) 
(3) (3 / 2)

,
(9 / 2)

Γ Γ
Γ

 and (c) (1 / 2) (3 / 2) (5 / 2).Γ Γ Γ

Ans. (a) 30 (b) 16/105 (c) 3 / 23

8
π

15.29. Evaluate (a) 4

0
,xx e dx

∞ −∫  (b) 6 3

0
,xx e dx

∞ −∫  and (c) 
22 2

0
.xx e dx

∞ −∫

Ans. (a) 24 (b) 
80

243
 (c) 

2

16

π

15.30. Find (a) 
2

0
,xe dx

∞ −∫   (b) 4

0
xe

∞

∫ e ,x dx−  and (c) 
53 2

0
.yy e dy

∞ −∫

Ans. (a) 
1 1

3 3
⎛ ⎞Γ⎜ ⎟⎝ ⎠

 (b) 
3

2

π
 (c) 

5

(4 / 5)

5 16

Γ

15.31. Show that 
0

, 0.
8

ste
dt s

t

π−∞
= >∫

15.32. Prove that 
1

1

0

1
( ) ln , 0.dx

x

υ

υ υ
−

⎛ ⎞Γ = >⎜ ⎟⎝ ⎠∫

15.33. Evaluate (a) 
1 4

0
(ln ) ,x dx∫  (b) 

1 3

0
( ln ) ,x x dx∫  and (c) 

1
3

0
ln(1/ )x dx.∫

Ans. (a) 24 (b) –3/128 (c) 
1 1

3 3
⎛ ⎞Γ⎜ ⎟⎝ ⎠

15.34. Evaluate (a) Γ(–7/2) and (b) Γ(–1/3).

Ans. (a) (16 π )/105 (b) – 3 Γ(2/3)

15.35. Prove that lim
x m→−

Γ(x) = �, where m = 0, 1, 2, 3, . . . .
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15.36. Prove that if m is a positive integer, 
1 ( 1) 2

2 1 3 5 (2 1)

m m

m
m

π−⎛ ⎞Γ − + =⎜ ⎟⎝ ⎠ ⋅ ⋅ −LL
.

15.37. Prove that 
0

(1) lnxe x dx
∞ −Γ′ = ∫  is a negative number (it is equal to –γ, where γ = 0.577215 . . . is called 

Euler’s constant, as in Problem 11.49).

The beta function

15.38. Evaluate (a) B(3,5), (b) B(3/2,2), and (c) B(1/3, 2/3). 

Ans. (a) 1/105 (b) 4/15 (c) 2 / 3π

15.39. Find (a) 
1 2 3

0
(1 ) ,x x dx−∫  (b) 

1

0
(1 ) / ,x x dx−∫  and (c) 

1 2 3 / 2

0
(4 ) .x dx−∫

Ans. (a) 1/60 (b) π/2 (c) 3π

15.40. Evaluate (a) 
4 3 / 2 5 / 2

0
(4 )u u du−∫  and (b) 

3

0 2
.

3

dx

x x−
∫

Ans. (a) 12π (b) π

15.41. Prove that 
2

0 4 4

{ (1 / 4)}
.

4 2

a dy

aa y π
Γ=

−
∫

15.42. Evaluate (a) 
/ 2 4 4

0
sin cos d

π
θ θ θ∫  and (b) 

2 6

0
cos .d

π
θ θ∫

Ans. (a) 3π/256 (b) 5π/8

15.43. Evaluate (a) 5

0
sin d

π
θ θ∫  and (b) 

/ 2 5 2

0
cos sin .d

π
θ θ θ∫

Ans. (a) 16/15 (b) 8/105

15.44. Prove that tanθ
0

π /2

∫ dθ = π / 2.

15.45. Prove that (a) 
x dx

1+ x60

∞

∫ = π
3 3

 and (b) 
y2 dy

1+ y40

∞

∫ = π
2 2

.

15.46. Prove that 
2

3 2 / 3 1/ 3

2
.

3 3

x

x

e
dx

ae b a b

π∞

−∞
=

+∫  where a, b > 0.

15.47. Prove that 
e2 x

(e3x + 1)−∞

∞

∫ dx = 2π
9 3

. [Hint: Differentiate with respect to Problem 15.46(b).]

15.48. Use the method of Problem 12.31 to justify the procedure used in Problem 15.11.

Dirichlet integrals

15.49. Find the mass of the region in the xy plane bounded by x + y = 1, x = 0, y = 0 if the density is σ = xy.

Ans. π/24
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15.50. Find the mass of the region bounded by the ellipsoid 
x2

a2 + y2

b2 + z2

c2 = 1  if the density varies as the square of 
the distance from its center.

Ans.
πabck

30
(a2 + b2 + c2 ), k =  constant of proportionality

15.51. Find the volume of the region bounded by x2/3 + y2/3 + z2/3 = 1.

Ans. 4π/35

15.52. Find the centroid of the region in the first octant bounded by x2/3 + y2/3 + z2/3 = 1.

Ans. x  = y  = z  = 21/128

15.53. Show that the volume of the region bounded by xm + ym + zm = am, where m > 0, is given by 
8{Γ(1 / m)}3

3m2Γ(3 / m)
a3.

15.54. Show that the centroid of the region in the first octant bounded by xm + ym + zm = am, where m > 0, is given 

by x = y = z = 3Γ(2 / m)Γ(3 / m)

4Γ(1 / m)Γ(4 / m)
a.

Miscellaneous problems

15.55. Prove that (x − a)p (b − x)q dx = (b − a)p + q +1 B(p + 1, q + 1)
a

b

∫ , where p > –1, q > –1, and b > a. [Hint: 

Let x – a = (b – a)y.]

15.56. Evaluate (a) 
dx

(x − 1)(3 − x)1

3

∫  and (b) (7 − x)(x − 3)4 dx
3

7

∫ .

Ans. (a) π (b) 
2{Γ(1 / 4)}2

3 π

15.57. Show that 
{Γ(1 / 3)}2

Γ(1 / 6)
= π 23

3
.

15.58. Prove that B(u,υ) = 1

2

xu−1 + xυ−1

(1 + x)u+υ0

1

∫ dx, where u, υ > 0. [Hint: Let y = x/(1 + x).]

15.59. If 0 < p < 1, prove that tan p θ dθ
0

π /2

∫ = π
2

sec
pπ
2

.

15.60. Prove that 
xu−1(1 − x)υ−1

(x + r)u+υ0

1

∫ = B(u,υ)

ru (1 + r)u+υ , where u, υ and r are positive constants. [Hint: Let x = (r + 1)y/
(r + y).]

15.61. Prove that 
sin2u−1 θ cos2υ−1 θdθ

(a sin2 θ + b cos2 θ )u+υ0

π /2

∫ = B(u,υ)

2aυbu  where u, υ > 0. (Hint: Let x = sin2 θ in Problem 15.60 

and choose r appropriately.)

15.62. Prove that 
dx

xx0

1

∫ = 1

11 + 1

22 + 1

33 + . . . .
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15.63. Prove that for m = 2, 3, 4, . . . , sin
π
m

sin
2π
m

sin
3π
m

L sin
(m − 1)π

m
= m

2m−1L . [Hint: Use the factored form 

xm – 1 = (x – 1)(x –α1) (x – α2) . . . (x – αn–1), divide both sides by x – 1, and consider the limit as x → 1.]

15.64. Prove that ln lnsin /
/

x dx = −∫ π
π

2 2
0

2
, using Problem 15.63. (Hint: Take logarithms of the result in 

Problem 15.63 and write the limit as m → � as a definite integral.)

15.65. Prove that Γ 1

m
⎛
⎝⎜

⎞
⎠⎟ Γ 2

m
⎛
⎝⎜

⎞
⎠⎟ Γ 3

m
⎛
⎝⎜

⎞
⎠⎟ L Γ (m − 1)

m
= (2π )(m−1)/2

m
.L [Hint: Square the left-hand side and use 

Problem 15.63 and Equation (11a), Page 391.]

15.66. Prove that ln InΓ( ) ( ).x dx =∫
1

2
2

0

1
π  (Hint: Take logarithms of the result in Problem 15.65 and let m → �.)

15.67. (a) Prove that 
sin x

x p dx = π
2Γ(p)sin(pπ / 2)0

∞

∫ , 0 < p < 1.  (b) Discuss the cases p = 0 and p = 1.

15.68. Evaluate (a) sin x2dx
0

∞

∫  and (b) x cos x3dx
0

∞

∫
Ans. (a) 

1

2
π / 2 (b) 

π
3 3 Γ(1 / 3)

15.69. Prove that 
x x

x
dx

p−∞

+
= −∫

1

0

2

1

ln π csc pπ cot pπ, 0 < p < 1.

15.70. Show that 
ln x

x
dx40

2

1

2

16+
= −∞

∫
π

15.71. If a > 0, b > 0, and 4ac > b2, prove that e−(ax2 +bxy+cy2 )dx dy = 2π
4ac − b2−∞

∞

∫−∞

∞

∫ .

15.72. Obtain Equation (12) on Page 391 from the result (4) of Problem 15.20. [Hint: Expand 
3 /(3 )neυ +  . . . in a 

power series and replace the lower limit of the integral by –�.]

15.73. Obtain the result (15) on Page 392. [Hint: Observe that 
1

( ) ( !)x x
x

Γ = Γ + ; thus, ln Γ(x) = ln Γ (x + 1) – ln x,

and
Γ′(x)

Γ(x)
= Γ′(x + 1)

Γ(x + 1)
− 1

x
. Furthermore, according to Equation (6), page 390, Γ(x + !) = lim

k→∞

k!k x

(x + 1)L (x + k)L
.

Now take the logarithm of this expression and then differentiate. Also, recall the definition of the Euler 
constant γ.]

15.74. The duplication formula (13a), Page 392, is proved in Problem 15.24. For further insight, develop it for positive 

integers; i.e., show that 22n−1Γ n + 1

2
⎛
⎝⎜

⎞
⎠⎟ Γ(n) = Γ(2n) π . [Hint: Recall that 

1
,

2
π⎛ ⎞Γ =⎜ ⎟⎝ ⎠

 then show that 

Γ n + 1

2
⎛
⎝⎜

⎞
⎠⎟ Γ 2n + 1

2
⎛
⎝⎜

⎞
⎠⎟ = (2n − 1)L 5 ⋅ 3 ⋅1

2n π .
L

 Observe that 
Γ(2n + 1)

2n Γ(n + 1)
= (2n!)

2n n!
= (2n − 1) . . . 5 ⋅ 3 ⋅1 .

Now substitute and refine.
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CHAPTER 16

Functions of a Complex 
Variable

Ultimately, it was realized that to accept numbers that provided solutions to equations such as x2 + 1 = 0 was 
no less meaningful than had been the extension of the real number system to admit a solution for x + 1 = 0 or 
roots for x2 – 2 = 0. The complex number system was in place around 1700, and by the early nineteenth century, 
mathematicians were comfortable with it. Physical theories took on a completeness not possible without this 
foundation of complex numbers and the analysis emanating from it. The theorems of the differential and integral 
calculus of complex functions introduce mathematical surprises as well as analytic refinement. This chapter is 
a summary of the basic ideas.

Functions

If to each of a set of complex numbers which a variable z may assume there corresponds one or more values 
of a variable w, then w is called a function of the complex variable z, written w = f (z). The fundamental op-
erations with complex numbers have already been considered in Chapter 1.

A function is single-valued if for each value of z there corresponds only one value of w; otherwise, it is multiple-
valued or many-valued. In general, we can write w = f (z) = u(x, y) + iυ(x, y), where u and υ are real functions of 
x and y.

EXAMPLE. w = z2 = (x + iy)2 = x2 – y2 + 2ixy = u + iυ so that u(x, y) = x2 – y2, υ(x, y) = 2xy. These are called 
the real and imaginary parts of w = z2, respectively.

In complex variables, multiple-valued functions often are replaced by a specially constructed single-
valued function with branches. This idea is discussed in a later paragraph.

EXAMPLE. Since e2πki = 1, the general polar form of z is z = ρ ei(θ+2πk). This form and the fact that the loga-
rithm and exponential functions are inverse leads to the following definition of ln z:

ln z = ln ρ + (θ + 2πk)i k = 0, 1, 2, . . . , n . . . 

Each value of k determines a single-valued function from this collection of multiple-valued functions. These 
are the branches from which (in the realm of complex variables) a single-valued function can be constructed.

Limits and Continuity

Definitions of limits and continuity for functions of a complex variable are analogous to those for a real variable. 
Thus, f (z) is said to have the limit l as z approaches z0 if, given any � > 0, there exists a δ > 0 such that ⏐f (z) – l⏐
< � whenever 0 < ⏐z – z0⏐ < δ.

Similarly, f (z) is said to be continuous at z0 if, given any � > 0, there exists a δ > 0 such that ⏐f (z) – f (z0)⏐ < 
� whenever ⏐z – z0⏐ < δ. Alternatively, f (z) is continuous at z0 if lim

z→z0

f (z) = f (z0 ).
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Note: While these definitions have the same appearance as in thereal variable setting, remember that 
⏐z – z0⏐ < δ means

(x − x0 + i(y − y0 ) = (x − x0 )2 (y − y0 )2 < δ

Thus, there are two degrees of freedom as (x, y) → (x0, y0).

Derivatives

If f (z) is single-valued in some region of the z plane, the derivative of f (z), denoted by f ′(z), is defined as

lim
Δz→0

( f (z + Δ z) − f (z)

Δ z
 (1)

provided the limit exists independent of the manner in which Δz → 0. If the limit (1) exists for z = z0, then 
f (z) is called analytic at z0. If the limit exists for all z in a region ℜ, then f (z) is called analytic in ℜ. In order 
to be analytic, f (z) must be single-valued and continuous. The converse, however, is not necessarily true.

We define elementary functions of a complex variable by a natural extension of the corresponding functions 
of a real variable. Where series expansions for real functions f (x) exist, we can use as definition the series with 
x replaced by z. The convergence of such complex series has already been considered in Chapter 11.

EXAMPLE 1. We define ex = 1 + z + z2

2!
+ z3

3!
+ . . . , sin z = z − z3

3!
+ z5

5!
− z7

7!
+ . . . , and 

cos z = 1 − z2

2!
+ z4

4!
− z6

6!
+  . . . . From these we can show that ex = ex + iy = ex (cos y + sin y), as well as numer-

ous other relations.

Rules for differentiating functions of a complex variable are much the same as for those of real variables. 

Thus,
d

dz
(zn ) = nzn − 1,

d

dz
(sin z) = cos z  and so on.

Cauchy-Riemann Equations

A necessary condition that w = f (z) = u(x, y) + iυ(x, y) be analytic in a region ℜ is that u and υ satisfy the 
Cauchy-Riemann equations

∂u

∂x
= ∂υ

∂y
,

∂u

∂y
= − ∂υ

∂x
 (2)

(see Problem 16.7). If the partial derivatives in Equations (2) are continuous in ℜ, the equations are sufficient 
conditions that f (z) be analytic in ℜ.

If the second derivatives of u and υ with respect to x and y exist and are continuous, we find by differentiat-
ing Equations (2) that

∂2u

∂x2 = ∂2u

∂y2 = 0,
∂2υ
∂x2 + ∂2υ

∂y2 = 0  (3)

Thus, the real and imaginary parts satisfy Laplace’s equation in two dimensions. Functions satisfying 
Laplace’s equation are called harmonic functions.

Integrals

Let f (z) be defined, single-valued, and continuous in a region ℜ. We define the integral of of f (z) along some 
path C in ℜ from point z1 to point z2, where z1 = x1 + iy1, z2 = x2 + iy 2, as

f (z) dz = (u + iυ) (dx + i dy) = u dx
(x1 , y1 )

(x2 , y2 )

∫(x1 , y1 )

(x2 , y2 )

∫c∫ − υ dy + i υ dx + u dy
(x1 , y1 )

(x2 , y2 )

∫
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With this definition, the integral of a function of a complex variable can be made to depend on line integrals 
for real functions already considered in Chapter 10. An alternative definition based on the limit of a sum, as 
for functions of a real variable, can also be formulated and turns out to be equivalent to the one aforemen-
tioned.

The rules for complex integration are similar to those for real integrals. An important result is

f (z) dz
c∫ ≤ f (z) dz

c∫ ≤ M ds = ML
c∫  (4)

where M is an upper bound of ⏐f (z)⏐ on C; i.e., ⏐f (z)⏐ < M, and L is the length of the path C.
Complex function integral theory is one of the most esthetically pleasing constructions in all of mathemat-

ics. Major results are outlined as follows.

Cauchy’s Theorem

Let C be a simple closed curve. If f (z) is analytic within the region bounded by C as well as on C, then we 
have Cauchy’s theorem that

f (z) dz ≡
c∫ Fc

f (z) dz = 0  (5)

where the second integral emphasizes the fact that C is a simple closed curve.
Expressed in another way, Equation (5) is equivalent to the statement that f (z) dz

z1

z2

∫ has a value inde-

pendent of the path joining z1 and z2. Such integrals can be evaluated as F(z2) −F(z1), where F ′(z) = f (z).
These results are similar to corresponding results for line integrals developed in Chapter 10.

EXAMPLE. Since f (z) = 2z is analytic everywhere, we have for any simple closed curve C

Fc
2z dz = 0

Also,

2z dz = z2

2i

1 + i

∫
2i

1 + i

= (1 + i)2 (2i)2 = 2i + 4

Cauchy’s Integral Formulas

If f (z) is analytic within and on a simple closed curve C and a is any point interior to C, then

f (a) = 1

2π i FC

f (z)

z − a
dz  (6)

where C is traversed in the positive (counterclockwise) sense.
Also, the nth derivative of f (z) at z = a is given by

f (n) (a) = n!

2π i FC

f (z)

(z − a)n + 1 dz  (7)

These are called Cauchy’s integral formulas. They are quite remarkable because they show that if the 
function f (z) is known on the closed curve C then it is also known within C, and the various derivatives at 
points within C can be calculated. Thus, if a function of a complex variable has a first derivative, it has all 
higher derivatives as well. This, of course, is not necessarily true for functions of real variables.
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Taylor’s Series

Let f (z) be analytic inside and on a circle having its center at z = a. Then for all points z in the circle we have 
the Taylor series representation of f (z) given by

f (z) = f (a) + f ′(a) (z − a) + f ′′(a)
2!

(z − a)2 + f ′′′(a)
3!

(z − a)3 + . . . (8)

See Problem 16.21.

Singular Points

A singular point of a function f (z) is a value of z at which f (z) fails to be analytic. If f (z) is analytic every-
where in some region except at an interior point z = a, we call z = a an isolated singularity of f (z).

EXAMPLE. f (z) = 1

(z − 3)2 ,  then z = 3 is an isolated singularity of f (z).

EXAMPLE. The function f (z) = sin z

z
has a singularity at z = 0. Because lim

z→0
lim  is finite, this singularity is 

called a removable singularity.

Poles

If f (z) = φ(z)

(z − a)n , φ(a) ≠ 0, where φ(z)  is analytic everywhere in a region including z = a, and if n is a posi-

tive integer, then f (z) has an isolated singularity at z = a, which is called a pole of order n. If n = 1, the pole 
is often called a simple pole; if n = 2, it is called a double pole, and so on.

Laurent’s Series

If f (z) has a pole of order n at z = a but is analytic at every other point inside and on a circle C with center at 
a, then (z – a)n f (z) is analytic at all points inside and on C and has a Taylor series about z = a so that

f (z) = a−n

(z − a)n +
a−n +1

(z − a)n −1 + . . . + a−1

z − a
+ a0 + a1 (z − a) + a2 (z − a)2 + . . . (9)

This is called a Laurent series for f (z). The part a0 + a1 (z – a) + a2(z – a)2 + . . . is called the analytic part.
while the remainder consisting of inverse powers of z – a is called the principal part. More generally, we 

refer to the series ak (z − a)k

k = −∞

∞

∑ as a Laurent series, where the terms with k < 0 constitute the principal part. 

A function which is analytic in a region bounded by two concentric circles having center at z = a can always 
be expanded into such a Laurent series (see Problem 16.92).

It is possible to define various types of singularities of a function f (z) from its Laurent series. For example, 
when the principal part of a Laurent series has a finite number of terms and a–n � 0 while a–n –1, a–n –2, . . . are 
all zero, then z = a is a pole of order n. If the principal part has infinitely many terms, z = a is called an es-
sential singularity or sometimes a pole of infinite order.

EXAMPLE. The function 1/
2

1 1
1

2!
ze

z z
= + + + . . . has an essential singularity at z = 0.
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Branches and Branch Points

Another type of singularity is a branch point. These points play a vital role in the construction of single-
valued functions from ones that are multiple-valued, and they have an important place in the computation of 
integrals.

In the study of functions of a real variable, domains were chosen so that functions were single-valued. 
This guaranteed inverses and removed any ambiguities from differentiation and integration. The applications 
of complex variables are best served by the approach illustrated here. It is in the realm of real variables and 
yet illustrates a pattern appropriate to complex variables.

Let y2 = x, x < 0, then y = ± x . In real variables, two functions f1 and f2 are described by y = + x  on 
x > 0 and y = – x  on x > 0, respectively. Each of them is single-valued.

An approach that can be extended to complex variables results by defining the positive x axis (not includ-
ing zero) as a cut in the plane. This creates two branches f1 and f2 of a new function on a domain called the 
Riemann axis. The only passage joining the spaces in which the branches f1 and f2, respectively, are defined 
is through 0. This connecting point, zero, is given the special name branch point. Observe that two points x*
in the space of f1 and x** in that of f2 can appear to be near each other in the ordinary view but, from the 
Riemannian perspective, are not. (See Figure 16.1.)

Figure 16.1

The preceding real variables construction suggests one for complex variables illustrated by w = z1/2.
In polar coordinates, e2πi = 1; therefore, the general representation of w = z1/2 in that system is w = ρ1/2 ei(θ + 2πk)/2,

k = 0, 1.
Thus, this function is double-valued.
If k = 0, then w1 = ρ1/2 · eiθ/2, 0 < θ ≤ 2π, ρ > 0
If k = 1, then w2 = ρ1/2 · ei(θ+ 2 π)/2 = ρ1/2 · eiθ/2eiπ , 2ρ π θ π ρ1/2= − < ≤ 4 , > 0.
Thus, the two branches of w are w1 and w2, where w1 = –w2. (The double-valued characteristic of w is il-

lustrated by noticing that as z traverses a circle, C: ⏐z⏐ = ρ through the values � to 2π; the functional values 
run from ρ1/2 ei�/2 to ρ1/2eπi. In other words, as z navigates the entire circle, the range variable only moves 
halfway around the corresponding range circle. In order for that variable to complete the circuit, z would 
have to make a second revolution. Thus, we would have coincident positions of z giving rise to distinct values 
of w. For example, z1 = e(π/2)i are and z2 = e(π/2 + 2π)i are coincident points on on the unit circle. The distinct 

functional values are z1
1/2 = 2

2
(1 + i) and z2

1/2 = − 2

2
(1 + i).

The following abstract construction replaces the multiple-valued function with a new single-valued one.
Make a cut in the complex plane that includes all of the positive x axis except the origin. Think of two 

planes P1 and P2, the first one of infinitesimal distance above the complex plane and the other infinitesimally 
below it. The point 0 which connects these spaces is called a branch point. The planes and the connecting 
point constitute a Riemann surface, and w1 and w2 are the branches of the function each defined in one of the 
planes. (Since the space of complex variables is the complex plane, this Riemann surface may be thought of 
as a flight of fancy that supports a rigorous analytic construction.)
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To visualize this Riemann surface and perceive the single-valued character of the new function in it, first 
think of duplicates C1 and C2 of the domain circle C: ⏐z⏐ = ρ in the planes P1 and P2, respectively. Start at 
θ = � on C1, and proceed counterclockwise to the edge U2 of the cut of P1. (This edge corresponds to θ = 2π.)
Paste U2 to L1, the initial edge of the cut on P2. Transfer to P2 through this join and continue on C2. Now, 
after a complete counterclockwise circuit of C2, we reach the edge L2 of the cut. Pasting L2 to U1 provides 
passage back to P1 and makes it possible to close the curve in the Riemann plane. See Figure 16.2.

Figure 16.2

Note that the function is not continuous on the positive x axis. Also, the cut is somewhat arbitrary. Other 
rays and even curves extending from the origin to infinity can be employed. In many integration applications 
the cut θ = πi proves valuable. On the other hand, the branch point (0 in this example) is special. If another 
point, z0 � 0, were chosen as the center of a small circle with radius less than ⏐z0⏐, then the origin would lie 
outside it. As a point z traversed its circumference, its argument would return to the original value, as would 
the value of w. However, for any circle that has the branch point as an interior point, a similar traversal of the 
circumference will change the value of the argument by 2π, and the values of w1 and w2 will be interchanged. 
(See Problem 16.37.)

Residues

The coefficients in Equation (9) can be obtained in the customary manner by writing the coefficients for the 
Taylor series corresponding to (z – a)n f (z). In further developments, the coefficient a–1, called the formula 
residue of f (z) at the pole z = a, is of considerable importance. It can be found from the formula

a−1 = lim
z→a

1

(n − 1)!

dn −1

dzn −1 {(z − a)n f (z)}  (10)

where n is the order of the pole. For simple poles, the calculation of the residue is of particular simplicity 
since it reduces to

a−1 = lim
z→a

(z − a) f (z)  (11)

Residue Theorem

If f (z) is analytic in a region ℜ except for a pole of order n at z = a and if C is any simple closed curve in ℜ
containing z = a, then f (z) has the form of Equation (9). Integrating Equation (9), using the fact that

FC

dz

(z − a)n =
0 if n ≠ 1

2π i if n ≠ 1

⎧
⎨
⎩

 (12)

(see Problem 16.13), it follows that

FC
f (z) dz = 2π ia−1  (13)
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i.e., the integral of f (z) around a closed path enclosing a single pole of f (z) is 2πi times the residue at the 
pole.

More generally, we have the following important theorem.

Theorem. If f (z) is analytic within and on the boundary C of a region ℜ except at a finite number of poles 
a, b, c, . . . within ℜ, having residues a–1, b–1, c–1, . . . , respectively, then

FC
f (z) dz = 2π i (a−1 + b−1 + c−1 + . . . )  (14)

i.e., the integral of f (z) is 2πi times the sum of the residues of f (z) at the poles enclosed by C. Cauchy’s 
theorem and integral formulas are special cases of this result, which we call the residue theorem.

Evaluation of Definite Integrals

The evaluation of various definite integrals can often be achieved by using the residue theorem together with 
a suitable function f (z) and a suitable path or contour C, the choice of which may require great ingenuity. 
The following types are most common in practice.

 1. F(x) dx, F(x)
0

∞

∫  is an even function.

Consider FC
F(z) dz  along a contour C consisting of the line along the x axis from –R to +R and the 

semicircle above the x axis having this line as diameter. Then let R → �. See Problems 16.29 and 
16.30.

 2. G(sin θ, cos θ ) dθ, G
0

2π

∫ is a rational function of sin θ and cos θ.

Let z = eiθ. Then sin θ = z − z−1

2i
, cos θ = z + z−1

2
and dz = ieθ dθ or dθ = dz/iz. The given integral is 

equivalent to FC
F(z) dz,  where C is the unit circle with center at the origin. See Problems 16.31 and 

16.32.

 3. F(x)
cos mx

sin mx

⎧
⎨
⎩

⎫
⎬
⎭−∞

∞

∫ dx, F(x) is a rational function.

Here we consider FC
F(z)eimz dz , where C is the same contour as that in Type 1. See Problem 

16.34.

 4. Miscellaneous integrals involving particular contours. See Problems 16.35 and 16.38. In particular, 
Problem 16.38 illustrates a choice of path for an integration about a branch point.

SOLVED PROBLEMS

Functions, limits, continuity

16.1. Determine the locus represented by (a) ⏐z – 2⏐ = 3, (b) ⏐z – 2⏐ = ⏐z + 4⏐, and (c) ⏐z –3⏐ + ⏐z + 3⏐ = 10.

(a) Method 1: z − 2 = x + iy − 2 = x − 2 + iy = (x − 2)2 + y2 = 3 or (x − 2)2 + y2 = 9,  a circle with 
center at (2, 0) and radius 3. 
Method 2: ⏐z – 2⏐ is the distance between the complex numbers z = x + iy and 2 + 0i. If this distance 
is always 3, the locus is a circle of radius 3 with center at 2 + 0i or (2, 0).
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(b) Method 1: x + iy − 2 = x + iy + 4 = or (x − 2)2 + y2 = (x + 4)2 + y2 , Squaring, we find x = –1, a 
straight line. 
Method 2: The locus is such that the distances from any point on it to (2, 0) and (–4, 0) are equal. Thus, 
the locus is the perpendicular bisector of the line joining (2, 0) and (–4, 0), or x = –1.

(c) Method 2: The locus is given by (x − 3)2 + y2 + (x + 3)2 + y2 = 10 or (x − 3)2 + y2

= 10 − (x + 3)2 + y2 . Squaring and simplifying, 25 + 3x = 5 (x + 3)2 + y2 . Squaring and simplifying 

again yields 
x2

25
+ y2

16
= 1, an ellipse with semimajor and semiminor axes of lengths 5 and 4, respec-

tively. 
Method 2: The locus is such that the sum of the distances from any point on it to (3, 0) and (–3, 0) is 
10. Thus, the locus is an ellipse whose foci are at (–3, 0) and (3, 0) and whose major axis has length 10.

16.2. Determine the region in the z plane represented by each of the following.

(a) ⏐z⏐ < 1.

Interior of a circle of radius 1. See Figure 16.3(a).
(b) 1 < ⏐z + 2i⏐

<
 2.

 ⏐z + 2i⏐ is the distance from z to –2i, so that ⏐z + 2i⏐ = 1 is a circle of radius 1 with center at –2i; Then 
1 < ⏐ z + 2i⏐ <  2 represents the region exterior to ⏐z + 2i⏐ = 1 but interior to or on ⏐z + 2i⏐ = 2. See 
Figure 16.3(b).

(c) π/3 < arg z < π/2.

Note that argz = φ, where z = ρeiφ. The required region is the infinite region bounded by the lines φ = π/3
and φ = π/2, including these lines. See Figure 16.3(c).

Figure 16.3

16.3. Express each function in the form u(x, y) + iυ(x, y), where u and υ are real: (a) z3, (b) 1/(1 – z), (c) e3z, and 
(d) ln z.

(a) w = z3  = (x + iy)3 = x3 + 3x2(iy) + 3x(iy)2 + (iy3 = x3 + 3ix2y – 3xy2 – iy2

= x3 – 3xy2 + i(3x2y – y3)

Then u(x, y) = x3 – 3xy2, υ(x, y) = 3x 3x2y – y3.

(b) w = 1

1 − z
= 1

1 − (x + iy)
= 1

1 − x − iy
⋅ 1 − x + iy

1 − x + iy
= 1 − x + iy

(1 − x)2 + y2

Then u(x, y) = 1 − x

(1 − x)2 + y2 , υ(x, y) = y

(1 − x)2 + y2 .
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(c) e3z = e3(x + iy) = e3x = e3x e3iy = e3x (cos 3y + i sin 3y) and u = e3x cos 3y, υ = e3x sin 3y

(d) ln z = ln(ρeiφ ) = ln ρ + iφ = ln x2 + y2 + i tan−1 y / x and

u = 1

2
 ln (x2 + y2 ), υ = tan−1 y / x

Note that In z is a multiple-valued function (in this case it is infinitely many-valued), since φ can be in-
creased by any multiple of 2π. The principal value of the logarithm is defined as that value for which 0 < φ
< 2π and is called the principal branch of In z.

16.4. Prove (a) sin(x + iy) = sin x cosh y + i cos x sinh y and (b) cos(x + iy) = cos x cosh y – i sin x sinh y.

We use the relations eix = cos z + i sin z, e–ix = cos z – i sinz, from which

sin z = eiz − e−iz

2i
, cos z = eiz + e−iz

2

Then

sin z = sin (x + iy) = ei(x + iy) − e−i(x + iy)

2i
= eix − y − e−ix + y

2i

= 1

2i
{e−y (cos x + i sin x) − ey (cos x − i sin x)}

= (sin x)
ey + e−y

2

⎛

⎝⎜
⎞

⎠⎟
+ i (cos x)

ey − e−y

2

⎛

⎝⎜
⎞

⎠⎟

= sin x cosh y + i cos x sinh y

Similarly, 

cos z = cos(x + iy) = ei(x + iy) + e−i(x + iy)

2

= 1

2
{eix − y + e−ix + y} = 1

2
{e−y (cos x + i sin x) + ey (cos x − i sin x)}

= (cos x)
ey + e−y

2

⎛

⎝⎜
⎞

⎠⎟
− i (sin x)

ey − e−y

2

⎛

⎝⎜
⎞

⎠⎟
= cos x cosh y − i sin x sinh y

Derivatives, cauchy-riemann equations

16.5. Prove that 
d

dz
z , where z  is the conjugate of z, does not exist anywhere.

By definition, 
d

dz
f (z) = lim

Δ z→ 0

f (z + Δ z) − f (z)

Δ z
 if this limit exists independent of the manner in which 

Δ z = Δx + i Δy approaches zero. Then

d

dz
z = lim

Δ z→ 0

z + Δ z − z

Δ z
= lim

Δ x→ 0
Δ y→ 0

x + iy + Δ x + i Δ y − x + iy

Δ x + i Δ y

= lim
Δ x→ 0
Δ y→ 0

x − iy + Δ x + i Δ y − (x − iy)

Δ x + i Δ y
= lim

Δ x→ 0
Δ y→ 0

Δ x − i Δ y

Δ x + i Δ y

If Δy = 0, the required limit is lim
Δ x→ 0

Δ x

Δ x
= 1.

If Δx = 0, the required limit is lim
Δ y→ 0

−i Δ y

i Δ y
= − 1.

These two possible approaches show that the limit depends on the manner in which Δz → 0, so that the 
derivative does not exist; i.e., z  is nonanalytic anywhere.



CHAPTER 16  Functions of a Complex Variable414

16.6. (a) If w = f (z) = 1 + z

1 − z
, find

dw

dz
.  (b) Determine where w is nonanalytic.

(a) Method 1:
dw

dz
= lim

Δ z→ ∞

1 + (z + Δ z)

1 − (z + Δ z)
− 1 + z

1 − z

Δ z
= lim

Δ z→ 0

2

(1 − z − Δ z) (1 − z)

= 2

(1 − z)2

provided z � 1, independent of the manner in which Δz → 0.
 Method 2: The usual rules of differentiation apply provided z � 1. Thus, by the quotient rule for dif-

ferentiation,

d

dz

1 + z

1 − z

⎛
⎝⎜

⎞
⎠⎟

=
(1 − z)

d

dz
(1 + z) − (1 + z)

d

dz
(1 − z)

(1 − z)2 = (1 −z) (1) − (1 + z) (−1)

(1 − z)2 = 2

(1 − z)2

(b) The function is analytic everywhere except at z = 1, where the derivative does not exist; i.e., the function 
is nonanalytic at z = 1.

16.7. Prove that a necessary condition for w = f (z) = u(x, y) + i υ(x, y) to be analytic in a region is that the Cauchy-

Riemann equations 
∂u

∂x
= ∂υ

∂y
,

∂u

∂x
= − ∂υ

∂x
 be satisfied in the region.

Since f (z) = f (x + iy) = u(x, y) + i υ(x, y), we have

f (z + Δz) = f [x + Δx + i(y + Δy)] = u(x + Δx, y + Δy) + i υ(x + Δx, y + Δy)

Then

lim
Δ z→ 0

f (z + Δ z) − f (z)

Δ z

= lim
Δ x→0
Δ y→0

u(x + Δ x, y + Δ y) − u (x, y) + i {υ (x + Δ x, y + Δ y) − υ (x, y)}

Δ x + i Δ y

If Δy = 0, the required limit is

lim
Δ x→ 0

u (x + Δ x, y) − u (x, y)

Δ x
+ i

υ (x + Δ x, y) − υ (x, y)

Δ x

⎧
⎨
⎩

⎫
⎬
⎭

= ∂u

∂x
+ i

∂υ
∂x

If Δx = 0, the required limit is

lim
Δ y→ 0

u (x, y + Δy) − u (x, y)

i Δ y
+ υ (x, y + Δy) − υ (x, y)

Δy

⎧
⎨
⎩

⎫
⎬
⎭

= 1

i

∂u

∂y
+ ∂υ

∂y

If the derivative is to exist, these two special limits must be equal, i.e.,
∂u

∂x
+ i

∂υ
∂x

= 1

i

∂u

∂y
+ ∂υ

∂y
= − 1

∂u

∂y
+ ∂υ

∂y

so that we must have 
∂u

∂x
= ∂υ

∂x
and

∂υ
∂x

= − ∂u

∂y
.

Conversely, we can prove that if the first partial derivatives of u and υ with respect to x and y are con-
tinuous in a region, then the Cauchy-Riemann equations provide sufficient conditions for f (z) to be analytic.

16.8. (a) If f (z) = u(x, y) + i υ(x, y) is analytic in a region ℜ, prove that the one-parameter families of curves 
u(x, y) = C1 and υ (x, y) = C2 are orthogonal families. (b) Illustrate by using f (z) = z2.

(a) Consider any two particular members of these families u(x, y) = u0, υ(x, y) = υ0 which intersect at the 
point (x0, y0).
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Since du = ux dx + uy dy = 0, we have
dy

dx
= ux

uy

.

Also, since dυ = υx dx + υy dy = 0,
dy

dx
= υx

υy

.

When evaluated at (x0, y0), these represent, respectively, the slopes of the two curves at this point of inter-
section.

By the Cauchy-Riemann equations, ux = υy, uy = –υx, we have the product of the slopes at the point (x0, y0)
equal to

− ux

uy

⎛

⎝
⎜

⎞

⎠
⎟ − υx

υy

⎛

⎝
⎜

⎞

⎠
⎟ = − 1

so that any two members of the respective families are orthogonal, and thus the two families are orthogonal.
(b) If f (z) = z2, then u = x2 –y2, υ = 2xy. The graphs of several members of x2 –y2 = C1, 2xy = C2 are shown 

in Figure 16.4.

Figure 16.4

16.9. In aerodynamics and fluid mechanics, the functions φ and ψ in f (z) = φ + iψ, where f (z) is analytic, are called 
the velocity potential and stream function, respectively. If φ = x2 + 4x –y2 + 2y, (a) find ψ and (b) find f (z).

(a) By the Cauchy-Riemann equations, 
∂φ
∂x

= ∂ψ
∂y

,
∂ψ
∂x

= − ∂φ
∂y

. Then

∂ψ
∂y

= 2x + 4 (1)

∂ψ
∂x

= 2x − 2 (2)

Method 1:  Integrating Equation (1), ψ = 2xy + 4y + F(x).
Integrating Equation (2), ψ = 2xy – 2x + G(y).

These are identical if F(x) = –2x + c, G(y) = 4y + c, where c is a real constant. Thus, ψ = 2xy + 4y – 2x + c.

Method 2: Integrating Equation (1), ψ = 2xy + 4y + F(x). Then substituting in Equation (2), 2y + F ′(x) = 
2y – 2 or F ′(x) = –2 and F(x) = –2x + c. Hence, ψ = 2xy + 4y – 2x + c.
(b) From (a), 

f (z) = φ + iψ = x2 + 4x – y2 + 2y + i(2xy + 4y – 2x + c)
 = (x2 – y2 + 2ixy) + 4(x + iy) – 2i(x + iy) + ic = z2 + 4z – 2iz + c1

where c1 is a pure imaginary constant.
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This can also be accomplished by noting that z = x + iy, z  = x – iy so that x = z + z

2
, y = z − z

2i
.  The 

result is then obtained by substitution; the terms involving z  drop out.

Integrals, Cauchy’s theorem, Cauchy’s integral formulas

16.10. Evaluate z2 dz
1 + i

2 + 4i

∫
(a) along the parabola x = t, y = t2, where 1 < t <  2

(b) along the straight line joining 1 + i and 2 + 4i

(c) along straight lines from 1 + i to 2 + i and then to 2 + 4i

We have

z2 dz
1 + i

2 + 4i

∫ = (x + iy)2 (dx + idy) = (x2 − y2 + 2 ixy) (dx + i dy)
(1.1)

(2.4)

∫(1.1)

(2.4)

∫
= (x2 − y2 ) dx − 2xy dy + i 2xy dx + (x2 − y2 )

(1.1)

(2.4)

∫ dy
(1.1)

(2.4)

∫
Method 1:
(a) The points (1,1) and (2,4) correspond to t = 1 and t = 2, respectively. Then the preceding line integrals 

become

{(t2 − t 4 ) dt − 2(t) (t)2 2t dt} + i
t = 1

2

∫ {2(t) (t2 ) dt + (t2 − t 4 ) (2t) dt} = − 86

3
− 6i

t = 1

2

∫
(b) The line joining (1,1) and (2, 4) has the equation y − 1 = 4 − 1

2 − 1
(x − 1) or y = 3x − 2.  Then we find

{[x2

x = 1

2

∫ − (3x − 2)2 ] dx − 2x (3x − 2) 3 dx}

+ i {2x
x = 1

2

∫ (3x − 2) dx + [x2 − (3x − 2)2 ] 3 dx} = − 86

3
− 6i

(c) From 1 + i to 2 + i [or (1, 1) to (2, 1)], y = 1, dy = 0 and we have

(x2 − 1)
x = 1

2

∫ dx + i 2
x = 1

2

∫ x dx = 4

3
+ 3i

From 2 + i to 2 + 4i [or (2, 1) to (2, 4)], x = 2, dx = 0 and we have

−4y dy
y = 1

4

∫ + i (4 − y2 )
y = 1

4

∫ dy = − 30 − 9i

Adding, (
4

3
+ 3i) + (−30 − 91) = − 86

3
− 6i.

Method 2: By the methods of Chapter 10 it is seen that the line integrals are independent of the path, thus 
accounting for the same values obtained in (a), (b), and (c). In such case the integral can be evaluated directly, 
as for real variables, as follows:

z2 dz = z3

31+ i

2 + 4i

∫
1i

2 + 4i

= (2 + 4i)3

3
− (1 + i)3

3
= − 86

3
− 6i.

16.11. (a) Prove Cauchy’s theorem: If f (z) is analytic inside and on a simple closed curve C, then FC
f (z) dz = 0.

(b) Under these conditions prove that f (z) dz
p1

p2

∫  is independent of the path joining P1 and P2.

(a) FC
f (z) dz = FC

(u + iυ) (dx + i dy) = FC
u dx − υ dy + i FC

υ dx + u dy
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By Green’s theorem (Chapter 10),

FC
u dx − υ dy = − ∂u

∂x
− ∂υ

∂y

⎛
⎝⎜

⎞
⎠⎟

ℜ
∫∫ dx dy, FC

υ dx + u dy = ∂u

∂x
− ∂υ

∂y

⎛
⎝⎜

⎞
⎠⎟

ℜ
∫∫ dx dy

where ℜ is the region (simply-connected) bounded by C.

Since f (z) is analytic, 
∂u

∂x
= ∂υ

∂y
,

∂υ
∂x

= − ∂u

∂y
 (Problem 16.7), and so these integrals are zero. Then 

FC
f (z) dz = 0,  assuming f ′(z) (and, thus, the partial derivatives) to be continuous.

(b) Consider any two paths joining points P1 and P2 (see Figure 16.5). 
By Cauchy’s theorem,

f (z) dz = 0
P1 AP2 BP1

∫
Then

f (z) dz +
P1 AP2

∫ f (z) dz = 0
P2 BP1

∫
or

f (z) dz = −
P1 AP2

∫ f (z) dz =
P2 BP1

∫ f (z) dz
P1 BP2

∫
i.e., the integral along P1AP2 (path 1) = integral along P1BP2 (path 2), and so the integral is independent of the 
path joining P1 and P2.

This explains the results of Problem 16.10, since f (z) = z2 is analytic.

16.12. If f (z) is analytic within and on the boundary of a region bounded 
by two closed curves C1 and C2 (see Figure 16.6), prove that

FC
f (z) dz =

1
FC2

f (z) dz

As in Figure 16.6, construct line AB (called a crosscut) con-
necting any point on C2 and a point on C1. By Cauchy’s theorem 
(Problem 16.11),

f (z) dz = 0
AQPABRSTBA

∫
since f (z) is analytic within the region shaded and also on the bound-
ary. Then

f (z) dz +
AQPA
∫ f (z) dz +

AB
∫ f (z) dz +

BRSTB
∫ f (z) dz = 0

BA
∫  (1)

But f (z) dz = −
AB
∫ f (z) dz.

BA
∫  Hence, (1) gives

f (z) dz = −
AQPA
∫ f (z) dz =

BRSTB
∫ f (z) dz

BTSRB
∫

i.e.,

FC
f (z) dz =

C1
FC2

f (z) dz

Note that f (z) need not be analytic within curve C2.

Figure 16.5

Figure 16.6
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16.13. (a) Prove that FC

dz

(z − a)n =
2π i if n = 1

0 if n = 2, 3, 4,

⎧
⎨
⎩  . . .

 , where C is a simple closed curve bounding a region 

having z = a as interior point. (b) What is the value of the integral if n = 0, –1, –2, –3, . . . ?

(a) Let C1 be a circle of radius � having center at z = a (see Figure 
16.7). Since (z – a)–n is analytic within and on the boundary of 
the region bounded by C and C1, we have, by Problem 16.12,

FC

dz

(z − a)n = FC

dz

(z − a)n
1

To evaluate this last integral, note that on C1, z − a = ε
or z − a = εeiθ and dz = iεeiθ dθ.  The integral equals

iεeiθ dθ
εn ε inθ0

2π

∫ = i

εn −1 e(1− n)iθ dθ =
0

2π

∫ i

ε n −1

e(1− n)iθ

(1 − n)i
0

2π

= 0 if n ≠ 1

If n = 1, the integral equals i dθ =
0

2π

∫ 2π i.

(b) For n = 0, –1, –2, . . . , the integrand is 1,(z – a), (z – a)2, . . . and is analytic everywhere inside C1, includ-
ing z = a. Hence, by Cauchy’s theorem, the integral is zero.

16.14. Evaluate FC

dz

z − 3
,  where C is (a) the circle ⏐z⏐ = 1 and (b) the circle ⏐z + i⏐ = 4.

(a) Since z = 3 is not interior to ⏐z⏐ = 1, the integral equals zero (Problem 16.11).

(b) Since z = 3 is interior to ⏐z + i⏐ = 4, the integral equals 2πi (Problem 16.13).

16.15. If f (z) is analytic inside and on a simple closed curve C, and a is any point within C, prove that

f (a) = 1

2π i FC

f (z)

z − a
dz

Referring to Problem 16.12 and Figure 16.7, we have

FC

f (z)

z − a
dz = FC

f (z)

z − aC1

dz

Letting z – a = �eiθ, the last integral becomes i f (a + εei

0

2π

∫ iθ ) dθ.  But since f (z) is analytic, it is con-
tinuous. Hence,

2

0 0
lim ( if a e

π

ε
ε

→
+∫

2

00
) lim ( id i f a e

πθ θ

ε
θ ε

→
= +∫

2

0
) ( ) 2 ( )i d i f a d i f a

πθ θ θ π= =∫
and the required result follows.

16.16. Evaluate (a) FC

cos z

z − π
dz and (b) FC

ex

z (z + 1)
dz, where C is the circle ⏐z – 1⏐ = 3.

(a) Since z = π lies within C,
1

2π i FC

cos z

z − π
dz = cos π = − 1 by Problem 16.15 with f (z) = cos z, a = π.

Then FC

cos z

z − π
dz = −2π i.

(b) FC

ez

z (z + 1)
dz = FC

ez 1

z
− 1

z + 1

⎛
⎝⎜

⎞
⎠⎟

dz = FC

ez

z
dz − FC

ez

z + 1
dz

= 2π ie0 − 2π ie−1 = 2π i(1 − e−1)

by Problem 16.15, since z = 0 and z = –1 are both interior to C.

Figure 16.7
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16.17. Evaluate FC

5z2 − 3z + 2

(z − 1)3 dz, where C is any simple closed curve enclosing z = 1.

Method 1: By Cauchy’s integral formula, f (n) (a) = n!

2π i FC

f (z)

(z − a)n +1 dz.

If n = 2 and f (z) = 5z2 – 3z + 2, then f ″(1) = 10. Hence,

10 = 2!

2π i FC

5z2 − 3z + 2

(z − 1)3 dz or FC

5z2 − 3z + 2

(z − 1)3 dz = 10π i

Method 2: 5z2 − 3z + 2 = 5(z − 1)2 + 7 (z − 1) + 4. Then

5z2 − 3z + 2

(z − 1)3CÑ∫ dz = 5(z − 1)2 + 7(z − 1) + 4

(z − 1)3CÑ∫ dz

= 5
d

z − 1
+ 7

CÑ∫
dz

(z − 1)2 + 4
CÑ∫

dz

(z − 1)3 = 5(2π i)
CÑ∫ + 7(0) + 4(0)

= 10π i

FC FC

FC FC FC

by Problem 16.13.

Series and singularities

16.18. For what values of z does each series converge?

(a)
zn

n2 2n .
n = 1

∞

∑  The nth term = un = zn

n2 2n .  Then

lim
n → ∞

un +1

un

= lim
n → ∞

zn +1

(n + 1)2 2n +1 ⋅ n2 2n

zn =
z

2

By the ratio test, the series converges if ⏐z⏐ < 2 and diverges if ⏐z⏐ > 2. If ⏐z⏐ = 2, the ratio test fails.

However, the series of absolute values 
zn

n2 2n
n = 1

∞

∑ =
zn

n2 2n
n = 1

∞

∑  converges if ⏐z⏐ = 2, since 
1

n2
n = 1

∞

∑
converges.

Thus, the series converges (absolutely) for ⏐z⏐ <  2, i.e., at all points inside and on the circle ⏐z⏐ = 2

(b)
(−1)n −1 z2n −1

(2n − 1)!
= z − z3

3!
+ z5

5!
n = 1

∞

∑ − . . . .We have

lim
n → ∞

un +1

un

= lim
n → ∞

(−1)n z2n +1

(2n + 1)!
⋅ (2n − 1)!

(−1)n −1 z2n −1 = lim
n → ∞

−z2

2n(2n + 1)
= 0

Then the series, which represents sin z, converges for all values of z.

(c)
1

1

n +1
1

( ) ( ) 3
. We have lim lim

33 3 ( )

n n
n

n nn nnn

u z iz i z i n

u z i

∞ +
+

→∞ →∞
=

−− −= ⋅ =
−∑ .

The series converges if ⏐z – i⏐ < 3, and diverges if ⏐z – i⏐ > 3.

If ⏐z – i⏐ = 3, then z – i = 3eiθ, and the series becomes 
1n

e
∞

=
∑ inθ. This series diverges, since the nth term 

does not approach zero as n → �.
Thus, the series converges within the circle ⏐z – i⏐ = 3 but not on the boundary.

16.19. If 
0

n
n

n

a z
∞

=
∑  is absolutely convergent for ⏐z⏐ < R, show that it is uniformly convergent for these values of z.

The definitions, theorems, and proofs for series of complex numbers are analogous to those for real series.



CHAPTER 16  Functions of a Complex Variable420

In this case we have n n
n n na z a R M≤ = . Since, by hypothesis, 

1
n

n

M
∞

=
∑ converges, it follows by the 

Weierstrass M test that 
0

n
n

n

a z
∞

=
∑  converges uniformly for ⏐z⏐ < R.

16.20. Locate in the finite z plane all the singularities, if any, of each function and name them.

(a)
2

3
. 1

( 1)

z
z

z
= −

+
is a pole of order 3.

(b)
3

2

2 1

( 4) ( ) ( 1 2 )

z z

z z i z i

− +
− − − +

. z = 4 is a pole of order 2 (double pole); z = i and z = 1 – 2i are poles of 

order 1 (simple poles).

(c)
2

sin
, 0.

2 2

mz
m

z z
≠

+ +
 Since z2 + 2z + 2 = 0 when 

2 4 8 2 2
1

2 2

i
z i

− ± − − ±= = = ± , we can write 

2 2 2 { ( 1 )}{ ( 1 )} ( 1 ) ( 1 ).z z z i z i z i z i+ + = − − + − − − = + − + +

The function has the two simple poles: z = –1 + i and z = –1 – i.

(d)
1 cos

.
z

z

−
z = 0 appears to be a singularity. However, since 

0

1 cos
lim 0,
x

z

z→

− =  singularity.

Another method:
2 4 61 cos 1

Since 1
2! 4! 6!

z z z z

z z

⎧ ⎛− ⎪= − + − +⎜⎨ ⎜⎪ ⎝⎩
 . . .

3

2! 4!

z z⎫⎞⎪ = − +⎟⎬⎟⎪⎠⎭
 . . . , we see that z = 0 

is a removable singularity.

(e) 1/( 1)2
2 4

1 1
1

( 1) 2!( 1)
xe

z z
− − = − + −

− −
 . . . . This is a Laurent series where the principal part has an 

infinite number of nonzero terms. Then z = 1 is an essential singularity.

(f) ez. This function has no finite singularity. However, letting z = 1/u, we obtain e1/u, which has an essential 
singularity at u = 0. We conclude that z = � is an essential singularity of ez.

In general, to determine the nature of a possible singularity of f (z) at z = �, we let z = �, we let z = 1/u
and then examine the behavior of the new function at u = 0.

16.21. If f (z) is analytic at all points inside and on a circle of radius R with center at a, and if a + h is any point 
inside C, prove Taylor’s theorem that

2 3

( ) ( ) ( ) ( )
2! 3!

h h
f a h f a hf a f a f+ = + ′ + ′′ + ′′′(α) + . . . 

By Cauchy’s integral formula (Problem 16.15), we have

1
( )

2
f a h

iπ
+ = FC

( )f z dz

z a h− −
 (1)

By division,

2

2

1 1

( ) [1 /( )]

1
1

( ) ( ) ( )

z a h z a h z a

h h

z a z a z a

=
− − − − −

⎧⎪= + + +⎨− − −⎪⎩
 . . . 

1

( ) ( ) ( )

n n

n n

h h

z a z a z a h

+ ⎫⎪+ + ⎬
− − − − ⎪⎭

 (2)

Substituting Equation (2) in Equation (1) and using Cauchy’s integral formulas, we have

2 1

2
( )

1 ( ) ( ) ( )
( )

2 2 2( ) ( )

( ) ( ) ( ) ( )
2! !

n

nnC C C

n
n

n

f z dz h f z dz h f z dz
f a h R

i z a i iz a z a

h h
f a hf a f a f a R

n

π π π ++ = + + + +
− − −

′ ′′= + + + + +

∫ ∫ ∫L

L

Ñ Ñ ÑFC FC

L

L FC
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where
1

2

n

n
h

R
iπ

+
= FC 1

( )

( ) ( )n

f z dz

z a z a h+− − −

Now when z is on 
( )

, and ,
f z

C M z a R
z a h

≤ − =
− −

 so that by Equation (4), Page 407, we have, since 

2πR is the length of C,
1

1
2

2

n

n n

h M
R R

R
π

π

+

+≤ ⋅

As n → �, ⏐Rn⏐ → 0. Then Rn → 0, and the required result follows.
If f (z) is analytic in an annular region r1 < ⏐z – a⏐ < r2, we can generalize the Taylor series to a Laurent 

series (see Problem 16.92). In some cases, as shown in Problem 16.22, the Laurent series can be obtained by 
use of known Taylor series.

16.22. Find Laurent series about the indicated singularity for each of the following functions. Name the singularity 
in each case and give the region of convergence of each series.

(a)
2

; 1. Let 1 . Then 1 and
( 1)

ze
z z u z u

z
= − = = +

−

1 2 3 4

2 2 2 2
1

2! 3! 4!( 1)

z u ue e e e u u u
e u

z u u u

+ ⎧⎪= = ⋅ = + + + + +⎨
− ⎪⎩

 . . . 
⎫⎪
⎬
⎪⎭

2

2

( 1) ( 1)

1 2! 3! 4!( 1)

e e e e z e z

zz

− −= + + + + +
−−

 . . . 

z = 1 is a pole of order 2, or double pole.
The series converges for all values of z � 1.

(b)
1

cos ; 0.z z
z

=

2 4 6

1 1 1 1
cos 1

2! 4! 6!
z z

z z z z

⎛
= − + − +⎜⎜⎝

 . . . 
3 5

1 1 1

2! 4! 6!
z

z z z

⎞
= − + − +⎟⎟⎠

 . . .

z = 0 is an essential singularity.
The series converges for all values of z � 0.

(c)
sin

; . Let . Then and
z

z z u z u
z

π π π
π

= − = = +
−

3 5

2 4 2 4

sin sin ( ) sin 1

3! 5!

( ) ( )
1 1

3! 5! 3! 5!

z u u u u
u

z u u u

u u z z

π
π

π π

⎛ ⎞+= = − = − − + −⎜ ⎟⎜ ⎟− ⎝ ⎠
− −= − + + + = − + − +

L

L L

L

LL

z = π is a removable singularity.
The series converges for all values of z.

(d) ;
( 1) ( 2)

z

z z+ +
1. Let 1 . Thenz z u= − + =

2 3 4

2 3

2

1 1
(1 )

( 1) ( 2) ( 1)

1
2 2 2 2

1
2 2 ( 1) 2 ( 1)

1

z u u
u u u u

z z u u u

u u u
u

z z
z

− −= = − + − + −
+ + −

= − + − + − +

= − + − + + + −
+

L

L

L

L

L

L
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z = –1 is a pole of order 1, or simple pole.
The series converges for values of z such that 0 < ⏐z + 1⏐ < 1.

(e)
3

1
; 0, 2.

( 2)
z

z z
= −

+

Case 1, z = 0. Using the binomial theorem,
2 3

3 3

2

1 1 1 ( 3) ( 4) ( 3) ( 4) ( 5)
1 ( 3)

8 2 2! 2 3! 2( 2) 8 (1 / 2)

1 3 3 5

8 16 16 32

z z z

zz z z z

z z
z

⎧ ⎫− − − − −⎪ ⎪⎛ ⎞ ⎛ ⎞ ⎛ ⎞= = + − + + +⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟+ + ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭

= − + − +

L

L

L

L

z = 0 is a pole of order 1, or simple pole.
The series converges for 0 < ⏐z⏐ < 2.
Case 2, z = –2. Let z + 2 = u. Then

2 3 4

3 3 3 3

3 2

3 2

1 1 1 1
1

2 2 2 2( 2) ( 2) 2 (1 / 2) 2

1 1 1 1 1

8 16 322 4
1 1 1 1 1

( 2)
8( 2) 16 322( 2) 4( 2)

u u u u

z z u u u u u

u
uu u

z
zz z

⎧ ⎫⎪ ⎪⎛ ⎞ ⎛ ⎞ ⎛ ⎞= = = − + + + + +⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟+ − − − ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭

= − − − − − −

= − − − − − − + −
++ +

L

L

L

L

LL

L

z = –2 is a pole of order 3.
The series converges for 0 < ⏐z + 2⏐ < 2.

Residues and the residue theorem

16.23. Suppose f (z) is analytic everywhere inside and on a simple closed curve C except at z = a, which is a pole of 
order n. Then

1

1
( )

( ) ( )

nn
n n

aa
f z

z a z a

− +−
−= + +

− −
 . . . 2

0 1 2( ) ( )a a z a a z a+ + − + − + . . .

where a–n � 0. Prove that

(a) FC
1( ) 2f z dz iaπ −=

(b)
1

1 1

1
lim {( ) ( )}

( 1)!

n
n

nz a

d
a z a f z

n dz

−

− −→
= −

−

(a) By integration, we have, on using Problem 16.13,

21
0 1 2

1

( ) { ( ) ( ) )
( )

2

n
nC C C C

a a
f z dz dz dz a a z a a z a dz

z az a

iaπ

− −

−

= + + + + − + − +
−−

=

∫ ∫ ∫ ∫L LÑ Ñ Ñ ÑFC FC FC FC
LL

Since only the term involving a–1 remains, we call a–1 the residue of f (z) at the pole z = a.
(b) Multiplication by (z – a)n gives the Taylor series

1( ) ( ) ( )n
n nz a f z a a z a− − +− = + − + . . . 1

1 ( )na z a −
−+ − + . . .

Taking the (n – 1)st derivative of both sides and letting z → a, we find
1

1 1
( 1)! lim {( ) ( )}

n
n

nz a

d
n a z a f z

dz

−

− −→
− = −

from which the required result follows.
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16.24. Determine the residues of each function at the indicated poles.

(a)
2

2
; 2, , .

( 2) ( 1)

z
i i

z z
−

− +
 These are simple poles. Then:

2

22

4
Residue at 2 is lim ( 2)

5( 2) ( 1)z

z
z z

z z→

⎧ ⎫⎪ ⎪= − =⎨ ⎬
− +⎪ ⎪⎩ ⎭

2 2 1 2
Residue at is lim ( )

( 2) ( ) ( ) ( 2) (2 ) 10z i

z i i
z i z i

z z i z i i i→

⎧ ⎫ −⎪ ⎪= − = =⎨ ⎬− − + −⎪ ⎪⎩ ⎭
2 2 1 2

Residue at is lim ( )
( 2) ( ) ( ) ( 2) ( 2 ) 10z i

z i i
z i z i

z z i z i i i→−

⎧ ⎫ +⎪ ⎪= − + = =⎨ ⎬− − + − − −⎪ ⎪⎩ ⎭

(b) 3

1
; 0, 2

( 2)
z

z z
= −

+
. z = 0 is a simple pole, z = –2 is a pole of order 3. Then:

Residue at 0 isz =
30

1 1
lim

8( 2)z
z

z z→
⋅ =

+
2

3
2 32

1 1
Residue at 2 is lim ( 2)

2! ( 2)z

d
z z

dz z z→−

⎧ ⎫⎪ ⎪= − + ⋅⎨ ⎬
+⎪ ⎪⎩ ⎭

2

2 32 2

1 1 1 2 1
lim lim

2 2 8z z

d

zdz z→− →−

⎛ ⎞⎛ ⎞= = = −⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠

Note that these residues can also be obtained from the coefficients of 1/z and 1/(z + 2) in the respective 
Laurent series [see Problem 16.22(e)].

(c) 2
; 3,

( 3)

ztze
z

z
=

−
 a pole of order 2 or double pole. Then:

2
23 3 3

3 3

Residue is lim ( 3) lim ( ) lim ( )
( 3)

3

zt
zt zt zt

z z z

t t

d ze d
z ze e zte

dz dzz

e te

→ → →

⎧ ⎫⎪ ⎪− ⋅ = = +⎨ ⎬
−⎪ ⎪⎩ ⎭

= +
(d) cot z; z = 5π, a pole of order 1. Then:

( )5 5 5 5

cos 5 1
Residue is lim ( 5 ) lim lim cos lim ( 1)

sin sin cosz z z z

z z
z z

z z zπ π π π

ππ
→ → → →

−⎛ ⎞ ⎛ ⎞− ⋅ = = −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

where we have used L’Hospital’s rule, which can be shown to be applicable for functions of a complex vari-
able.

16.25. If f (z) is analytic within and on a simple closed curve C except at a number of poles a, b, c, . . . interior to C,
prove that

FC
( ) 2f z dz iπ=  {sum of residues of f (z) at poles a, b, c, etc.}

Refer to Figure 16.8.
By reasoning similar to that of Problem 16.12 (i.e., by con-

structing crosscuts from C to C1, C2, C3, etc.), we have

FC
( )f z dz = FC1

( )f z dz + FC2

( )f z dz + . . . 

For pole a,

( )
( )

m
m

a
f z

z a
− +

−
 . . . 1

0 1 ( )
( )

a
a a z a

z a
−+ + + − +
−

 . . .

Figure 16.8
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hence, as in Problem 16.23, 

FC
1

1( ) 2f z dz iaπ −=

Similarly for pole b,

( )
( )

n
n

b
f z

z b
−= +

−
 . . . 1

0 1 ( )
( )

b
b b z b

z b
−+ + + − +
−

 . . .

so that

FC2
1( ) 2

C
f z dz ibπ −=

Continuing in this manner, we see that

FC2
1 1( ) 2 (

C
f z dz i a bπ − −= + + . . . ) 2 (sum of residues)iπ=

16.26. Evaluate FC 2( 1) ( 3)

ze dz

z z− +
, where C is given by (a) ⏐z⏐ = 3/2 and (b) ⏐z⏐ = 10.

 Residue at simple pole z = 1 is 
2

21
lim ( 1)

16( 1) ( 3)z

e e
z

z z→

⎧ ⎫⎪ ⎪− =⎨ ⎬
− +⎪ ⎪⎩ ⎭

 Residue at double pole z = –3 is 
3

2
2 23 3

( 1) 5
lim ( 3) lim

16( 1) ( 3) ( 1)

z z z

z z

d e z e e e
z

dz z z z

−

→− →−

⎧ ⎫ − − −⎪ ⎪+ = =⎨ ⎬
− + −⎪ ⎪⎩ ⎭

(a) Since ⏐z⏐ = 3/2 encloses only the pole z = 1, 

the required integral 2
16 8

e ie
i

ππ ⎛ ⎞= =⎜ ⎟⎝ ⎠
(b) Since ⏐z⏐ = 10 encloses both poles z = 1 and z = –3,

the required integral
3 35 ( 5 )

2
16 16 8

e e i e e
i

ππ
− −⎛ ⎞ −= − =⎜ ⎟⎜ ⎟⎝ ⎠

Evaluation of definite integrals

16.27. If f ( ) for Re
k

M
z z

R
≤ = iθ, where k > 1 and M are constants, prove that lim ( ) 0

R
f z dz

→∞ Γ
=∫ , where Γ is 

the semicircular arc of radius R shown in Figure 16.9.

By the result (4), Page 407, we have

1
( ) ( )

k k

M M
f z dz f z dz R

R R

ππ −Γ Γ
≤ ≤ ⋅ +∫ ∫

since the length of arc L = πR. Then

lim ( ) 0
R

f z dz
Γ

→∞
=∫

and so

lim ( ) 0
R

f z dz
→∞ Γ

=∫

16.28. Show that for z = Reiθ, ( ) , 1
k

M
f z k

R
≤ >  if 

4

1
( ) .

1
f z

z
=

+

If Rez = iθ
4 4 4 44 4

1 1 1 2
, ( )

1 11i i
f z

R e R RR eθ θ
= ≤ = ≤

+ −−iθ iθ
 if R is large enough (R > 2, for ex-

ample) so that M = 2, k = 4.

Figure 16.9
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Note that we have made use of the inequality ⏐z1 + z2⏐ ε ⏐z1⏐ – ⏐z2⏐ with z1 = R4 e4iθ and z2 = 1.

16.29. Evaluate 
40

.
1

dx

x

∞

+∫

Consider FC 4
,

1

dz

z +
 where C is the closed contour of Problem 16.27 consisting of the line from –R to R

and the semicircle Γ, traversed in the positive (counterclockwise) sense.
Since z4 + 1 = 0 when z = eπi/4, e3πi/4, e5πi/4, e7πi/4, these are simple poles of 1/(z4 + 1). Only the poles eπi/4

and e3πi/4 lie within C. Then, using L’Hospital’s rule,

/ 4

/ 4

3 / 4

3 / 4

/ 4 / 4
4

3 / 4
3

3 / 4 3 / 4
4

9 / 4
3

1
Residue at lim ( )

1

1 1
lim

44

1
Residue at lim ( )

1

1 1
lim

44

i

i

i

i

i i

z e

i

z e

i i

z e

i

z e

e z e
z

e
z

e z e
z

e
z

π

π

π

π

π π

π

π π

π

→

−

→

→

−

→

⎧ ⎫⎪ ⎪= −⎨ ⎬
+⎪ ⎪⎩ ⎭

= =

⎧ ⎫⎪ ⎪= −⎨ ⎬
+⎪ ⎪⎩ ⎭

= =

Thus,

FC

3 / 4 9 / 4
4

1 1 2
2

4 4 21
i idz

i e e
z

π π ππ − −⎧ ⎫= + =⎨ ⎬
+ ⎩ ⎭

 (1)

i.e.,

4 4

2

21 1

R

R

dx dz

x z

π
− Γ

+ =
+ +∫ ∫  (2)

Taking the limit of both sides of Equation (2) as R → � and using the results of Problem 16.28, we have

4 4

2
lim

21 1

R

R R

dx dx

x x

π∞

→∞ − −∞
= =

+ +∫ ∫
Since

4 40
,

1 1

dx dx

x x

∞ ∞

−∞
=

+ +∫ ∫  the required integral has the value 
2

.
4

π

16.30. Show that 
2

2 2 2

7
.

50( 1) ( 2 2)

x dx

x x x

π∞

−∞
=

+ + +∫
The poles of 

2

2 2 2( 1) ( 2 2)

z

z z z+ + +
, enclosed by the contour C in Problem 16.27, are z = i of order 2 

and z = – 1 + i of order 1.

2
2

2 2 2

9 12
Residue at is lim ( )

100( ) ( ) ( 2 2)z i

d z i
z i z i

dz z i z i z z→

⎧ ⎫ −⎪ ⎪= − =⎨ ⎬
+ − + +⎪ ⎪⎩ ⎭

Residue at 
2

2 21

3 4
1 is lim ( 1 )

25( 1) ( 1 ) ( 1 )z i

z i
z i z i

z z i z i→− +

−= − + + − =
+ + − + +

Then

FC

2

2 2 2

9 12 3 4 7
2

100 25 50( 1) ( 2 2)

z dz i i
i

z z z

ππ⋅ − −⎧ ⎫= + =⎨ ⎬
+ + + ⎩ ⎭

or
2 2

2 2 2 2 2 2

7

50( 1) ( 2 2) ( 1) ( 2 2)

R

R

x dx z dz

x x x z z z

π
− Γ

+ =
+ + + + + +∫ ∫
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Taking the limit as R → � and noting that the second integral approaches zero, by Problem 16.27, we 
obtain the required result.

16.31. Evaluate 
2

0
.

5 3 sin

dπ θ
θ+∫

Let z = eiθ. Then 
1

sin , so that
2 2

i i
ie e z z

dz ie d iz d
i i

θ θ
θθ θ θ

− −− −= = = =
iθiθ

iθ

2

0 5 3 sin

dπ θ
θ

=
+∫ FC 1

/

5 3
2

dz iz

z z

i

−
=

⎛ ⎞−+ ⎜ ⎟⎜ ⎟⎝ ⎠

FC 2

2

3 10 3

dz

z iz+ −

where C is the circle of unit radius with center at the origin, as shown in Figure 
16.10.

The poles of 
2

2

3 10 3z iz+ −
 are the simple poles

10 100 36

6
10 8

6
3 , / 3.

i
z

i i

i i

− ± − +
=

− ±=

= − −

Only –i/3 lies inside C.

Residue at 
2/ 2 / 2

2 2 1
/ 3 lim lim

3 6 10 43 10 3z i z i

i
i z

z i iz iz→ →

⎛ ⎞⎛ ⎞− = + = =⎜ ⎟⎜ ⎟ ⎜ ⎟ ++ −⎝ ⎠ ⎝ ⎠

Then FC 2

2 1
2 ,

4 23 10 3

dz
i

iz iz

ππ ⎛ ⎞= =⎜ ⎟+ − ⎝ ⎠
 the required value.

16.32. Show that 
2

0

cos3
.

5 4 cos 12
d

π θ πθ
θ

=
−∫

1 3 3 3 3

If , cos , cos3 , .
2 2 2

i i
i z z e e z z

z e dz iz d
θ θ

θ θ θ θ
− − −+ + += = = = =

Then
3 32

10

6

3

cos3 ( ) / 2

5 4 cos
5 4

2

1 1

2 (2 1) ( 2)

C

C

z z dz
d

izz z

z
dz

i z z z

π θ θ
θ

−

−

+=
− ⎛ ⎞+− ⎜ ⎟⎜ ⎟⎝ ⎠

+= −
− −

∫ ∫

∫

Ñ

Ñ

FC

FC

where C is the contour of Problem 16.31.
The integrand has a pole of order 3 at z = 0 and a simple pole z = 

1
2

 within C.

2 6
3

2 30

1 1 21
Residue at 0 is lim .

2! 8(2 1) ( 2)z

d z
z z

dz z z z→

⎧ ⎫+⎪ ⎪= ⋅ =⎨ ⎬
− −⎪ ⎪⎩ ⎭

6

31/ 2

1 1 1 65
Residue at is lim ( ) .

2 2 24(2 1) ( 2)z

z
z z

z z z→

⎧ ⎫+⎪ ⎪= − ⋅ =⎨ ⎬
− −⎪ ⎪⎩ ⎭

1
Then

2i
− FC

6

3

1 1 21 65
(2 ) as required.

2 8 24 12(2 1) ( 2)C

z
dz i

iz z z

ππ+ ⎧ ⎫= − − =⎨ ⎬
− − ⎩ ⎭

Figure 16.10
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16.33. If ( ) for ,i
k

M
f z z Re

R
θ≤ =  where k > 0 and M are constants, prove that

lim ( ) 0imz

R
e f z dz

→∞ Γ
=∫

where Γ is the semicircular arc of the contour in Problem 16.27 and m is a positive constant.

0
If , ( ) ( ) .

ii imz imRe i iz Re e f z dz e f Re iRe d
θπθ θ θ θ

Γ
= =∫ ∫iθ iθ iθiθ

Then

0 0

cos sin

0

sin

0

/ 2
sin sin

1 10 0

( ) ( )

( )

( )

2

i iimRe i i imRe i i

imR m R i i

mR i

mR mr
k k

e f Re iRe d e f Re iRe d

e f Re iRe d

e f Re R d

M M
e d e d

R R

θ θπ πθ θ θ θ

π θ θ θ θ

π θ θ

π πθ θ

θ θ

θ

θ

θ θ

−

−

− −
− −

≤

=

=

≤ =

∫ ∫
∫
∫

∫ ∫

iθ

iθ iθ

iθ

iθiθiθ iθiθ

Now sinθ ε 2θ/π for 0 < θ < π/2 (see Problem 4.73). Then the last integral is less than or equal to

/ 2
2 /

1 0

2
(1 )mR mR

k k

M M
e d e

R mR

π θ π πθ− −
− = −∫

As R → �, this approaches zero, since m and k are positive, and the required result is proved.

16.34. Show that 
20

cos
, 0.

21
mmx

dx e m
x

π∞ −= >
+∫

Consider FC 2 1

imze
dz

z +
, where C is the contour of Problem 16.27.

The integrand has simple poles at z = ±i, but only z = i lies within C.

Residue at is lim ( ) .
( ) ( ) 2

imz m

z i

e e
z i z i

z i z i i

−

→

⎧ ⎫⎪ ⎪= − =⎨ ⎬− +⎪ ⎪⎩ ⎭
Then

FC 2
2

21

imz m
me e

dz i e
iz

π π
−

−⎛ ⎞
= =⎜ ⎟⎜ ⎟+ ⎝ ⎠

or

2 21 1

imx imzR
m

R

e e
dx dz e

x z
π −

− Γ
+ =

+ +∫ ∫
i.e.,

2 2 2

cos sin

1 1 1

imzR R
m

R R

mx mx e
dx i dx dz e

x x z
π −

− − Γ
+ + =

+ + +∫ ∫ ∫
and so

2 20

cos
2

1 1

imzR
mmx e

dx dz e
x z

π −

Γ
+ =

+ +∫ ∫
Taking the limit as R → � and using Problem 16.33 to show that the integral around Γ approaches zero, 

we obtain the required result.

16.35. Show that 
0

sin
.

2

x
dx

x

π∞
=∫
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The method of Problem 16.34 leads us to consider the integral of eiz/z around the contour of Problem 16.27. 
However, since z = 0 lies on this path of integration and since we cannot integrate through a singularity, we modify 
that contour by indenting the path at z = 0, as shown in Figure 16.11, which we call contour C ′ or ABDEFGHJA.

Figure 16.11

Since z = 0 is outside C ′, we have

0
iz

C

e
dz

z′
=∫

or

0
ix iz ix izr R

R r
HJA BDEFG

e e e e
dx dz dx dz

x z x z

−

−
+ + + =∫ ∫ ∫ ∫

Replacing x by –x in the first integral and combining with the third integral, we find

0
ix ix iz izR

r
HJA BDEFG

e e e e
dx dz dz

x z z

−− + + =∫ ∫ ∫
or

sin
2

iz ixR

r
HJA BDEFG

x e e
i dx dz dz

x z z
= − −∫ ∫ ∫

Let r → 0 and R → �. By Problem 16.33, the second integral on the right approaches zero. The first in-
tegral on the right approaches

0 0

0 0
lim lim

i
i

ire
i ire

ir r

e
ire d ie d i

re

θ
θθ

θπ π
θ θ π

→ →
− = − =∫ ∫iθ

iθ

iθ

iθ

since the limit can be taken under the integral sign.
Then we have

0
0

sin sin
lim 2 or

2

R

R r
r

x x
i dx i dx

x x

ππ
∞

→∞
→

= =∫ ∫
Miscellaneous problems

16.36. Let w = z2 define a transformation from the z plane (xy plane) to the w plane (uυ plane). Consider a triangle 
in the z plane with vertices at A(2, 1), B(4,1), C(4, 3). (a) Show that the image or mapping of this triangle is 
a curvilinear triangle in the uυ plane. (b) Find the angles of this curvilinear triangle and compare with those 
of the original triangle.

(a) Since w = z2, we have u = x2, –y2, υ = 2xy as the transformation equations. Then point A(2, 1) in the xy
plane maps into point A′ (3, 4) of the uυ plane (see Figure 16.12). Similarly, points B and C map into 
points B′ and C ′, respectively. The line segments AC, BC, AB of triangle ABC map, respectively, into 
parabolic segments A′ C ′, B ′ C ′, A′ B ′ of curvilinear triangle A′ B ′ C ′ with equations as shown in Figure 
16.12 (a) and (b).
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Figure 16.12

(b) The slope of the tangent to the curve 
2

1
(3, 4) (3, 4)

2 1
4(1 ) at (3, 4) is .

2

d
u m

du

υυ
υ

= + = = =

The slope of the tangent to the curve 2
2

(3, 4)

2 1 at (3, 4) is 3.
d

u m u
du

υυ= + = = =

Then the angle θ between the two curves at A′ is given by

2 1

1 2

1
3

2tan 1, and = /4
11

1 (3)
2

m m

m m
θ θ π

−−
= = =

+ ⎛ ⎞+ ⎜ ⎟⎝ ⎠

Similarly, we can show that the angle between A′ C ′ and B ′ C ′ is π/4, while the angle between A′ B ′ and B ′ C ′
is π/2. Therefore, the angles of the curvilinear triangle are equal to the corresponding ones of the given triangle. In 
general, if w = f (z) is a transformation where f (z) is analytic, the angle between two curves in the z plane intersect-
ing at z = z0 has the same magnitude and sense (orientation) as the angle between the images of the two curves, so 
long as f ′(z0) � 0. This property is called the conformal property of analytic functions, and, for this reason, the 
transformation w = f (z) is often called a conformal transformation or conformal mapping function.

16.37. Let w = z  define a transformation from the z plane to the w plane. A point moves counterclockwise along 
the circle ⏐z⏐ = 1. Show that when it has returned to its starting position for the first time, its image point 
has not yet returned, but that when it has returned for the second time, its image point returns for the first 
time.

Let z = eiθ. Then w = z  = eiθ/2. Let θ = 0 correspond to the starting position. Then z = 1 and w = 1 [cor-
responding to A and P in Figure 16.13(a) and (b)].

When one complete revolution in the z plane has been made, θ = 2π, z = 1, but w = eiθ/2 = eiπ = – 1, so the 
image point has not yet returned to its starting position.

However, after two complete revolutions in the z plane have been made, θ = 4π, z = 1 and w = eiθ/2 = e2πi = 1, 
so the image point has returned for the first time.

It follows from this that w is not a single-valued function of z but is a double-valued function of valued 
function, we must restrict θ. We can, for example, choose 0 < θ < 2π, although other possibilities exist. This 
represents one branch of the double-valued function w = z . In continuing beyond this interval we are on the 
second branch, e.g., 2π < θ < 4π. The point z = 0 about which the rotation is taking place is called a branch 
point. Equivalently, we can ensure that f (z) = z  will be single-valued by agreeing not to cross the line Ox,
called a branch line.
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Figure 16.13

16.38.
1

0
Show that , 0 1.

1 sin

px
dx p

x p

π
π

−∞
= < <

+∫
Consider FC

1

.
1

pz
dz

z

−

+
 Since z = 0 is a branch point, 

choose C as the contour of Figure 16.14, where AB and 
GH are actually coincident with the x axis but are shown 
separated for visual purposes.

The integrand has the pole z = –1 lying within C.
Residue at z = −1 = eπi is

1
1 ( 1)

1
lim ( 1) ( )

1

p
i p p i

z

z
z e e

z
π π

−
− −

→−
+ = =

+
Then

FC

1
( 1)2

1

p
p iz

dz ie
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ππ
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−=
+

or, omitting the integrand,

( 1)2 p i

AB BDEFG GH HJA

ie ππ −+ + + =∫ ∫ ∫ ∫
We thus have
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0
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1 1 1
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i 2 ir R

x Re iRe d xe
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x Re xe
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θ π
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+ +
+ + +∫ ∫ ∫

iθ iθ
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10
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2

1

i p i
p i

i
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ie

re

θ θ
π

θπ

θ π
−

−+ =
+∫

iθ iθ

iθ

where we have to use z = xe2πi for the integral along GH, since the argument of z is increased by 2π in going 
round the circle BDEFG.

Taking the limit as r → 0 and R → � and noting that the second and fourth integrals approach zero, we find

1 2 ( 1) 10
( 1)

0
2

1 1

p i p p
p ix e x

dx dx e
x x

π
ππ
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+ =
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1
2 ( 1) ( 1)
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e dx i e
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1 ( 1)
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x i e i
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x pe e e

π
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+ − −∫

Figure 16.14
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SUPPLEMENTARY PROBLEMS

Functions, limits, continuity

16.39. Describe the locus represented by (a) ⏐z + 2 – 3i⏐ = 5, (b) ⏐z + 2⏐ = 2⏐z – 1⏐, and (c) ⏐z + 5⏐ – ⏐z – 5⏐ = 6. 
Construct a figure in each case.

Ans. (a) Circle (x + 2)2 + (y – 3)2 = 25, center (–2, 3), radius 5 
(b) Circle (x – 2)2 + y2 = 4, center (2,0), radius 2 
(c) Branch of hyperbola x2/9 – y2/16 = 1, where x ≥  3

16.40. Determine the region in the z plane represented by each of the following: (a) ⏐z – 2 + i⏐ ≥  4, 

(b) 3, 0 arg ,
4

z z
π≤ ≤ ≤  and (c) ⏐z – 3⏐ + ⏐z + 3⏐ < 10.Construct a figure in each case.

Ans.  (a) Boundary and exterior of circle (x – 2)2 + (y + 1)2 = 16 
(b) Region in the first quadrant bounded by x2 + y2 = 9, the x axis, and the line y = x
(c) Interior of ellipse x2/25 + y2/16 = 1

16.41. Express each function in the form u(x, y) + iυ(x, y), where u and υ are real: (a) z2 + 2iz, (b) z/(3 + z), (c) e2, 
and (d) ln(1 + z).

Ans.  (a) u = x3 – 3xy2 – 2y,υ = 3x2y – y2 + 2x

(b)
2 2

2 2 2 2

3 3
,

6 9 6 9

x x y y
u

x x y x x y
υ+ += =

+ + + + + +
(c) u = ex2 –y2 cos 2xy, υ = ex2–y2 sin 2xy

(d)
1

2
u = ln 2 2 1{(1 + ) }, tan 2 , 0, 1, 2,

1

y
x y k k

x
υ π−+ = + = ± ±

+
 . . .

16.42. Prove that (a) 
0

2 2
0lim

z x
z z

→
= (b) 2( )f z z=  is continuous at z = z0 directly

16.43. (a) If z = ω is any root of z5 = 1 different from 1, prove that all the roots are 1, ω, ω2, ω3, ω4. (b) Show that 1 
+ ω + ω2 + ω3 + ω4 = 0. (c) Generalize the results in (a) and (b) to the equation zn = 1.

Derivatives, Cauchy-Riemann equations

16.44. (a) If 
1

If ( ) , find
dw

w f z z
z dz

= = +  directly from the definition. (b) For what finite values of z is f (z)

nonanalytic?

Ans. (a) 1 – 1/z2 (b) z = 0

16.45. Given the function w = z4, (a) find real functions u and υ such that w = u + iυ, (b) Show that the Cauchy-
Riemann equations hold at all points in the finite z plane, (c) prove that u and υ are harmonic functions, and 
(d) Determine dw/dz.

Ans. (a) u = x4 – 6x2 y2 + y 4, υ = 4x3 y – 4xy2 (d) 4z3

16.46. Prove that f (z) = z⏐z⏐ is not analytic anywhere.



CHAPTER 16  Functions of a Complex Variable432

16.47. Prove that 
1

( )
2

f z
z

=
−

 is analytic in any region not including z = 2.

16.48. If the imaginary part of an analytic function is 2x(1 – y), determine (a) the real part and (b) the function.

Ans. (a) y2 – x2 – 2y + c (b) 2iz – z2 + c, where c is real

16.49. Construct an analytic function f (z) whose real part is e–x (x cos y + sin y) and for which f (0) = 1.

Ans. ze–z + 1

16.50. Prove that there is no analytic function whose imaginary part is x2 – 2y.

16.51. Find f (z) such that f ′ (z) = 4z – 3 and f (1 + i) = –3i.

Ans. f (z) = 2z2 – 3z + 3 – 4i

Integrals, Cauchy’s theorem, Cauchy’s integral formulas

16.52. Evaluate 
3

1 2
(2 3)

i

i
z dz

+

−
+∫ : (a) along the path x = 2t + 1, y = 4t2 – t –2 0 < t <  1, (b) along the straight line 

joining 1 – 2i and 3 + i, and (c) along straight lines from 1 – 2i to 1 + i and then to 3 + i.

Ans. 17 + 19i in all cases

16.53. Evaluate 2( 2) ,
C

z z dz− +∫  where C is the upper half of the circle ⏐z⏐ = 1 tranversed in the positive sense.

Ans. –14/3

16.54. Evaluate FC

,
,

2 5

z

z +
 where C is the circle (a) ⏐z⏐ = 2 and (b) ⏐z⏐ = 2, (b) ⏐z – 3⏐ = 2.

Ans. (a) 0 (b) 5πi/2

16.55. Evaluate Fc

2

( 2) ( 1)

z
dz

z z+ −
 where C is (a) a square with vertices at –1, –i, –1 + i, –3 + i, –3 –i; (b) the 

circle ⏐z + i⏐ = 3; and (c) the circle ⏐z⏐ = 2.

Ans. (a) –8πi/3 (b) –2π i (c) –2πi/3

16.56. Evaluate (a) FC

cos

1

z
dz

z

π
−

 and (b) FC

2

4( 1)

e z
dz

z

+
−

, where C is any simple closed curve enclosing z = 1.

Ans. (a) –2πi (b) πie/3

16.57. Prove Cauchy’s integral formulas. (Hint: Use the definition of derivative and then apply mathematical 
induction.)

Series and singularities

16.58. For what values of z does each series converge?

(a)
1

( 2)

!

n

n

z

n

∞

=

+∑  (b) 
1

( 1)

1

n

n

n z

n

∞

=

−
+∑  (c) 2 2

1

( 1) ( 2 2)n n

n

z z
∞

=

− + +∑
Ans. (a) all z (b) ⏐z – i⏐ < 1 (c) z = –1 ± i
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16.59. Prove that the series 
1

( 1)

n

n

z

n n

∞

= +∑  is (a) absolutely convergent and (b) uniformly convergent for ⏐z⏐ <  1.

16.60. Prove that the series 
0

( )

2

n

n
n

z i∞

=

+∑  converges uniformly within any circle of radius R such that ⏐z + i⏐ < R < 2.

16.61. Locate in the finite z plane all the singularities, if any, of each function and name them:

(a)
4

2

(2 1)

z

z

−
+

  (d) 1
cos

z

(b)
2( 1) ( 2)

z

z z− +
  (e) 

sin( / 3)

3

z

z

π
π

−
−

(c)
2

2

1

2 2

z

z z

+
+ +

  (f) 
2 2

cos

( 4)

z

z +

Ans.   (a) z = –1/2, pole of order 4  (d) z = 0, essential singularity 
(b) z = 1, simple pole; z = –2, double pole  (e) z = π/3, removable singularity 
(c) simple poles z = –1 ± i   (f) z = ±2i, double poles

16.62. Find Laurent series about the indicated singularity for each of the following functions, naming the 
singularity in each case. Indicate the region of convergence of each series.

(a)
cos

;
z

z
z

π
π

=
−

 (b) z2e–1/z; z = 0 (c) 
2

2
; 1

( 1) ( 3)

z
z

z z
=

− +

Ans. (a)
3 51 ( ) ( )

2! 4! 6!

z z z

z

π π π
π

− − −− + − + −
−

 . . . , simple pole, all z π≠

(b) 2
2 3

1 1 1 1

2! 3! 4! 5!
z z

z z z
− + − + − + . . . , essential singularity, all 0z ≠

(c)
2

1 7 9 9( 1)

16( 1) 64 2564( 1)

z

zz

−+ + − +
−−

 . . . , double pole, 0 < 1 4z − <

Residues and the residue theorem

16.63. Determine the residues of each function at its poles: (a) 
2

2 3
,

4

z

z

+
−

 (b) 
3 2

3
,

5

z

z z

−
+

 (c) 
3

,
( 2)

zte

z −
 and 

(d)
2 2

.
( 1)

z

z +
Ans. (a) z = 2; 7/4, z = –2; 1/4  (c) z = 2; 

1
2

t2 e2t

(b) z = 0; 8/25, z = –5; –8/25  (d) z = i; 0, z = –i; 0

16.64. Find the residue of ezt tan z at the simple pole z = 3π/2.

Ans. –e3πt/2

16.65. Evaluate FC

2

,
( 1) ( 3)

z dz

z z+ +
 where C is a simple closed curve enclosing all the poles.

Ans. – 8πi

16.66. If C is a simple closed curve enclosing z = ±i, show that

FC 2 2

1
sin

2( 1)

ztze
dz t t

z
=

+
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16.67. If f (z) = P(z)/Q(z), where P(z) and Q(z) are polynomials such that the degree of P(z) is at least two less than 

the degree of Q(z), prove that FC

( ) 0,f z dz =  where C encloses all the poles of f (z).

Evaluation of definite integrals
Use contour integration to verify each of the following

16.68.
2

40 1 2 2

x dx

x

π∞
=

+∫ 16.78.

2

20

cos

1 2 cos

n d

a a

π θ θ
θ

=
− +∫

2

2
, 0, 1, 2, 3,

1

na
n

a

π =
−

 . . . , 0 1a< <

16.69.
6 6 5

2
, 0

3

dx
a

x a a

π∞

−∞
= >

+∫ 16.79.
2 22

3 2 2 5/ 20

(2 )
,

( cos ) ( )

d a b
a b

a b a b

π θ π
θ

+= >
+ −∫

16.70.
2 20 32( 4 )

dx

x

π∞
=

+∫ 16.80.
4

20

sin 2

44

x x e
dx

x

π −∞
=

+∫

16.71.
30 31

x
dx

x

π∞
=

+∫ 16.81.
40

cos 2

84

x c
dx

x

ππ π −∞
=

+∫

16.72. 7
4 4 20

3
, 0

( ) 8 2

dx
a a

x a

π∞ −= >
+∫ 16.82.

2

2 20

sin

4( 1)

x x e
dx

x

ππ π −∞
=

+∫

16.73.
2 2 2 9( 1) ( 4)

dx

x x

π∞

−∞
=

+ +∫ 16.83.
2 20

sin (2 3)

4( 1)

x e
dx

ex x

π∞ −=
+∫

16.74.
2

0

2

2 cos 3

dπ θ π
θ

=
−∫ 16.84.

2

20

sin

2

x
dx

x

π∞
=∫

16.75.
2

20

4 3

9(2 cos )

dπ θ π
θ

=
+∫ 16.85.

3

30

sin 3

8

x
dx

x

π∞
=∫

16.76.
2

0

sin

5 4 cos 8
d

π θ πθ
θ

=
−∫ 16.86.

0

cos

cosh 2cosh ( / 2)

x
dx

x

π
π

∞
=∫

16.77.
2

2 20

3

(1 sin ) 2 2

dπ θ π
θ

=
+∫

[Hint: Consider F
C

,
cosh

ize
dz

z
 where C is a rectangle with vertices at (–R, 0), (R, 0), (R, π)r (–R, π). Then let 

R → �.]

Miscellaneous problems

16.87. If z = ρeiφ and f (z) = u (ρ, φ) + iυ (ρ, φ), where ρ and φ are polar coordinates, show that the Cauchy-
Riemann equations are

1 1
,

u uυ υ
ρ ρ φ ρ ρ φ

∂ ∂ ∂ ∂= =
∂ ∂ ∂ ∂
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16.88. If w = f (z), where f (z) is analytic, defines a transformation from the z plane to the w plane where z = x + iy
and w = u + iυ, prove that the Jacobian of the transformation is given by

2( , )
( )

( , )

u
f z

x y

υ∂ = ′
∂

16.89. Let F(x, y) be transformed to G(u, υ) by the transformation w = f (z). Show that if 
2 2

2 2
0

F F

x y

∂ ∂+ =
∂ ∂

, then at 

all points where 
2 2

2 2
( ) 0, 0.

G G
f z

u υ
∂ ∂′ ≠ + =
∂ ∂

16.90. Show that by the bilinear transformation w = ,
az b

cz d

+=
+

 where ad – bc � 0, circles in the z plane are 
transformed into circles of the w plane.

16.91. If f (z) is analytic inside and on the circle ⏐z – a⏐ = R, prove Cauchy’s inequality, namely,

( ) !
( )n

n

n M
f a

R
≤

where ⏐f (z)⏐ < M on the circle. (Hint: Use Cauchy’s integral formulas.)

16.92. Let C1 and C2 be concentric circles having center a and radii r1 and r2, respectively, where r1 < r2. If a + h is 
any point in the annular region bounded by C1 and C2, and f (z) is analytic in this region, prove Laurent’s 
theorem that

( ) n
nf a h a h

∞

−∞

+ = ∑
where

1

2na
iπ

= FC 1

( )

( )n

f z dz

z a +−

C being any closed curve in the angular region surrounding C1. [Hint: Write ( )f a h+ 1

2 iπ
=

FC

( ) 1

( ) 2

f z dz

z a h iπ
−

− + FC1

( ) 1
and expand

( )C

f z dz

z a h z a h− + − −
 in two different ways.]

16.93. Find a Laurent series expansion for the function ( )
( 1) ( 2)

z
f z

z z
=

+ +
 which converges for 1 < ⏐z⏐ < 2 

and diverges elsewhere. 
1 2 1 1

Hint: Write .
( 1) ( 2) 1 2 (1 1/ ) 1 / 2)

z

z z z z z z z

⎡ ⎤− −= + = +⎢ ⎥+ + + + + +⎣ ⎦

Ans. . . .
2 3

5 4 3 2

1 1 1 1 1
1

2 4 8

z z z

zz z z z
− + − + − + − + − + . . .

16.94. Let 
0

( ) ( )ste F t dt f s
∞ − =∫ , where f (s) is a given rational function with numerator of degree less than 

that of the denominator. If C is a simple closed curve enclosing all the poles of f (s), we can show that ( )F t
1

2 iπ
= FC

( ) sum of residues of ( ) at its poleszt zte f z dz e f z= . Use this result to find F(t) if f (s) is 

(a)
2

,
1

s

s +
 (b) 

2

1
,

2 5s s+ +
 (c) 

2

2

1
,

( 1)

s

s s

+
−

 and (d) 
2 2

1

( 1)s +
, and check results in each case. [Note that 

f (s) is the Laplace transform of F(t), and F (t) is the inverse Laplace transform of f (s) (see Chapter 12). 
Extensions to other functions f (x) are possible.]

Ans. (a) cos t, (b) 
1

sin 2 ,
2

te t− (c) 2 21 5 3
,

4 2 4
t tte e+ +  (d) 

1
(sin cos )

2
t t t−
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INDEX

Abel, integral test of, 347
summability, 320
theorems of, 291, 308

Absolute convergence:
of integrals, 314, 315, 322–325
of series, 282, 297, 315
theorems on, 282, 297

Absolute maximum or minimum, 47 
(See also Maxima and minima)

Absolute value, 4
of complex numbers, 7

Acceleration, 80, 169
centripetal, 188
in cylindrical and spherical 

coordinates, 193
normal and tangential components 

of, 188
Accumulation, point of, 6, 126 (See

also Limit points)
Addition, 2

associative law of, 3, 9
commutative law of, 3
of complex numbers, 8, 14
of vectors, 161, 162, 174

Aerodynamics, 415
Aleph- null, 6
Algebra:

of complex numbers, 7, 8, 14–16
fundamental theorem of, 47
of vectors, 162, 163, 174–177

Algebraic functions, 48
Algebraic numbers, 7, 14

countability of, 14
Alternating series, 281, 296

convergence test for, 281
error in computations using, 281

Amplitude, 8
Analytic continuation, of gamma 

function, 390

Analytic functions, 406
Analytic part, of Laurent series, 

408
Antiderivatives, 100
Approximations:

to irrational numbers, 10
least square, 212
by partial sums of Fourier series, 

365
using differentials, 84, 85, 139, 

140
using Newton’s method, 80
using Taylor’s theorem, 287–289
(See also Numerical methods)

Archimedes, 97
Arc length, 105, 106

element, 172
Area, 107, 115

of ellipse, 218
expressed as line integral, 251
of parallelogram, 166

Argand diagram, 8
Argument, 8
Arithmetic mean, 10
Associative law, 3

for vectors, 162, 166
Axiomatic foundations:

of complex numbers, 7
of real numbers, 5
of vector analysis, 166

Axis, real, 2

Base, of logarithms, 4–5
Bases, orthonormal, 163
Bernoulli, Daniel, 349
Bernoulli numbers, 319
Bernoulli’s inequality, 17
Bessel differential equation, 290
Bessel functions, 290

Beta functions, 389, 392, 393, 
395–398

relation to gamma functions, 
392

Bilinear transformation, 435
Binary scale, 17, 23

system, 1
Binomial coefficients, 23

series, 289
theorem, 23

 Bolzano- Weierstrass theorem, 7, 13, 
20, 126

Boundary conditions, 352
Boundary point, 126
Boundary- value problems:

and Fourier integrals, 377
and Fourier series, 349, 372, 

373
in heat conduction, 370
separation of variables method for 

solving, 369
in vibration of strings, 375

Bounded functions, 45
sequences, 26, 32, 34, 39
sets, 6

Bounds, lower and upper, 6, 13, 14
Box product, 166
Branches of a function, 45
Branch line, 429
Branch point, 409, 429

Calculus, fundamental theorem of 
integral, 101, 111

Cardinal number of the continuum, 6
Cardioid, 121
Catenary, 121
Cauchy form of remainder in Taylor’s 

theorem, 287
Cauchy principal value, 325, 335
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Cauchy- Riemann equations, 406, 
413–416

derivation of, 415
in polar form, 434

Cauchy’s convergence criterion, 
27, 35

Cauchy’s generalized theorem of the 
mean, 78, 88

Cauchy’s inequality, 435
Cauchy’s integral formulas, 407, 

416–419
Cauchy’s theorem, 407, 416–419
Centripetal acceleration, 188
Chain rules, 75, 131, 144

for Jacobians, 132
Circle of convergence, 290
Class, 1 (See also Sets)
Closed interval, 5

region, 126
set, 6, 13, 14, 126

Closure law or property, 3
Cluster point, 6, 126 (See also Limit 

points)
Collection, 1 (See also Sets)
Commutative law, 3

for dot products, 164
for vectors, 165, 176, 177

Comparison test, for series, 280, 292, 
293

Complex numbers, 7, 14, 15
absolute value of, 7
amplitude of, 8
argument of, 8
axiomatic foundations of, 7
conjugate of, 7
equality of, 7
modulus of, 7
operations with, 7, 14, 15
as ordered pairs of real numbers, 8
polar form of, 8, 15
real and imaginary parts of, 7
roots of, 8, 16
as vectors, 21

Complex plane, 8
Complex variable, 405, 406 (See also 

Functions of a complex variable)
Components of a vector, 163
Composite fuctions, 52

continuity of, 52
differentiation of, 75, 144–148

Conditional convergence:
of integrals, 321, 324, 331, 332
of series, 282, 315

Conductivity, thermal, 370

Conformal mapping or 
transformation, 429 (See also
Transformations)

Conjugate, complex, 7
Connected region, 245

set, 126
simply, 126, 245

Conservative field, 246
Constraints, 200
Continuity, 51–63, 128, 136

and differentiability, 73, 129, 130
definition of, 51
of functions of a complex variable, 

405
of infinite series of functions, 284, 

285, 303
of integrals, 110, 328
in an interval, 51
piecewise, 52
in a region, 126, 128
right- and  left- hand, 51
theorems on, 52
uniform, 53
of vector functions, 167

Continuous differentiability, 73, 130
Continuously differentiable functions, 

73, 130
Continuum, cardinality of, 6
Contour integration, 411
Convergence:

absolute (see Absolute 
convergence)

circle of, 286
conditional (see Conditional 

convergence)
criterion of Cauchy, 27, 35
domain of, 283
of Fourier integrals (see Fourier’s 

integral theorem)
of Fourier series, 349, 372–374
of improper integrals (see Improper 

integrals)
of infinite series (see Infinite series)
interval of, 27, 283
radius of, 285
region of, 126
of series of constants, 292–299
uniform (see Uniform convergence)

Convergent integrals, 322–324 (See
also Improper integrals)

Convergent sequences, 35, 283 (See
also Sequences)

Convergent series, 27 (See also
Infinite series)

Convolution theorem:
for Fourier transforms, 378
for Laplace transforms, 346

Coordinate curve, 171
Coordinates:

curvilinear, 149, 171 (See also 
Curvilinear coordinates)

cylindrical, 172, 186
hyperbolic, 231
polar, 8
rectangular, 163
spherical, 173, 202

Correspondence, 2, 12, 171
 one- to- one, 2, 12

Countability, 6, 12, 13
of algebraic numbers, 14
of rational numbers, 13

Countable set, 6, 13
measure of, 98, 103

Critical points, 73
Cross products, 168, 177–179

proof of distributive law for, 177
Curl, 170, 171, 183–185

in curvilinear coordinates, 173
Curvature:

radius of, 188, 193
simple closed, 126, 245, 255
space, 168

Curvilinear coordinates, 149, 150
curl, divergence, gradient, and 

Laplacian in, 173, 174
Jacobians and, 173, 174
multiple integrals in, 221–242
orthogonal, 221–242
special, 173, 174
transformations and, 158, 171
vectors and, 173, 174

Cut (see Dedekind cuts)
Cycloid, 121
Cylindrical coordinates, 173, 185, 186

arc length element in, 172
divergence in, 186
gradient in, 186
Laplacian in, 173, 174
multiple integrals in, 235
parabolic, 192
volume element in, 173, 174

Decimal representation of real 
numbers, 2

Decimals, recurring, 2
Decreasing functions, 45, 52

monotonic, 45
strictly, 45, 52
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Decreasing sequences:
monotonic, 26
strictly, 26

Dedekind cuts, 5, 18
Definite integrals, 92–100, 108 (See

also Integrals)
change of variable in, 101, 111–113
definition of, 98
mean value theorems for, 99, 100, 

110
numerical methods for evaluating, 

104, 105, 115
properties of, 98
theorem for existence of, 98
with variable limits, 101, 186, 313, 

321
Degree:

of polynomial equation, 7
of homogeneous functions, 131

Del (�), 170
in curl, gradient, and divergence, 

170
formulas involving, 170

Deleted neighborhood, 6, 126
De Moivre’s theorem, 8, 16
Dense, everywhere, 3
Denumerable set (see Countable set)
Dependent variable, 43, 119
Derivatives, 71–96, (See also 

Differentiation)
chain rules for, 75, 133
continuity and, 72, 78, 130, 139
definition of, 72, 73
directional, 198, 205–206, 215
of elementary functions, 71, 

76–77
evaluation of, 76, 81–92
of functions of a complex variable, 

405, 411–414
graphical interpretation of, 71
higher- order, 77, 129
of infinite series of functions, 283, 

413–416
partial (see Partial derivatives)
right- and  left- hand, 72, 83, 92
rules for finding, 75–76
of vector functions, 168, 182, 183

Determinant:
for cross product, 166
for curl, 170
Jacobian (see Jacobians)
for scalar triple product, 166

Dextral system, 163
Difference equations, 72

Differentiability, 72, 73, 130
and continuity, 73, 77–78
continuous, 73
piecewise, 73

Differential:
elements of area, of volume, 172, 

221, 222, 242
as linear function, 73, 129

Differential equation:
Gauss’s, 290
solution of, by Laplace
transforms, 329, 342

Differential geometry, 169, 193
Differentials, 73, 84, 129–131

approximations using, 71, 129
exact, 130
of functions of several variables, 

129, 139
geometric interpretation of, 74, 

129–130
total, 129
of vector functions, 167–168

Differentiation:
of Fourier series, 351, 369
under integral sign, 198, 206, 216
rules for, 75–76, 91
(See also Derivatives)

Diffusivity, 370
Directed line segments, 162
Directional derivatives, 198, 205–206, 

215
Dirichlet conditions, 350, 358, 360

integrals, 393, 398, 402
Dirichlet’s test:

for integrals, 328
for series, 284, 319

Discontinuities, 51
removable, 60

Distance between points, 176
Distributive law, 3

for cross products, 165
for dot products, 164

Divergence, 170, 171, 183, 184
in curvilinear coordinates, 173
in cylindrical coordinates, 173
of improper integrals, 322–324 (See

also Improper integrals)
of infinite series (see Infinite series)

Divergence theorem, 250, 262–265, 
275

proof of, 262, 263
Divergent integrals, 322–347

sequences (See Sequences)
series (See Series)

Division, 2
of complex numbers, 7, 8
by zero, 9

Domain:
of a function, 43
of convergence, 279

Dot products, 164, 165, 176, 
177

commutative law for, 164
distributive law for, 164
laws for, 164, 165

Double series, 291
Dummy variable, 100
Duplication formula for gamma 

function, 392, 400

e, 5
Electric field vector, 193
Electromagnetic theory, 193
Elementary transcendental functions, 

48, 85
Elements of a set, 1
Ellipse, 120

area of, 120
Empty set, 1
Envelopes, 197, 198, 204
Equality:

of complex number, 7
of vectors, 170

Equations:
differential (see Differential 

equation)
integral, 377, 380, 381
polynomial, 7, 47

Errors, applications to, 200, 212, 
217

in computing sums of alternating 
series, 281, 297

mean square, 366
Essential singularity, 408
Eudoxus, 97
Euler, Leonhart, 349
Euler’s constant, 310

theorem on homogeneous 
functions, 131

Even function, 351, 360–364
Everywhere dense set, 3
Exact differentials, 129, 130, 139, 

140, 244 (See also Differentials)
Expansion of functions:

in Fourier series (see Fourier series)
in power series, 286, 287

Expansions (see Series)
Explicit functions, 137
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Exponential function, 48
order, 346

Exponents, 4, 12

Factorial function (see Gamma 
functions)

Fibonacci sequence, 38
Field, 3

conservative, 246
scalar, 162
vector, 162

Fourier, Joseph, 349
Fourier coefficients, 350, 358

expansion (see Fourier series)
Fourier integrals, 377–388

convergence of (see Fourier’s 
integral theorem)

solution of  boundary- value 
problems by, 385

(See also Fourier transforms)
Fourier series, 349–376

complex notation for, 352
convergence of, 351, 366–368
differentiation and integration of, 

352
Dirichlet conditions for 

convergence of, 350
half range, 351, 360–364
Parseval’s identity for, 351, 364, 

365
solution of  boundary- value 

problems by, 352, 369–371
Fourier’s integral theorem, 377, 378

heuristic demonstration of, 382
proof of, 382

Fourier transforms, 378–382
convolution theorem for, 379
inverse, 378
Parseval’s identities for, 379, 382, 

386
symmetric form for, 378
(See also Fourier integrals)

Fractions, 2
Frenet- Serret formulas, 193
Fresnel integrals, 401
Frullani’s integral, 345
Functional determinant, 132, 146 (See

also Jacobians)
Functional notation, 43, 125
Functions, 43–70, 125, 141, 405

algebraic, 48
beta (see Beta functions)
bounded, 45
branches of, 43

Functions (Cont.):
of a complex variable (see

Functions of a complex variable)
composite (see Composite 

functions)
continuity of (see Continuity)
decreasing, 45
definition of, 43, 126
derivatives of (see Derivatives)
differential of (see Differentials)
domain of, 43, 126
elementary transcendental, 48, 49
even, 351, 360–364
explicit and implicit, 131
of a function (see Composite 

functions)
gamma (see Gamma functions)
harmonic, 406
hyperbolic, 48, 49
hypergeometric, 290, 318
increasing, 45
inverse (see Inverse functions)
limits of (see Limits of functions)
maxima and minima of (see

Maxima and minima)
monotonic, 45
multiple- valued (see  Multiple- 

valued function)
normalized, 355
odd, 351, 360–364
orthogonal, 355, 371, 372
orthonormal, 355
periodic, 379
polynomial, 47
sequences and series of, 283, 284, 

300, 301
of several variables, 125, 130, 133
single- valued, 43, 405
staircase of step, 55
transcendental, 48
types of, 47
vector (see Vector functions)

Functions of a complex variable, 
405–435

analytic, 406
Cauchy- Riemann equations, 406, 

414 (See also Cauchy- Riemann 
equations)

continuity of, 406, 413, 414
definition of, 405
derivatives of, 406, 414–417
elementary, 406
imaginary part of, 405, 414
integrals of, 407, 417–420

Functions of a complex variable 
(Cont.):

Jacobians and, 435
Laplace transforms and, 435
limits of, 405, 411, 412
line integrals and, 406
multiple- valued, 405
poles of, 408
real part of, 405, 414
residue theorem for (see Residue 

theorem)
series of, 300–302, 405, 419–422
single- valued, 405
singular points of, 408

Fundamental theorem:
of algebra, 47
of calculus, 101, 110–111

Gamma functions, 389–404
analytic continuation of, 390
asymptotic formulas for, 390, 392
duplication formula for, 392, 400
infinite product for, 390
recurrence formula for, 389–390
Stirling’s formulas and asymptotic 

series for, 398
table and graph of, 389

Gauss’s:
differential equation, 290
� function, 391
test, 282

Geometric integral, 323
Gibbs, Williard, 161
g.l.b (see Greatest lower bound)
Gradient, 169, 170, 171, 183

in curvilinear coordinates, 172
in cylindrical coordinates, 173

Graph:
function of one variable, 44
function of two variables, 153, 154

Grassman, Herman, 161
Greater than, 3
Greatest limit (see Limit superior)
Greatest lower bound, 6

of a function, 45
of a sequence, 26, 34, 39

Green’s theorem:
in the plane, 246, 253–256, 273
in space, (see Divergence theorem)

Grouping method for exact 
differentials, 141

Half range Fourier sine or cosine 
series, 351, 360–364
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Hamilton, William Rowen, 161, 169
Harmonic functions, 406

series, 280
Heat conduction equation, 370

solution of by Fourier integrals, 385
solution of by Fourier series, 367, 

368
Homogeneous functions, Euler’s 

theorem on, 131
Hyperbolic coordinates, 231
Hyperbolic functions, 48, 49

inverse, 47
Hyperboloid of one sheet, 135
Hypergeometric function or series, 

290, 318
Hypersphere, 125
Hypersurface, 125

Identity, with respect to addition and 
multiplication, 3

Image or mapping, 133, 428
Imaginary part:

of a complex number, 7
of functions of a complex variable, 

405, 414, 417
Imaginary unit, 7
Implicit functions, 75, 130

and Jacobians, 144–149
Improper integrals, 104, 116, 117, 

321–347
absolute and conditional 

convergence of, 322, 324, 326
comparison test for, 323, 327
containing a parameter, 327
definition of, 321
of the first kind, 321–322, 330–331
of the second kind, 324–326, 335
of the third kind, 321, 327
quotient test for, 323
uniform convergence of, 327, 

337–338
Weierstrass M test for, 327, 337–342
Increasing functions, 45

monotonic, 45
strictly, 45, 52

Indefinite integrals, 104 (See also 
Integrals)

Independence of the path, 256–259, 
273

Independent variable, 48, 125
Indeterminate forms, 88–90

L’Hospital’s rules for (see
L’Hospital’s rules)

Induction, mathematical, 8

Inequality, 3, 10
Bernoulli’s, 17
Cauchy’s, 435
Schwarz’s, 11, 20, 116

Inferior limit (see Limit inferior)
Infinite:

countably, 6
interval, 5

Infinite product, 291
for gamma function, 389

Infinite series, 27, 36, 39, 279–320
absolute convergence of, 282, 297, 

315
comparison test for, 281, 293, 297
of complex terms, 290
conditional convergence of, 282, 

297
convergence tests for, 280–281
of functions, 286, 287, 290, 291
functions defined by, 290
Gauss’s test for, 282
integral test for, 281, 294–296
nth root test for, 281
partial sums of, 27, 279
quotient test for, 281, 290
Raabe’s test for, 282, 300
ratio test for, 282, 298, 315
rearrangement of terms in, 282
special, 284
uniform convergence of, 283, 284 

(See also Uniform convergence)
Weierstrass M test for, 284, 303
(See also Series)

Infinitesimal, 96
Infinity, 26, 50
Inflection, point of, 79
Initial point of a vector, 161
Integers, positive and negative, 2
Integrable, 98
Integral equations, 377, 382, 383
Integral formulas of Cauchy, 407, 

416–419
Integrals, 97–123, 221–242, 321–347, 

377–388, 406–407, 411, 422–435
definite, 97–98 (See also Definite 

integrals)
Dirichlet, 393, 399, 402
double, 221, 227–230
of elementary functions, 102
evaluation of, 328, 345–347
Fresnel, 401
Frullani’s, 345
of functions of a complex variable, 

405–435

Integrals (Cont.):
improper, 104 (see Improper 

integrals)
indefinite, 100
of infinite series of functions, 283, 

286
iterated, 222–223
line (see Line integrals)
mean value theorems for, 86, 99
multiple (see Multiple integrals)
Schwarz’s inequality for, 116
table of, 102
transformations of, 101, 109–114
uniform convergence of, 328, 337, 

338
(See also Integration)

Integral test for infinite series, 281
Integrand, 98
Integration:

applications of, 105–108
contour, 411
of elementary functions, 102, 103
of Fourier series, 351, 366
under integral sign, 198, 206
interchange of order of, 222
limits, of, 98
by parts, 103–120
range of, 98
special methods of, 103, 

111–114
(See also Integrals)

Intercepts, 134
Interior point, 126
Intermediate value theorem, 52
Intersection of sets, 13
Intervals:

closed, 5
continuity in, 51
of convergence, 27
infinite, 5
nested, 27, 35
open, 5
unbounded, 6

Invariance relations, 194
Invariant:

scalar, 194
Fourier transforms, 378 (See also 

Fourier transforms)
Laplace transforms, 328, 435 (See

also Laplace transforms)
Inverse functions, 45

continuity of, 51
hyperbolic, 48
trigonometric, 48
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Inverse, of addition and 
multiplication, 3

Irrational algebraic functions, 48
Irrationality of √

⎯
2, proof of, 10

Irrational numbers, 2, 9, 10
approximations to, 10
definition of, 2 (See also Dedekind 

cuts)
Isolated singularity, 408
Iterated integrals, 222–223

limits, 127

Jacobian determinant (see Jacobians)
Jacobians, 132, 144–149, 172, 185, 

186
chain rules for, 132
curvilinear coordinates and, 172, 173
implicit functions and, 144–148
multiple integrals and, 221
partial derivatives using, 133
theorems on, 132, 171
of transformations, 133
vector interpretation of, 171

Kronecker’s symbol, 355

Lagrange multipliers, 200, 210, 211
Lagrange’s form of the remainder, in 

Taylor series, 288, 311
Laplace’s equation, 138 (See also 

Laplacian operator)
Laplace transforms, 328, 329, 342

convolution theorem for, 343
inverse, 343, 435
relation of functions of a complex 

variable to, 435
in solving differential equations, 329
table of, 329

Laplacian operator, 172, 173
in curvilinear coordinates, 172
in cylindrical coordinates, 173, 185
in spherical coordinates, 173
(See also Laplace’s equation)

Laurent’s series, 400, 420, 421
theorem, 421, 422

Least limit (see Limit inferior)
Least square approximations, 212
Least upper bound, 6, 34

of functions, 46
of sequences, 26, 39

 Left- hand continuity, 51
limits, 49

Leibniz, Gottfried Wilhelm, 65, 97, 
265

Leibniz’s formula for nth derivative of 
a product, 96

rule for differentiating under the 
integral sign, 198, 206

Length of a vector, 161
Less than, 3
Level curves and surfaces, 152, 197
L’Hospital’s rules, 78, 88–90, 95

proofs of, 88, 89, 96
Limit inferior, 36, 39
Limit points, 6, 13, 127

 Bolzano- Weierstrass theorem on 
(see  Bolzano- Weierstrass 
theorem)

Limits of functions, 43–70, 127, 128, 
405– 406, 411 –413

of a complex variable, 405, 411–413
definition of, 47, 127
iterated, 127, 222
proofs of theorems on, 58–61
right- and  left- hand, 49
special, 50
theorems on, 50

Limits of integration, 98
Limits of sequences, 29–30

definition of, 25
of functions, 49
theorems of, 25–26

Limits of vector functions, 168
Limit superior, 27, 34
Line:

normal (see Normal line)
tangent (see Tangent line)

Linear dependence of vectors, 
194

Linear transformations, 158
Line integrals, 243–245, 251–255, 

272–273
evaluation of, 244
independence of path of, 246, 

251–253
properties of, 245
relation to functions of a complex 

variable, 407
vector notation for, 244

Logarithms, 4–5, 12
base of, 4
as  multiple- valued functions, 

405
Lower bound, 6, 13

of functions, 45
of sequences, 26

Lower limit (see Limit inferior)
l.u.b. (see Least upper bound)

Maclaurin series, 287
Magnetic field vector, 193
Magnitude of a vector, 161
Many- valued function (see Multiple-

valued function)
Mappings, 133

conformal, 429
(See also Transformations)

Mathematical induction, 8, 16
Maxima and minima, 46–47, 79, 197, 

200, 208–212
absolute, 47
of functions of several variables, 

199, 200
Lagrange’s multiplier method for, 

210–212
relative, 47
Taylor’s theorem and, 287, 288, 

311, 312
Maximum (see Maxima and minima)
Maxwell’s equations, 193
Mean square error, 366
Mean value theorems:

for derivatives, 77, 86–88, 94, 134, 
150–151

for integrals, 99–100, 110, 119
Measure zero, 98, 109
Mechanics, 169

fluid, 415
Members of a set, 1
Minimum (see Maxima and 

minima)
Moebius strip, 262
Moment of inertia, 115

polar, 227, 231
Monotonic functions, 42
Monotonic sequences, 26, 32–34

fundamental theorem on, 26
Multiple integrals, 221–242

in curvilinear coordinates, 225, 
226, 236, 237

in cylindrical coordinates, 225
improper, 330
Jacobians and, 225
in spherical coordinates, 226
transformations of, 225–226

 Multiple- valued functions, 43, 125, 
405

logarithms as, 405
Multiplication, 3

associative law of, 3
of complex numbers, 7, 8
involving vectors, 164–167

Multiply connected regions, 125
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Natural base of logarithms, 4
Natural numbers, 1
Negative integers, 2

numbers, 1, 2
Neighborhoods, 6, 126
Nested intervals, 27, 35
Newton, Isaac, 71, 97, 279

first and second laws, 74
Newton’s method, 80
Normal component of acceleration, 188
Normalized vectors and functions, 355
Normal line:

parametric equations for, 196, 214
principal, 188, 192
to a surface, 196, 201–203

Normal plane, 196, 197, 203, 204
nth root test, 282
Null set, 1

vector, 161
Numbers, 1–24

algebraic (see Algebraic numbers)
Bernoulli, 349
cardinal, 6
complex (see Complex numbers)
history, 1
irrational (see Irrational numbers)
natural, 2
negative, 2
operations with, 2–7
positive, 1
rational (see Rational numbers)
real (see Real numbers)
transcendental, 7, 14

Numerator, 2
Numerical methods for evaluating 

definite integrals, 105, 115 (See
also Approximations)

Odd functions, 351, 360–364
Open ball, 126
Open interval, 5

region, 126
Operations:

with complex numbers, 7, 15
with real numbers, 3

Order, exponential, 346
of derivatives, 77
of poles, 408, 409

Ordered pairs of real numbers, 8
triplets of real numbers, 164

Orientable surface, 262
Origin, of a coordinate system, 125
Orthogonal curvilinear coordinates 

(see Curvilinear coordinates)

Orthogonal families, 414, 415
functions, 163, 371, 372

Orthonormal functions, 371

Pappus’s theorem, 242
Parabolic cylindrical coordinates, 192
Parallelepiped, volume of, 166, 180
Parallelogram:

area of, 166, 179
law, 162, 174

Parametric equations:
of line, 201
of normal line, 196
of space curve, 168

Parseval’s identity:
for Fourier integrals, 377, 378
for Fourier series, 351, 364, 374

Partial derivatives, 125–159
applications of, 195–219
definition of, 128
evaluation of, 129, 137–139
higher- order, 128
notations for, 128
order of differentiation of, 128
using Jacobians, 132

Partial sums of infinite series, 27, 279, 
280

Period of a function, 349
Piecewise continuous, 52

differentiable, 74
p integrals, 323

Plane, complex, 8
Plane, equation of, 181

normal to a curve (see Normal 
plane)

tangent to a surface (see Tangent 
plane)

Points:
of accumulation, 6 (See also Limit 

points)
boundary, 126
branch, 409, 410
cluster, 6, 126 (See also Limit 

points)
critical, 79
interior, 126
limit (see Limit points)
neighborhoods of, 6, 126
singular (see Singular points)

Point set:
 one- dimensional, 6
two- dimensional, 126

Polar coordinates, 8
Polar form of complex numbers, 8, 15

Poles, 408
defined from a Laurent series, 408
of infinite order, 408
residues at, 408

Polynomial functions, 47
degree of, 47

Position vector, 167
Positive definite quadratic form, 219
Positive direction, 245

normal, 248
Positive integers, 1

numbers, 1, 2
Potential, velocity, 415
Power series, 284, 289, 290, 306–308

Abel’s theorem on, 286
expansion of functions in, 286
operations with, 286, 287
radius of convergence of, 285
special, 290, 291
theorems on, 284
uniform covergence of, 284

Prime, relatively, 10
Principal branch:

of a function, 45
of a logarithm, 410

Principal normal to a space curve, 
188, 191

Principal part, 73, 129
of a Laurent series, 408

Principal value:
of functions, 45
of integrals (see Cauchy principal 

value)
of inverse hyperbolic functions, 48
of inverse trigonometric 

functions, 48
of logarithms, 404

p series, 280

Quadratic equation, solutions of, 15
Quadratic form, 219
Quotient, 2
Quotient test:

for integrals, 323, 326, 352
for series, 281, 292, 293

Raabe’s test, 282, 300
Radius of convergence, 285

of curvature, 189, 193
of torsion, 193

Radius vector, 164
Range, of integration, 104
Rates of change, 71
Rational algebraic functions, 48
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Rational numbers, 2, 9, 10
countability of, 12

Ratio test, 282, 300
proof of, 299

Real axis, 2
Real numbers, 1

absolute value of, 4
axiomatic foundations of, 5
decimal representation of, 2
geometric representation of, 2
inequalities for (see Inequality)
noncountability of, 13
operations with, 3, 9
ordered pairs and triplets of, 7, 166
(See also Numbers)

Real part:
of a complex number, 7
of functions of a complex variable, 

405, 411, 412
Rectangular component vectors, 163
Rectangular coordinates, 7, 125, 171
Rectangular neighborhood, 126

rule for integration, 101
Recurring decimal, 2
Region, 126

closed, 126
connected, 245
of convergence, 126
multiply connected, 126
open, 126
simply connected, 127, 245, 255

Regular summability, 291, 320
Relative extrema, 79
Relativity, theory of, 194
Removable discontinuity, 61, 128

singularity, 408, 419
Residues, 410, 422–424
Residue theorem, 410, 411, 422–424

evaluation of integrals by, 411, 
413–416

proof of, 422, 423
Resultant of vectors, 162, 174
Reversion of series, 286
Riemann axis, 408
Riemann integrable, 98
Riemann’s theorem, 367, 383
Riemann surface, 409
Right- hand continuity, 51

derivatives, 72, 73, 83
limits, 49

 Right- handed rectangular coordinate 
system, 163, 164

Rolle’s theorem, 77
proof of, 86

Roots:
of complex numbers, 8, 15
of equations, 47
Newton’s method for finding, 80
of real numbers, 4, 12

Saddle points, 200
Scalar, 162

field, 162
invariant, 194
product (see Dot products)
triple product, 166

Scale factors, 172
Scale of two (see Binary scale)
Schwarz’s inequality for real numbers, 

11, 20
Section (see Dedekind cuts)
Separation of variables in  boundary- 

value problems, 369
Sequences, 25–41, 283

bounded, monotonic, 26, 32–34
convergent and divergent, 25, 283
decreasing, 26
definition of, 25
Fibonacci, 38
finite and infinite, 283
of functions, 283
increasing, 26
limits of, 25, 29, 283 (See also 

Limits of sequences)
terms of, 28
uniform covergence of, 284

Series
alternating (see Alternating series)
binomial, 289
double, 291
of functions of a complex variable, 

419–422
geometric, 36, 280
harmonic, 280
Laurent’s, 408, 420, 421, 433
Maclaurin, 288
partial sums of, 27, 279
power (see Power series)
reversion of, 286
sum of, 27, 279
Taylor (see Taylor series)
telescoping, 292
terms of, 279
test for integrals, 294
(See also Infinite series)

Sets, 1
bounded, 6
closed, 6, 14

Sets (Cont.):
connected, 126
countable or denumerable (see

Countable set)
elements of, 1
everywhere dense, 3
intersection of, 13
orthonormal, 350, 355
point, 126
union of, 13

Simple closed curves, 126, 245, 254
Simple poles, 408
Simply connected region, 126, 245, 

254
Simpson’s rule, 105, 115
Single- valued function, 43, 125, 

405
Singular points or singularities, 

408–411, 419–422
defined from Laurent series, 408
essential, 408, 420
isolated, 408
removable, 408, 420

Sink, 272
Slope, 71
Smooth function (see Piecewise 

continuous, differentiable)
Solenoidal vector fields, 272
Source, 272
Space curve, 168
Specific heat, 369, 370
Spherical coordinates, 173, 185, 186

arc length element in, 173, 185
Laplacian in, 173, 187
multiple integrals in, 188
volume element in, 173, 186

Staircase or step function, 55
Stirling’s asymptotic formula and 

series, 391, 398
Stokes’s theorem, 251, 265–270

proof of, 265–266
Stream function, 415
Subset, 1
Subtraction, 3

of complex numbers, 14
of vectors, 162

Sum, 1
partial, 27, 279
of series, 27, 279
of vectors, 161, 174

Summability, 310, 318, 320
Abel, 320
Césaro, 291, 320
regular, 291, 319
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Superior limit (see Limit superior)
Superposition, principal of, 370
Surface, 125

equipotential, 198
level, 154, 198
normal line to (see Normal line)
orientable, 262
tangent place to (see Tangent plane)

Surface integrals, 247–250, 274–275

Tangential component of acceleration, 
188

Tangent line:
to a coordinate curve, 92
to a curve, 71, 196, 214

Tangent plane, 195, 201–203, 214
in curvilinear coordinates, 215

Tangent vector, 168, 188
Taylor polynomials, 288
Taylor series:

of functions of a complex variable, 
408

in one variable, 289 (See also
Taylor’s theorem)

in several variables, 290
Taylor’s theorem, 287, 312

for functions of one variable, 
287

for functions of several variables, 
290, 291

proof of, 311, 420, 421
remainder in, 289
(See also Taylor series)

Telescoping series, 292
Tensor analysis, 194
Term:

of a sequence, 25
of a series, 280

Terminal point of a vector, 162
Thermal conductivity, 370, 371
Thermodynamics, 159
Torsion, radius of, 188
Total differential, 129 (See also 

Differentials)
Trace, on a place, 135
Transcendental functions, 48, 49

numbers, 7, 21
Transformations, 133, 149, 150

conformal, 429
and curvilinear coordinates, 149, 

150, 159
of integrals, 102, 108–111, 225, 

230–234
Jacobians of, 132, 171

Transforms (see Fourier transforms; 
Laplace transforms)

Transitivity, law of, 3
Trigonometric functions, 48, 104

derivatives of, 71
integrals of, 97, 98
inverse, 48

Triple integrals, 224, 233–234
transformation of, 240–242

Triple products:
scalar, 166
vector, 166

Unbounded interval, 6
Uniform continuity, 53, 63, 128
Uniform convergence, 282, 283, 302, 

303
of integrals, 322, 323, 327–328
of power series, 285
of sequences, 283
of series, 283–284
tests for integrals, 323, 326, 

327 –328
tests for series, 284
theorems for integrals, 328
theorems for series, 284–286
Weierstrass M test for (see

Weierstrass M test)
Union of sets, 13
Unit tangent vector, 168
Unit vectors, 163

infinite dimensional, 355
rectangular, 163

Upper bound, 6
of functions, 45
of sequences, 26

Upper limit (see Limit superior)

Variable, 5
change of, in differentiation, 74, 76
change of, in integration,101, 114, 

225
complex, 405, 406 (See also 

Functions of a complex variable)
dependent and independent, 43, 125
dummy, 100
limits of integration, 100, 199, 206

Vector algebra, 162–167
Vector analysis (see Vectors)
Vector field, 168

solenoidal, 272
Vector functions, 167

limits, continuity and derivatives of, 
167, 168

Vector product (see Cross 
products)

Vectors, 22, 161–194
algebra of, 162–163, 188–190
axiomatic foundations for, 166
bound, 161
complex numbers as, 22
components of, 163
curvilinear coordinates and, 172, 

173
equality of, 161
free, 161
infinite dimensional, 355
Jacobians interpreted in terms of, 

171
length or magnitude of, 161
normalized, 355
null, 162
position, 164
radius, 164
resultant or sum of, 161, 174
scalar product, 165
tangent, 169, 188
unit, 163, 164

Vector triple product, 166, 179–182
Velocity, 89, 188

of light, 193
potential, 415

Vibrating string, equation of, 
325

Volume, 107
element of, 172, 173, 186
of parallelepiped, 172, 186

Volume of revolution:
disk method, 107, 108
shell method, 107

Wallis’s product, 372
Wave equation, 375
Weierstrass M test:

for integrals, 327, 338–343
for series, 280, 303

Wilson, E.B., 161
Work, as a line integral, 252

x axis, 125

z axis, 125
intercept, 135

Zeno of Elea, 279
Zero, 1

division by, 9
measure, 98, 109
vector, 161
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